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ABSTRACT KEYWORDS

This paper proposes five pointwise consistent and asymptotic normal esti- Nonparametric Regression;
mators of the asymptotic variance function of the Nadaraya-Watson kernel ~ Nonparametric Standard
estimator for nonparametric regression. The proposed estimators are con-  Erors; Bootstrap

structed based on the first-stage nonparametric residuals, and their asymp- MATHEMATICS SUBJECT
totic properties are established under the assumption that the same CLASSIFICATION (2000)
bandwidth sequences are used throughout, which mimics what researchers 62G08; 62G20

do in practice while making derivations more complicated instead. A lim-

ited Monte Carlo experiment demonstrates that the proposed estimators

possess smaller pointwise variability in small samples than the pair and

wild bootstrap estimators which are commonly used in practice.

1. Introduction

Peter C. B. Phillips has made so many important research contributions in different areas and
has developed the career of many fine econometricians that it is a great honour to write a paper
for his 70th birthday. Peter made many contributions to nonparametric estimation methodology,
to standard error construction, to improving inference in parametric, semiparametric and non-
parametric settings with stationary and nonstationary regressors, see, e.g., Bandi and Phillips
(2003), Jeftrey et al. (2004), Phillips (2005, 2007, 2009), Sul et al. (2005), Phillips et al. (2006),
Phillips et al. (2007), Xu and Phillips (2008), Sun et al. (2008), Wang and Phillips (2009a,b,
2011), Phillips and Su (2011), and Li et al. (2016). Our paper considers the issue of constructing

standard errors for nonparametric regression.
Consider the nonparametric regression

Y, = mo(X;) + ¢ (1.1)
where X; is a vector of d continuous regressors, E[¢;|X; = x] =0, and E[e}|X; = x] = 6*(x). We
consider the setting where a sequence of independent and identically distributed (i.i.d.) observa-
tions, {Y;. X'}, is used to construct the Nadaraya-Watson (NW) estimator 71(x) of m(x). Let
v(x) = ||K|[56%(x)/fx(x) denote the first-order asymptotic variance of, \/nhdsn(x), where h,, rep-
resents a common bandwidth parameter, fx(x) is the joint density function of X evaluated at x,

and ||K|5 = [ K*(u)du for some given kernel function, K(-). This paper derives the pointwise
asymptotic normality of five different estimators of v(x), namely ¥, ;(x) for I =1,2,...,5, which
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are based on the nonparametric residuals, ¢; = Y; — m(X;), and utilize the same bandwidth, h,,
and kernel function, K(-), used to construct i (x).

Estimation of v(x) is important because it is needed to construct pointwise asymptotic confi-
dence intervals for the NW estimates of mg(x). For example, the np package of Hayfield and
Racine (2008) in the R statistical language calculates pointwise 95% confidence intervals as

mo(x) £1.9651/Vy, 2(x)/nhd where v, ,(-) is the second estimator under consideration here and
defined in (2.2) below. With the notable exceptions of Hall (1992), Fan and Yao (1998), Yu and
Jones (2004) and Xu and Phillips (2011), to the best of our knowledge, there has been no further
research on establishing the theoretical properties of standard errors and confidence intervals
beyond their consistency, see, e.g., Hirdle (1990) and references therein. Their properties such as
pointwise biases and variances are important because they allow practitioners to choose between
competing estimators in a given application. In a limited Monte Carlo experiment, we find that
all the proposed estimators display smaller variances than the estimators of v(-) implied by the
pair and wild bootstrap which are indiscriminately used in practice, see, e.g., Huynh and Jacho-
Chévez (2009a,b). Similarly, it is shown below that an estimator (namely 7, 4(-)) based on the
internalization idea of Mack and Muller (1989) and Linton and Jacho-Chavez (2010) has uni-
formly smaller variance that the remaining four proposed estimators when using a second-order
Gaussian kernel and ¢;/0(X;) in (1.1), are ii.d. Gaussian and independent of X;. As shown below,
the derived bias functions are different across estimators and depend on the higher derivatives of
mo(-) and fx(-). Similarly, f/n,l(x)fn(x)/HKH% for I =1,2,...,5 then become consistent and asymp-
totic normally distributed estimators of 2(x) which are for example suitable competitors for Fan
and Yao’s (1998) estimator. Finally, our assumptions are mild in the sense that bandwidths
obtained from commonly bandwidth-selection procedures such as cross-validation or Silverman’s
(1986) rule-of-thumb are consistent with our asymptotic theory.

We consider only the i.i.d. case for expositional reasons. A curious property of nonparametric
regression is that the asymptotic distribution is the same in the ii.d. world as in the weakly
dependent time series world, see, e.g., Robinson (1983), which means that many results for the
i.i.d. case carry over directly to the weakly dependent case, see also Fan and Yao (1998).

1.1. Literature Review

In the classical parametric world, there is much work on estimating asymptotic covariance matri-
ces of parameter estimates. In the likelihood framework, Efron and Hinkley (1978) showed that
the observed information was a better estimator of the variance of the MLE than the expected
information in terms of asymptotic variance. In Econometrics much focus has been on robustness
of standard errors and test statistics constructed from them. White (1980) developed standard
errors for linear regression that are robust to heteroskedasticity, which was followed by Newey
and West (1987) that developed consistent standard errors in the presence of autocorrelation of
unknown form as well as heteroskedasticity. Andrews (1991) establishes the Mean Squared Error
(MSE) of a class of long run variance estimators and uses this to derive an optimal estimator
within his kernel class. Kauermann and Carroll (2001) investigate the efficiency of the sandwich
estimator under the ii.d. model. Chesher and Jewitt (1987) investigate the bias of White’s (1980)
estimator and some proposed modifications.

