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1 Introduction

In a series of papers, Fama and French (1992,1993,1995,1996,1998) developed a general

methodology for estimating factor panel models for stock returns and for testing the Arbitrage

Pricing Theory, which has been extremely influential. Connor and Linton (2007) and Con-

nor, Hagmann and Linton (2012) developed a semiparametric panel regression methodology

to describe the same phenomenon, but with the feature that stock characteristics were used

explicitly inside a model, which then allowed proper inferential procedures that account fully

for the sampling uncertainty. Specifically, they introduced a semiparametric characteristic-

based factor model in which the factor betas are smooth functions of a small number of

observable characteristics, while the factor returns are estimable quantities. Their estima-

tion methodology is based on two steps: estimating the beta functions using nonparametric

kernel smoothing for additive regression given the factor returns, and second, estimating the

factor returns by OLS or GLS given the estimated beta functions. They established some

large sample properties of their procedure and applied it to the same monthly data used in

FF, finding improved results. In addition, because their work was based on an explicit regres-

sion model, they were able to give standard errors that accounted correctly for the sampling

variability in their estimates. This methodology was based on least squares concepts and

made use of projection arguments. They required at least four moments to establish their

CLT, which may not be a binding restriction for monthly stock returns. However, for daily

stock returns this is be a bit strong, especially for small caps.

In the empirical literature, there is a lot of interest in applying factor models to daily

data. Perhaps the current state of the art for factor modelling proposed by Fan, Lv, and

Mikusheva (2013) extended the work of Bai and Ng (2002) by allowing the idiosyncratic

covariance matrix to be non-diagonal but sparse, and used thresholding techniques to impose

sparsity and thereby obtain a better estimator of the covariance matrix and its inverse in

this big-data setting. They also imposed many moments on the return series for their theo-

retical analysis, although they applied their techniques to daily data. Quantile methods are

widely used in economics and finance, see, for example, Koenker and Bassett (1978); indeed,

they are classified as ”harmless econometrics”, see Angrist and Pischke (2009). They have

the advantage of being robust to large observations. Boneva, Linton, and Vogt (2015) have

applied quantile techniques to a linear in parameters panel model with unobserved e↵ects,

extending Pesaran (2006). Sharma, Gupta, and Singh (2016) applied linear quantile regres-

sion to estimate a four factor FF ”model” to daily Indian data from 1993-2016. They found

that not all factors are substantially present across all quantiles, which adds some colour to

the usual mean results. Horowitz and Lee (2005) defined an estimaiton method for additive

quantile regression. Belloni, Chernozhukov and Fernandez-Val (2016) have recently proposed
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a number of inference methods for quantile regression with a nonparametric component or a

large number of unknown parameters, but their tools are developed within a cross-sectional

iid setting and so do not directly apply here.

In this paper, we propose estimation and inferential methodology for the quantile version

of the Connor and Linton (2007) semiparametric panel model for financial returns, which

does not require such strong moment restrictions, thereby facilitating work with daily data.

Our contribution is summarized as follows.

First, we propose an estimation algorithm for this model. We use sieve techniques to

obtain preliminary estimators of the nonparametric beta functions, see Chen (2011) for a

review, and then update each component sequentially. We compute the estimator in two steps

for computational reasons. We have J⇥T unknown factor return parameters as well as J⇥K
N

sieve parameters to estimate, and to estimate these simultaneously without penalization

would be challenging. Penalization of the factor returns here would not be well motivated so

we do not pursue this. Instead we first estimate the unrestricted additive quantile regression

function for each time period and then impose the factor structure in a sequential fashion.

Second, we derive the limiting properties of our estimated factor returns and factor load-

ing functions under the assumption that the included factors all have non zero mean and

under weak conditions on cross-section and temporal dependence. A key consideration in the

panel modelling of stock returns is what position to take on the cross sectional dependence

in the idiosyncratic part of stock returns. Early studies assumed iid in the cross section, but

this turns out not to be necessary. More recent work has allowed for cross sectional depen-

dence in a variety of ways. Connor, Hagmann and Linton (2012) imposed a known industry

cluster/block structure where the number of industries goes to infinity as do the number

of members of the industry. Under this structure one obtains a CLT and inference can be

conducted by estimating only the intra block covariances. Robinson and Thawornkaiwong

(2012) considered a linear process structure driven by independent shocks. Dong, Gao and