The paper is structured as follows: Section 2 introduces and discusses the proposed five esti-
mators. Section 3 presents the main theoretical results of the paper, while the numerical perform-
ance of the proposed estimators in small samples are presented in Section 4. All proofs and
auxiliary materials are collected in the Appendix and the online supplemental material of
this paper.
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2. Estimators of v(x)

We define our estimators of v(x) here, and most of them are already well known. We only con-
sider estimators that are robust to heteroskedasticity, which excludes differencing-type estimators
of Hall and Yatchew (2005) and many others, see, e.g., Hastie and Tibshirani (1990). We also fol-
low the conclusion of Fan and Yao (1998) in that we only consider estimators of the conditional
varjance that are based on the squared residuals; this guarantees that our estimators are
all positive.

Let K(-) be some kernel function satisfying Assumption 3.1 below and let Kj,(-) = h;?K(-/h,)
for any positive sequence of bandwidths #,,. Let:

V1(x) = nhz Z wfl’i(x)%f, (2.1)
i=1
o (x)
Va2 (x) = [[K|[3 2=, (2.2)
*f ()
Vu3 = GL(0)nhy Y wh (%), (2.3)
i=1
V4 = nht Z wy (%) G2(Xi),s (2.4)
i=1

where  w,i(x) = Ky, (Xi —x)/ S0 Ky, (Xi —x)  and & =Y;—m(X;), while &3(x)=

a

S wai(x)e] and 65(6G) = 301 i waije) with wai; = Ky, (X0 — X)) 300 0 K, (X — Xo),

and finally, f, (x) = >_1, Ky, (X; — x)/n is the kernel estimate of fx(x).
In addition, we also consider the residual-based wild bootstrap scheme: €/ = v;é;, where ¢; =

¢i—i¢and v, i=1,...,n, areiid.(0,1) such that E[v{] € (1,00). We construct a bootstrap sample,
(?j,XI)T, i=1,...,n, where f/j = m(X;) +€;, then nonparametrically regress 17:(, i=1,..,n, on
X, i =1,...,n and obtain a sequence of wild bootstrap residuals, ¢&; = Y, — " (X;), where /" (x) =

S W i(x)Y; . The residual-based wild bootstrap estimate of v(x) is then given by
n
v, 5(x) = nh‘i Z Wft,i('x)éi*z' (2.5)
i=1

Hardle (1990, p. 100) proposes ¥, »(x), which is often used in practice. Estimators (2.1), (2.4)
and (2.5) are closest in spirit to robust standard errors in linear regression, see, i.e., Eicker (1967)
and White (1980), while Estimator (2.2) uses the specific structure of the variance of the limiting
distribution.

Estimator (2.5) uses re-centred residuals because unlike ordinary least squares, nonparametric esti-
mation does not impose the mean of the residuals to be zero. Similarly, unlike Estimators (2.1), (2.4)
and (2.5), Estimators (2.2) and (2.3) separate out the estimator of the variance from the weights.
Estimator (2.4) combines the leave-one-out principle with the internalization idea of Mack and Miiller
(1989) and Linton and Jacho-Chavez (2010). It is also shown below to have the smallest pointwise vari-
ance when using a second-order Gaussian kernel and ¢;/¢(X;) in (1.1), are ii.d. Gaussian and inde-
pendent of X;. Estimator (2.4) also displays the best pointwise performance among all estimators in our
Monte Carlo experiments. Our numerical experimentation shows that Estimator (2.4) also provides the
most accurate nominal coverage probability for non-linear designs in large samples.

Notice that one can replace #(-) in the estimators above by the local polynomial estimator see
Fan and Gijbels; 1996 which undoubtedly will yield the same pointwise asymptotic variance but



ECONOMETRIC REVIEWS . 677

different bias functions. In fact, this will still be the case if we were to replace it with other
smoothers such as series, wavelets or splines for example. For this reason, we only consider the
NW estimator here because of its unchallenged popularity in applied research.

3. Main Results

The following notation is used for the remaining part of the paper: C, is a generic constant that
may vary from one context to another; ||f||,, =sup,|f|; I(lwe W) =1 if we W and zero

otherwise; Z‘ pj—k is a summation taken over all possible integer vectors, f§ = (B, By) ", such

that |f] —Zil p; =k, where d is the dimension of f; Bl =Bl x -+ x fl; Df = 2" f:
/31 Ba

ub = ul - x uy’. The following assumptions are needed for the main results:

Assumption 3.1. K(u) is a twice continuously differentiable symmetric kernel function which is
zero outside a bounded set, all the partial derivatives are bounded and Lipschitzian,
|K||o < C(K), where C(K) is the upper bound specific to K(-);[K(u)du=1; and

JHMH2K(u)du < 00, where [|u|| = \/m

Assumption 3.2. The errors €, i =1,...,n, satisfy E[exp (¢|e;])|X; =x] < C almost surely for
some constant C > 0 and £ > 0 small enough. Also, sup, E[|e;|*|X; = x] < co.

Assumption 3.3. The probability density function, fx, of X; is bounded and twice differentiable;
supyg_y [[Dfxll. < 00 and supyy_, [Dfi(u) = Df(v)| < Collu —v]].

Assumption  3.4. a*(x) is a  twice  continuously  differentiable  function
and supy_,|Dfo*(u) — DPa?(v)| < Collu — v/|.

Assumption 3.5. mgy(x) is a bounded and twice differentiable function such that
SUp gy |IDPmyl|,, < oo and supwl:z{Dﬁmo(u) — DPmy(v)| < Collu — v]|.

Assumptions 3.1 is rather typical for kernel smoothing, while Assumptions 3.3-3.4 are also
standard smoothness and boundedness assumptions in the literature. Assumption 3.2 is needed
here to apply some results from Empirical Process theory used in the proofs and it amounts to
having sub-exponential tails of € conditional on X, see, e.g, Mammen et al. (2012) and
Escanciano et al. (2014, 2016).

Assumption 3.6. E[||X;||”""] < oo and E[|Y1[*] < oo for some p > 0 and p > 2.
Assumption 3.7. The bandwidth h,, verifies

pt2

ok /
1. n'"*K,” 7 oo for some a € (0,1); llogz(p}') T 00; n'=2*h¢ 1 0o; nhd+® | 0; and nde,l — const.
/nhd
2. —1—5-700 and 7’”’ Too for some oy € (0,(2—0ay,)/2), where 3§, =

£,8, " £,8, " "Mlog (n

max( nhd’ hy, np) oy € (0,2), and &, depends on the choice of h,
Assumption 3.6 requires the existence of higher moments and is rather standard. The first part

of Assumption 3.7 imposes a minimum and a maximum rate of convergence of the bandwidth h,
see, e.g., Ai; 1997, Assumption 14, pp. 941. In particular, if we let « =2/p, p>4, and p > 1 4 then
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4 2 2
the first set of conditions can be simplified to min{nlﬁhz / log(n),nlfl_’hf{zd/ log(n)} 1 0o and

nh®™8 | 0. On the other hand the second part of this assumption is satisfied, for example, by
h, o n~#3. In particular, arguing along the line of Mammen et al. (2012), suppose that all the
k-order partial derivatives of 71(x) — E[#i1(x)] are bounded by Con¢ for some k > d/2 and & > 0,
one can then choose &, = n° %2 and a,, = d/k. Therefore, commonly-used bandwidth selection pro-
cedures such as cross-validation or Silverman’s (1986) rule-of-thumb produce bandwidths with
asymptotic convergence rates that are compatible with the assumptions above.

The following set of theorems provides the main results of the paper. Let ,uj = [WK'(u)du
with 1(K) = po (K), and let m3(x) = E[n;6;/0(X;)|X; = x|, and my(x) = E[r]f\Xl = x], where 1, =
€2/0*(X;) — 1. Define the bias constants:

B (x) 2fx Z Z ( Xty p,2(K) +%ﬁ!“2(x) ~D“+/’fx(x){ua+/;,z(1<) —ZHK\@HH/;J(K)})»

lo=1 |Bl=1

By 2J|(IX<||2 Z Z o/+/fl ( aﬁ X) _%ﬁ!(ﬂ(x) .D1+BfX(X)>,

|| =1 [=1

I v L e R
o) = 3 l;ﬂzl(ua+ﬁl $05) 20 35 D)t Rl — 2K Bt 5, K} ).

2fX Z 2 (oc'ﬂ' D0 (x) - fie () g2 (K)

lod=11p]=1
+ %fx(x) -D*Pg?(x) J (v — u)* PR (w)K (u — v)dudy

2K 1K) ) D“*%(x)),

where b, g(x) = a%ﬂ, {fx(x)D**P5?(x) + 2D*fx(x)DPa?(x) }, and define the limiting variances:

5 (x) = 1 ();g(("))( ()+1)+(4#3(K)—4M2(K)#3(K))]%'
8) = 1E0K) 52 o)+ )

) = ) 5 )+ (1) +420) ~ 41 (K) S
sa(x) = (g (K) + 43(K) — 4#&@%(@)28 + (K2 K)W(x)];gg;

o (x) (ma(x) + 1)
R
Theorem 1. Suppose that Assumptions 3.1-3.5 and 3.6-3.7 hold. Then, ~/nhd(v,(x)—

V()= 1y (x) SN (0,51(2)).
Theorem 2. Suppose that Assumptions 3.1-3.5 and 3.6-3.7 hold. Then, +/nhd(¥,,—
v(x)— K2B,(%))-SN(0, 52(x)).

K., where x, = E[v}] — 1.

s5(x) = py(K)
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Theorem 3. Let Assumptions 3.1-3.5 and 3.6-3.7 hold.  Then, \/nh‘ni(f/,,,3—
d
v(x)— hf3(x))—N(0,s3(x)).

Theorem 4. Suppose that Assumptions 3.1-3.5 and 3.6-3.7 hold. Then, +/nh%(v, 4(x)—
d
v(x) = 3 Ba(x)) = N(0, 54(x))

Theorem 5. Define ¥, 5(x) = nhd > 1w (x)€?, and suppose that Assumptions 3.1-3.5 and 3.6-

dpe
3.7 hold. Then, \/nhd{¥, ;(x) —V,,5(x }HN(O, ss(x)), where = represents ‘convergence in boot-
strap distribution.