Peng (2015) introduced a spatial mixing structure to accommodate both serial correlation and

cross–sectional dependence for a general panel data setting. Under a lattice structure or some

observable or estimable distance function that determines the ordering, Conley (1999), one

can consistently estimate the asymptotic covariance matrix. However, this type of structure

is hard to justify for stock returns, and in that case their approach does not deliver consistent

inference. Connor and Koraczyck (1993) considered a di↵erent cross-sectional dependence

structure, namely they supposed that there was an ordering of the cross sectional units such

that weak dependence of the alpha mixing variety was held. They do not assume knowl-

edge of the ordering as this was not needed for their main results. We adopt and generalize

their structure. In fact, we allow for weak dependence simultaneously in the cross-section
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and time series dependence. This structure a↵ects the limiting distribution of the estimated

factor returns in a complicated fashion, and the usual Newey–West type of standard errors

can’t be adapted to account for the cross-sectional dependence here because the ordering is

not assumed to be known. To conduct inference we have to take account of the correlation

structure. We use the so-called fix-b asymptotics to do this, namely we construct a test

statistic based on an inconsistent fixed-b kitchen sink estimator of the correlation structure,

as in Kiefer and Vogelsang (2002), and show that it has a pivotal limiting distribution that

is a functional of a Gaussian process.

Third, our estimation procedure requires only that the time series mean of factor returns

be non zero. A number of authors have noted that in the presence of a weak factor, regression

identification strategies can break down, Bryzgalova (2015). In view of this we provide a test

of whether a given factor is present or not in each time period. Fourth, we apply our procedure

to CRSP daily data and show how the factor loading functions vary nonlinearly with state.

The median regression estimators are comparable to those of Connor, Hagmann and Linton

(2012) and can be used to test asset pricing theories under comparable quantile restrictions,

see for example, Bassett, Koenker and Kordas (2004), and to design investment strategies.

The lower quantile estimators could be used for risk management purposes. The advantage

of the quantile method is its robustness to heavy tails in the response distribution, which

may be present in daily data. Indeed our theory does not require any moment conditions.

The organization of this paper is given as follows. Section 2 proposes the main model

and then discusses some identification issues. An estimation method based on B–splines is

then proposed in Section 3. Section 4 establishes an asymptotic theory for the proposed

estimation method. Section 5 discusses a covariance estimation problem and then considers

testing for the factors involved in the main model. Section 6 gives an empirical application

of the proposed model and estimation theory to model the dependence of daily returns on a

set of characteristic variables. Section 7 concludes the paper with some discussion. All the

mathematical proofs of the main results are given in an appendix.

2 The model and identification

We introduce some notations which will be used throughout the paper. For any positive num-

bers a
n

and b
n

, let a
n

⇣ b
n

denote lim
n!1a

n

/b
n

= c, for a positive constant c, and let a
n

� b
n

denote a�1

n

b
n

= o(1). For any vector a = (a
1

, . . . , a
n

)| 2 Rn, denote ||a|| = (
P

n

i=1

a2
i

)1/2. For

any symmetric matrix A

s⇥s

, denote its L
2

norm as kAk = max
⇣2Rs

,⇣ 6=0 kA⇣k k⇣k�1. We use

(N, T ) ! 1 to denote that N and T pass to infinity jointly.

We consider the following model for the ⌧ th conditional quantile function of the response
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y
it

for the ith asset at time t given as

Q
yit(⌧ |Xi

, f
t

) = f 0

ut

+
X

J

j=1

g0
j

(X
ji

)f 0

jt

, (2.1)

i.e., we suppose that

y
it

= f
ut

+
X

J

j=1

g
j

(X
ji

)f
jt

+ "
it

, (2.2)

for i = 1, . . . , N and t = 1, . . . , T , where y
it

is the excess return to security i at time t; f
ut

and f
jt

are factor returns, which are unobservable; g
j

(X
ji

) are the factor betas, which are

unknown but smooth functions of X
ji

, where X
ji

are observable security characteristics, and

X
ji

lies in a compact set X
ji

. The error terms "
it

are the asset-specific or idiosyncratic returns

and they satisfy that the conditional ⌧ th quantile of "
it

given (X
i

, f
t

) is zero. The factors f 0

ut

and f 0

jt

and the factor betas g0
j

(·) should be ⌧ specific. For notational simplicity, we suppress

the ⌧ subscripts. For model identifiability, we assume that:

Assumption A0. For some probability measures P
j

we have

R
g0
j

(x
j

)dP
j

(x
j

) = 0 and

R �
g0
j

(x
j

)
�
2

dP
j

(x
j

) = 1 for all j = 1, . . . , J . Furthermore, lim inf
T!1

���
P

T

t=1

f 0

jt

/T
��� > 0 for

each j.