In general, there is no ranking in terms of the MSE of the proposed standard error estimators,
and not even a ranking based on bias, which is usual in nonparametric estimation problems, see,
e.g., Fan and Gijbels (1996). The bias terms all depend on the derivatives of the marginal density
and the heteroskedastic function as well as kernel constants, but not on the curvature of the
regression function m,, as in Fan and Yao (1998). Note that we may also consider the estimators
with the re-centred residuals ¢; = ¢ —n~'> " | & - This has exactly the same asymptotic bias
and variance (as the corresponding case with raw residuals ¢;). Suppose that d=1 and fx(-) is
uniform between 0 and 1. Then the derived biases simplify to p,(x) = 0.5 X p, ,(K)

D*6*(x), By(x) = B3(x) = 0.5 x ||K|[15,1 (K)D*0?(x), By (x) = 0.5 x {uz,z(K) + [ (v = u)’K> ()
K(u — v)dudv}D*c*(x), and the following table summarizes the proportionality constants for
various kernel functions:

This table shows that estimator (2.1) provides the smallest bias for all cases except when using
the Epanechnikov kernel where (2.4) displays the smallest bias. However, in this uniform design,
the bias of estimator (2.4) is larger than that of estimators (2.2) and (2.3) for the Uniform,
Biweight, and Normal kernels. Therefore, there is no a clear winner in terms of bias.

The variance terms are also not generally rankable. However, suppose that ¢;/a(X;) are i.i.d.
Gaussian and independent of X;. Then, the following table shows that the estimator ¥, 4 defined
by (2.4) has the smallest asymptotic pointwise variance across all popular non-uniform kernels.
Our Monte Carlo exercise below confirms this.

We expect that our results apply exactly as stated in the case where (Y;,X/") is a stationary
and weakly dependent (alpha mixing) time series process, see, i.e., Robinson (1983). We expect
that in some cases our results continue to hold for the case where (Y;,X/") is a locally stationary
process as in Vogt (2012) In that case, the limiting variance of the NW estimator is proportional

to (f()l fu(x)du jo x)du, where f,(-) is the density of the covariate process at location

€ [o,1]. Even in that case, the estimators ¥, j(x),j = 1,...,4 are consistent and continue to sat-
isfy the Central Limit Theorems (CLT) given above where the limiting variances are suitably
modified. In the case where X; are globally nonstationary, see, i.e., Wang and Phillips (2009a,b,
2011), the situation becomes radically different because the CLT has a random limiting variance.
Nevertheless, one may be able to make comparisons across different implied confidence intervals.

Our analysis has been based on large sample approximations. In some contexts it is appropri-
ate to condition on the regressors as being ancillary. Write ¢ = ¢ + [(X;) — m(X;)]* —
2¢i[m(X;) — m(X;)], and obtain E[¢}|X"] = ¢*(X;) + E[((X;) — m(X;))*|A"] — 2E[e;(m(X;)—
m(X;))|X"]. In general, we have E|[e;(1(X;) — m(X;))|X"] = Op(n~'h;?), and so this term is of
smaller order than the smoothing bias terms. However, this term is considered undesirable in
cross-validation contexts and is analogous to the term explored in Chesher and Jewitt (1987) for
the linear regression HAC (Heteroskedasticity Autocorrelation Consistent) estimator. One can
easily remove this term by replacing #(X;) by the leave-one-out version, but as we pointed out,
this will not affect our asymptotic approximations.
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Figure 1. Monte Carlo Designs.
Note: Designs’ biases and variances structures as derived in Theorems 1-5.

4. Monte Carlo

We proceed to generate 1,000 Monte Carlo samples of sizes n € {100, 200,400, 800} from (1.1),
using a slightly modified version of the design proposed in Linton and Jacho-Chavez (2010) and
also used in Ho et al. (2014). Particularly, we set d=1, mo(X;) = X;cos (2nX;),¢; =
o(Xi)e, 0(X;) = (14 cos (X;))/[2sin (2) 4 4] for i = 1,...,n, where ¢; are randomly drawn from a
N(0, 1) and statistically independent of X;. As in Linton and Jacho-Chavez (2010), two designs
are considered for X;, i.e. an uniform design (X; are drawn from an Uniform distribution between
-2 and 2), and a truncated design (X; are drawn from a truncated normal distribution between
-2 and 2, and variance equals to 4).

In each replication, estimators (2.1) (Estimator 1), (2.2) (Estimator 2), (2.3) (Estimator 3),
(2.4) (Estimator 4), (2.5) (Estimator 5), as well as the pair-wise (Estimator 6) and wild bootstrap
(Estimator 7) estimators see Henderson and Parmeter; 2015, Sections 5.10.1 and 5.10.3 are imple-
mented using a second-order Gaussian kernel everywhere and setting 4, to be equal to the least
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Note: Box plots based on 1,000 Monte Carlo replications of the proposed five estimators, i.e. Estimator 1 (2.1), Estimator 2 (2.2),
Estimator 3 (2.3), Estimator 4 (2.4), and Estimator 5 (2.5), as well as of the pairwise (Estimator 6) and wild (Estimator 7) bootstrap.
In each replication, all estimators use the same least squares cross-validated bandwidth, a second order gaussian kernel and esti-
mators 5, 6 and 7 are based on 199 bootstrap replications. The red horizontal line represents the true value of v.

squares cross-validated bandwidth, h,, for the Nadaraya-Watson estimator of m,. For Estimators
5 and 7, we set v; to follow a two-point distribution such that it takes the value (1-+/5) /2 with
probability (1+v/5)/(2v/5) and (1 + v/5)/2 with probability 1 — (1+ v/5)/(21/5) in each of
the 199 bootstrap replications. The original cross-validated bandwidth is used across estimators
and in each bootstrap replication.

Figure 1 depicts the bias structures in Theorems 1-4, and variance functions derived in
Theorems 1-5 for the designs under consideration. This figure shows the different implied bias
and variance structures under consideration in this Monte Carlo. As predicted by the derived
asymptotic properties, Estimator 4 has the smallest first-order variance function uniformly over
the support of X for the uniform and non-uniform designs. However, for the uniform design,
Estimator 4 has the largest pointwise bias function, but otherwise no other estimator uniformly



682 (&) B.M.CHU

010

005

0.00

010

008

0.06

004

002

008

007

0.06

005

004

003

002

001

03

02

0.1

06

04

03

01

2 =1.52,n=100

0.00

0.00

- T T T T - T T T T
P T e I S e S T | | I ! T e B e W e === W=  —
e E o L wl L L o 2. | o5l T SN e e o
z =-152,n =200 030 2 =0.02,n = 200 z=1.52,n =200
025 015
T T 3
0.20 | | T - !
= ! | | ] - ' e
- | | | | i | 0.10 == - I
\ T - = T i 015 | | : I i : | l T T !
| I
u:iﬂﬁ i 5 ey o N
] 0.10 1 1
| e s ) PP ; ; e s s | s e
| |
o G el L N

020

0.10

i i = e
T T ! I S ! - T !
| | T 1 1 e n 1
! l - T T | ! l | ! | | o ! l | T l |
: I ! | . | ] l ! ! | | : l | i l |
i ! | ! | | o : ! : : ! ! 006 | ! ! I ! !
! | | : | !
‘ I e e P O o B O Y e R T T []
| i e
I:I : i:l g [:] ; 0 | | ; X 1 I ! ! .
: | ; H : | 005 ] | | I I : L i 1 | ! : J
[ T T S I 3 R . R o
r=-1.52,n =800 2 =0.02,n =800 r =152 ,n=_800
0.20
0.08

010

005

0.06

004

0.02

Figure 3. Monte Carlo Results - Non-uniform Design.
Note: Box plots based on 1,000 Monte Carlo replications of the proposed five estimators, i.e. Estimator 1 (2.1), Estimator 2 (2.2),

Estimator 3 (2.3), Estimator 4 (2.4), and Estimator 5 (2.5), as well as of the pairwise (Estimator 6) and wild (Estimator 7) bootstrap.

In each replication, all estimators use the same least squares cross-validated bandwidth, a second order gaussian kernel and esti-
mators 5, 6 and 7 are based on 199 bootstrap replications. The red horizontal line represents the true value of v.

has better bias than the rest in the non-uniform design case. Estimator 1 has a smaller bias in the
interior of the support of X, while Estimator 3’s bias is smaller in the tails.

The results are reported in Figures 2 and 3. They display box plots based on the 1,000 Monte

Carlo replications of all 7 estimators at three different points in the interior of the support of X,
namely x € {—1.52,0.02,1.52} for all 4 sample sizes. Firstly, as depicted in Figure 1, all estima-
tors have larger downward biases in the interior than near the boundaries of the support of X.
Interestingly across all estimators, sample sizes, designs and estimation points, the pair and wild
bootstrap estimators (6 and 7 respectively) show the largest Monte Carlo variability and inter-
quartile range, although they have better small-sample median bias performance for most sample
sizes. As discussed in the text, Estimator 4 has the best performance in terms of spread among
all estimators.
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Table 1. Pointwise Bias Rankings for Uniform Designs.

Uniform Triangular Biweight Epanechnikov Triweight Normal
) 8.3333 x 1072 3.3333 x 1072 3.2468 x 1072 4.2857 x 1072 2.7195 x 1072 7.0525 x 1072
1
By() o 83333x1072 55556 x 1072 5.1020 x 1072 6x 1072 4.5325x 1072 14.1050 x 1072
) x 25 x 1072 5.0794 x 1072 13.0320 x 1072 1.7143 x 1072 3.3106 x 1072 21.1570 x 1072
4

Note: f5(-) = B,() in the uniform design and therefore omitted. Kernels functions can be found in (Yatchew; 2003, Fig. 3.2,
p. 33)

Table 2. Pointwise Variance Rankings for Non-Uniform Designs.

Uniform Triangular Biweight Epanechnikov Triweight Normal
s1(+) o 0.3750 1.0519 1.2405 0.7097 1.8797 8.1349 x 1072
$a(+) o 0.3750 0.8889 1.0933 0.6480 1.6291 6.7345 x 1072
s3(+) o 0.3750 0.8444 1.0438 0.6274 1.5452 6.2752 x 1072
s4(+) o 0.3750 0.7086 0.9334 0.4897 1.3280 5.4514 x 1072
ss(+) o 0.3750 1.2000 1.3883 0.7714 2.1309 9.5240 x 1072

Note: Kernels functions can be found in (Yatchew; 2003, Fig. 3.2, p. 33)

Table 3. Simulated 95% Nominal Level Coverage Probability.