The case where ⌧ = 1/2 corresponds to the conditional median, and is comparable to

the conditional mean model used in Connor and Linton (2007) and Connor, Hagmann and

Linton (2012). The advantage of the median over the mean is its robustness to heavy tails and

outliers, which is especially important with daily data. The case where ⌧ = 0.01, say, might

be of interest for the purposes of risk management, since this corresponds to a standard

Value-at-Risk threshold in which case (2.1) gives the conditional Value-at-Risk given the

characteristics and the factor returns at time t. To obtain an ex-ante measure we should have

to employ a forecasting model for the factor returns.

Suppose that the ⌧ th conditional quantile function Q
yit(⌧ |Xi

= x) of the response y
it

at

time t given the covariate X
i

= x is additive

H
t

(⌧ |x) = h0

ut

+
X

J

j=1

h0

jt

(x
j

), (2.3)

where h0

jt

(·) are unknown functions without loss of generality satisfying
R
h0

jt

(x
j

)dP
j

(x
j

) = 0

for t = 1, . . . , T (Horowitz and Lee, 2005). Under the factor structure (2.1), we have for all j

Z  
1

T

TX

t=1

h0

jt

(x
j

)

!
2

dP
j

(x
j

) =

Z
g0
j

(x
j

)2dP
j

(x
j

)⇥
 

1

T

TX

t=1

f 0

jt

!
2

=

 
1

T

TX

t=1

f 0

jt

!
2

. (2.4)

Provided
P

T

t=1

f 0

jt

6= 0, we can identify g0
j

(x
j

) by

g0
j

(x
j

) =
1

T

P
T

t=1

h0

jt

(x
j

)
r
R ⇣

1

T

P
T

t=1

h0

jt

(x
j

)
⌘
2

dP
j

(x
j

)

. (2.5)

We will use this as the basis for the proposal of the estimation method in Section 3 below.
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3 Estimation

3.1 Factor returns and characteristic-beta functions

We propose an iterative algorithm to estimate the factor returns and the characteristic-beta

functions. The algorithm makes use of the structure in (2.2) such that it circumvents the

“curse of dimensionality” (7) while retaining flexibility of the nonparametric regression. The

right hand side of (2.1) is bilinear in unknown quantities, so it seems di�cult to avoid such

an algorithmic approach.

To estimate g0
j

(·), we first approximate them by B-spline functions described as follows.

Let b
j

(x
j

) = {b
j,1

(x
j

), . . . , b
j,KN (xj

)}| be a set of normalized B-spline functions of order m

(see, for example, de Boor (2001)), where K
N

= L
N

+m, and L
N

is the number of interior

knots satisfying L
N

! 1 as N ! 1. We adopt the centered B-spline basis functions

B
j

(x
j

) = {B
j,1

(x
j

), . . . , B
j,KN (xj

)}|, where

B
jk

(x
j

) =
p
K

N

h
b
j,k

(x
j

)�N�1

X
N

i=1

b
j,k

(X
ji

)
i
,

so that N�1

P
N

i=1

B
jk

(X
ji

) = 0 and var{B
jk

(X
j

)} ⇣ 1. We first approximate the unknown

functions g
j

(x
j

) by B-splines such that g
j

(x
j

) ⇡ B
j

(x
j

)|�
j

, where �
j

= (�
j,1

, . . . ,�
j,KN )

| are

spline coe�cients. Hence N�1

P
N

i=1

B
j

(X
ji

)|�
j

= 0. Denote f
t

= {f
ut

, (f
jt

, 1  j  J)|}|.
Let � = (�|

1

, . . . ,�|
J

)| and let ⇢
⌧

(u) = u(⌧ � I(u < 0)) be the quantile check function. The

iterative algorithm is described as follows:

1. Find the initial estimates bf [0] and bg[0]
j

(·).
2. For given bf [i], we obtain

b�[i+1] = arg min
�2RJKN

X
N

i=1

X
T

t=1

⇢
⌧

⇣
y
it

� bf [i]

ut

�
X

J

j=1

B
j

(X
ji

)|�
j

bf [i]

jt

⌘
.