Uniform Design Non-uniform Design
n=100 n=200 n =400 n=23800 n=100 n=200 n=400 n=2800

x=—1.52

[1] 0.766 0.865 0.913 0.922 0.799 0.870 0.898 0.923
[2] 0.797 0.891 0.917 0.933 0.820 0.888 0.912 0.928
[3] 0.788 0.891 0.920 0.928 0.817 0.886 0.910 0.926
[4] 0.810 0.898 0.924 0.934 0.837 0.895 0.913 0.931
[5] 0.711 0.838 0.891 0.918 0.743 0.846 0.884 0.916
(6] 0.907 0.916 0.925 0.936 0911 0.900 0.906 0.927
[7] 0.748 0.866 0.907 0.925 0.789 0.875 0.897 0.917
x=0.02

[1] 0.767 0.850 0.885 0.927 0.790 0.870 0.900 0.930
[2] 0.798 0.865 0.897 0.932 0.820 0.883 0.910 0.933
[3] 0.789 0.860 0.895 0.930 0.819 0.878 0.906 0.934
[4] 0.812 0.878 0.901 0.931 0.833 0.887 0914 0.935
[5] 0.714 0.810 0.872 0.919 0.747 0.841 0.883 0.920
[6] 0.906 0.893 0.907 0.932 0.883 0.912 0.922 0.930
[7] 0.765 0.854 0.889 0.927 0.786 0.868 0.905 0.931
x=152

[1] 0.714 0.816 0.885 0.907 0.743 0.835 0.898 0913
[2] 0.753 0.843 0.895 0.905 0.776 0.859 0.903 0.923
(3] 0.739 0.836 0.890 0.906 0.762 0.851 0.903 0.923
[4] 0.768 0.843 0.890 0.908 0.785 0.858 0.909 0.925
[5] 0.669 0.778 0.872 0.896 0.684 0.804 0.890 0.904
[6] 0.868 0.868 0.909 0.912 0.853 0.882 0913 0.921
[71 0.703 0.818 0.890 0.904 0.736 0.840 0.905 0.908

Note: This table reports the frequency my(x) was found inside the interval i (x)+1.965 x 1/¥,,/(x)/nh, in 1,000 replications

for I=1,..,7 and h, represents the least squares cross-validated bandwidth for m(x). We use the notation m(x) for
Estimator / where [/].

Similarly, in each Monte Carlo replication and for each estimator we recorded whether m(x) was

inside the pointwise 95% confidence interval 71 (x)*1.965 x \/ ¥, (x)/nh, for I=1,..,7,x €

{-1.52,0.02,1.52}, using all 4 sample sizes. Table 3 displays the percentage of times this happened
in the 1,000 Monte Carlo replications. As expected, the simulated 95% nominal level coverage prob-
ability improves with sample size for all estimators. However, Estimators 4 and 6 (pairwise bootstrap)
provide the more accurate nominal coverage at all estimation points and sample sizes, with
Estimator 4 again dominating in terms of performance in the non-uniform design for larger samples.
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5. Conclusions

We find some small-sample differences in performance between the various proposed estimators
of the first-order asymptotic variance for nonparametric regression just as in linear regression.
On the basis of our work, the proposed estimator (2.4), i.e., ¥, 4 = nh? > "7 Wi,.(x)&ﬁ(X,-) per-
forms the best in moderate sized samples. This estimator shares some features with Bandi and
Phillips’s (2003, eq. 4.3, pp. 248) volatility estimator, which also involves a kind of double
smoothing. Finally, it should be noted that all proposed estimators will remain consistent and

asymptotic normally distributed in the presence of weak dependence, see, e.g., Robinson (1983).

A. Proof of Main Theorems

Proof of Theorem 1. Let g, (x) = (nh?)™' 321 K2((X; — x)/h,) and f, (x) = (nh®) ™ S0, K((X; — x)/ha). We
have

Pt () = v(x) =l i ()@ = )+ mhy i (0 — o(Xi))

s (8260 IIKIB()
+GWQM> mm>' (A1)

+ nhzzj:wii(x) {aaz (X)) —a® (x)}
Notice that
2,0 K|k (%) 1

P A = 2 () ~AIIKIE —21KIE (F, (0~ ()

A 2 , 1 1 1 -
+ (E[An(x)r _f)%(x)) (gn(x) — fx()IK|f; = HKHzm E{An(x)] _fx(x)> ( 2(%) _fx(x)>>

1 1 N 2 2 J} CAYE
T nmﬁmmbeQ+" )nwﬁw)
m>4uM>G )| )

| Hmﬁ%myﬁm>
E [ n(X)] o F)

(7,00 — ().

(A2)

By the asymptotic normality of kernel density estimators e.g., Rosenblatt; 1985, p. 192 and their uniform consist-

ency e.g., Prakasa Rao; 1983, p. 185, the third and fourth terms on the right-hand side of (A.2) is of order
1

0p (\/73) Therefore, we have that

?f;|%%m=£@@ﬂ)kMWBZMH@M)AMD
1

: X g 2 2 1 1 .
+ (W —%) (gn(x) — fx@IIK][; - HK”ZM (m - m) <fn(x) —fx(x)>>

.H«ﬁﬁ)

Moreover, since E[f,,(x)] = fu(x) + (k). f,(x) = fu(x) = Op (A=) + O(K),  and g, (x) — fu(®)IIK|f; =
O, (%) + g(hcfl), it t[ljlcen follm{/); that ’ / i P(M) ¢ Jx
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8,(x) ||K‘|§fX(x)7 1 /. 2 2(% 1
B~ A AW (&40 A GIKIE = 20IKIE(F,(0) ~ fx(0)) ) + 05 (—hd>

h2
+o,,( 2 ) +0(h}).

(A.3)

ﬁ
=
_

In the same manner, write

1

b wi i ({0*(X) = ()} = s KX =) (07(X) — ()

1 1 e (A4)
t|z—————= (ZKZ(X x)(a*(X) 02("))>~
fn(x) E{fn(x)] n i=1

Since ,1—}1527:1 K? (X‘h—:x> (6*(X;) — o(x)) = Op(h2) in view of the weak law of large numbers and (A.9) below, the
second term of (A.4) is of order O, (k). Therefore,
n d n
S 0 (0 {00) = () = SR =) (7 (6) = 02(6) + Oy (). (a5)
p X i1

In view of (A.1), (A.3), and (A.5), after rearranging all the stochastic terms to the right-hand side, one immediately
obtains that

P~V ZEKh = (e (X) — ()]
—f(()) (E[:xx)} —fx(x>||1<\|§—z|u<\|§{E[fn<x>} ~ fi(®) )—nhdZwﬂ,x){e ey
d n
f)%zx)%Z(K}%(Xi—X){az(Xi) o’ (x)} — E[Kh( i —x){*(X) - (x)}]) (A6)
1 RIS 2 2 a*(x) N 2% b
fz(x);;m(x,-—xﬂei—o(x,-)}+fx(x)( &,(x) — E[g, ()] — 2[KIE{F, () — E[f,(0)]})
1

First, we examine the non-stochastic terms on the left-hand side of (A.6): Let
A :—ZE K;(X; = x){0* (X)) = *(x)}].

By a Taylor’s expansion and Assumption 3.4,

o? Z ,Dﬁ 2(9‘ i )

|B1= 1

+Z<ﬁ'l {Dﬁ2x+v( i — X)) — Dﬁ2 }dv> x)ﬂ,

Bl=1

(A7)

we can show that
1 .
An =t P [ i it +

+h, ZB'J wP K2 (u)fx (x + hyu J {DP?(x + hyvu) — DPo?(x) }dvdu = Ay 10 + An b
[Bl=1
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Notice that

fx(x+ hgu) = fx(x) + Z Dfx ()1’

Iyl= 17

2 ( ! J (D + hyvut) = D’fx(?‘)}dV) B

[71=1

(A.8)

In view of Assumptions 3.1 and 3.3, > 5, JuPK?(u) = 0 because K?(u) is also symmetric. One can then obtain that
An 1o =h} %: HZ WDI? o*(x)D'fx (x )Juﬁ”Kz(u)du +o(K2).
1j51=1
Moreover, by Assumption 3.4 and a Taylor’s expansion,

DPa?(x + h,vu) — DPo?( z D“*ﬁ 2(x) v

1\1

+ Z < J {D**P6?(x + hyvéu) —D“*”oz(x)}%)hnvu“.

|x|=1
Therefore, in view of (A.8), we obtain
-Anlb—*hnfx Z Za'ﬂ'D“+ﬁ 2 Jua+ﬁK2(u)du+o(hi)_

o|=11]p=1
It follows that

Z > 'ﬂ'J,u“”}Kz (w)dud{fx(x)D*Pa?(x) + 2D*fx(x)DPo*(x) }. (A.9)
=
Let

Az = E[g,(x)] = )|IKI]-
Therefore, in view of (A.8),

Az = hy JKz(u){Zﬁ DPfx(x)u + Z < J {DPfx(x + hyvu) — D/}fx(x)}dv) uﬁ}du.

|Bl=1 |Bl=1
Moreover, in view of Assumption 3.3 and a Taylor’s expansion, one can show that

DPf(x + hovu) — DPfy(x) = Z %D‘Hﬁfx(x)hnvu“

[o]=1""

(A.10)
+ Z ( J {D**Pfy(x + Enyvu) — D”ﬁfx(x)}c%) hyvu®.
[o]=1 &
Therefore, in view of Assumptions 3.1 and 3.3, we have
= Z >4 'D”/‘f Ju”ﬁKz(u)du + o(H2). (A.11)
2 Em P
It can also be shown from (A.10) that
_ 7 y+ﬂ o+p 2
= E[ n(x)] — fx(x) = Z > W I x)J K(u)du + o(h2). (A.12)

\“I LIpl=1

Next, we examine the stochastic terms on the right-hand side (RHS) of (A.6).

By = nhd> wh (){&] — €} = 2nhy "l ,(x)(mo(Xi) — (X))
i=1 i=1

+nhl > we (%) [ (X;) — mo(Xi)]* = 2By, 1.0+ By b
i=1
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Notice that, by the uniform consistency of f 2(X),

nla*(fx +0as ]’ldz (

We shall employ Lemmas 1 and 2 to prove that /nhiB, 1, = 0,(1). Suppose that the function space M, in
Lemma 1 consists of functions with their domain in some compact set of R%; and all the k-order partial derivatives

) o) — )

exist and are uniformly bounded by some multiple of n¢ for some k > d /2 and & > 0. Then, Condition (1) holds
with &, = & oy, a = d/k [cf. van der Vaart and Wellner; 1996, sec. 2.7]. To verify that the NW estimator #m €

M,, with probability approaching 1, choose h, = n~73 for instance, by the same argument as in Lemma 2, it can

be shown that all the k-order partial derivatives of 71(x) — E[#1(x)] are stochastically bounded by Cyn¢’, where &*
is some positive constant. Moreover, Lemma 2 implies that the rate of convergence J, required by Lemma 1 can

be set to max( hd’hn’ n,,) Setting 17, = 0™, a; € (0, (2 — 04s)/2), in view of Assumptions 3.6 and 3.7(1)-3.7(2),
one has \/nhiB,, 1. = 0,(1). Next, notice that

Buiy < lﬁgl’.gW(Xi) - mO(X,-)|2nhZ;wf, i(x)

< U (@) +oas (1)} [ K2 (u)dumax |1 (X;) = mo(X))[*

uniformly in x. Invoking Lemma 2, we have

1 1/27,d/2+4 hrdl/z
d —
nhB, 1, = 0p (nl/z—xhd/z) + O(n hy; ) + o0, i)
n

It then follows from Assumption 3.7(1) that \/nhiB, 1, = 0,(1). Thus,

nhidB, 1 = 0p(1). (A.13)
Define the second stochastic term on the RHS of (A.6) as

hd <
Buy =23 (Ki(Xi —x){o” (X)) = 0*(x)} = E[KG(X; = x){0*(Xi) — * (x)}]).
i=1
By the same argument employed to obtain A, ; above, one can show that

2d"

o Z E[K (X~ 0) (%) - ()] = O(ﬁ”)

and, in view of (A.9),
jp2d 1

nnz ZEZ [K}(Xi — x){c*(X;) — *(x)}] = O(h_ﬁ)

i=1 n

It then follows that nheE [Bi,z] = O(h + hi**). As E[B,,»] = 0, it then follows that

nhiB,,, = 0p(1). (A.14)

For remaining stochastic terms on the RHS of (A.6), let T,,2(x) = n'hd 37 | KF(Xi — x){e — 6*(Xi)}; Tn3(x) =
f.(x) = E[f,(x)]; and T, 4(x) = g,(x) — E[g,(x)]. In view of (A.9), (A.11), (A.12)-(A.14) together with Assumption
3.7(1), the main theorem then follows by applying Lemma 3.

Proof of Theorem 2: See the online supplemental material of this paper.
Proof of Theorem 3: See the online supplemental material of this paper.
Proof of Theorem 4: See the online supplemental material of this paper.
Proof of Theorem 5: See the online supplemental material of this paper.

B. Auxiliary Lemmas

Lemma 1. Suppose that #i(x) is some nonparametric estimate of mo(x) such that ||in — my||., = 05(Jn), 0, | 0.
There exist a sequence of sets M, such that P(m € M,) — 1 as n — oc. Moreover,
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1. For a constant, Cyy > 0, and a function, my(x), with ||m, —mo||, = 0(8,), the sequence of sets M, =
M {m: ||m—my|l <8,} can be covered by at most Cyexp (\"*"E,) balls with || - ||, —radius 2 for all
A <3, and some sequence, &, such that £,5,*" 1 oo, where o, € (0,2].

2 N,/ nhy S 2 n,\/nhd o
2. £ glfum T 005 £ log () 1 oo; and o7 (min g&q—zm’ T3 Tog (n) )=m=2 | 0 for some a > 1 and c, € (0,1),

where n,, is some decaying sequence of constants.

Let Assumptions 3.1 and 3.2 hold. Then,

n

ZK(Xih: x) {m(Xi) — mo(Xi)}ei| = Op(n,,). (B.1)

i=1

1

\/nhd

Proof of Lemma 1: See the online supplemental material of this paper.

Lemma 2. Let m(x) be the NW estimate of mo(x). Suppose that Assumptions 3.1, 3.3, and 3.5 hold. Moreover,

L E[|Xi||"""] < oo and E[|Y;[!] < oo for some p >0 and p > 2.

1oy 5d n 2ok
2. a7 1 oo for some o € (0,1); Tog(n) T oo.

Then,
maxj<i<n ‘T’;’I(Xl) — mo(X,)‘ = OP( %) + O(hi) + Op (#)

Proof of Lemma 2. See the online supplemental material of this paper.

Lemma 3. Consider the random vector

1 " X — X,‘
2K ()

n j=1
1 - X — Xi

T, g oK ()
Tn1(®) 1 & x— X\

= = — Y K L) (X)),

Tﬂ(x) T”,Z(x) Tlhg - ( hn ) o ( )’71 >
Tna() 1 & x—X x — X
T, — SNk 1) —pr(—=
() ”hg; ( hy, ) ( hy, )

1 L X — X,' 2 X — Xi 2
—>» K —EK
nh‘ni i=1 ( h'l > ( h” )
where n; = €2/0*(X;) — 1. Then,

\/n—hgn (x) = N(0,Q(x))

(K)o*(x) (K)o (x)ms(x)  ps(K)o*(x)ms(x) 0O 0

1 (K)o (x)ms(x) (K)ot (x)ma(x)  p3(K)o* (x)ma(x) 0 0

Q(x) = fx(x) | u3(K)o* (x)m3(x)  p3(K)a* (x)ma(x)  py(K)a* (x)ma(x) 0 0
0 0 0 1 (K)  ps(K)

0 0 0 1s(K)  py(K)

Proof of Lemma 3. This follows by applying the Cramér-Wold device, the Lyapunov CLT and
Bochner’s Lemma.
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