Let bg⇤[i+1]

j

(x
j

) = B
j

(x
j

)|b�[i+1]

j

. The estimate for g
j

(x
j

) at the (i+ 1)th step is

bg[i+1]

j

(x
j

) =
bg⇤[i+1]

j

(x
j

)
q

N�1

P
N

i=1

bg⇤[i+1]

j

(X
ji

)2
.

3. For given bg[i+1]

j

(x
j

), we obtain for t = 1, . . . , T

bf [i+1]

t

= arg min
ft2RJ+1

X
N

i=1

⇢
⌧

⇣
y
it

� f
ut

�
X

J

j=1

bg[i+1]

j

(X
ji

)f
jt

⌘
.

We repeat steps 2 and 3, and consider that the algorithm converges at the (i+ 1)th step

when || bf [i+1] � bf [i]|| < ✏ and ||b�[i+1] � b�[i]|| < ✏ for a small positive value ✏. Then the

final estimates are bf
t

= bf [i+1]

t

and bg
j

(x
j

) = bg[i+1]

j

(x
j

). Our experience in numerical analysis

suggests that the proposed method converges well and rapidly using the consistent initial

values proposed in Section 3.2. The algorithm stops after a finite number of iterations by

using the consistent initial values.
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3.2 Initial estimators

We first approximate the unknown functions h
jt

(x
j

) by B-splines such that h
jt

(x
j

) ⇡ B
j

(x
j

)|✓
jt

,

where ✓
jt

= (✓
jt,1

, . . . , ✓
jt,KN )

| are spline coe�cients. Let ✓
t

= (✓|
1t

, . . . ,✓|
Jt

)|. Then the esti-

mators (eh
ut

, e✓|
t

)| of (h
ut

,✓|
t

)| are obtained by minimizing

X
N

i=1

⇢
⌧

(y
it

� h
ut

�
X

J

j=1

B
j

(X
ji

)|✓
jt

) (3.1)

with respect to (h
ut

,✓|
t

)| 2 RJKN+1. As a result, the estimator of h0

jt

(x
j

) is eh
jt

(x
j

) =

B
j

(x
j

)|e✓
jt

. We then obtain the initial estimators of g0
j

(x
j

)

bg[0]
j

(x
j

) =
1

T

P
T

t=1

eh
jt

(x
j

)
r
R ⇣

1

T

P
T

t=1

eh
jt

(x
j

)
⌘
2

dP
j

(x
j

)

. (3.2)

The initial estimator of f
t

is

bf [0]

t

= arg min
ft2RJ+1

X
N

i=1

⇢
⌧

(y
it

� f
ut

�
X

J

j=1

bg[0]
j

(X
ji

)f
jt

) (3.3)

for t = 1, . . . , T .

4 Asymptotic theory of the estimators

We suppose that there is some relabelling of the cross-sectional units i
l1 , . . . , ilN , whose generic

index we denote by i⇤, such that the cross sectional dependence decays with the distance

|i⇤ � j⇤|. This assumption has been made in Connor and Korajczyk (1993). There are

available algorithms to determine the true ordering from the original ordering given the data

(and under the assumption that this ordering is monotonic). However, we shall not pursue

this, because our estimation and inference procedures do not need to know this ordering. In

fact, we allow dependence both across time and in the cross-section. For notational simplicity,

we denote the indices as {i, 1  i  N} after the ordering. Let N denote the collection of

all positive integers. We use a �-mixing coe�cient to specify the dependence structure. Let

{W
it

: 1  i  N, 1  t  T}, where W
it

= (X
|
i

, f
|
t

, "
it

)
|
and "

it

= y
it

�f 0

ut

�
P

J

j=1

g0
j

(X
ji

)f 0

jt

.

For S
1

, S
2

⇢ [1, . . . , N ]⇥ [1, . . . , T ], let

�(S
1

, S
2

) ⌘ sup{|P (A|B)� P (A)| : A 2 �(W
it

, (i, t) 2 S
1

), B 2 �(W
it

, (i, t) 2 S
2

)},

where � (·) denotes a �-field. Then the �-mixing coe�cient of {W
it

} for any k 2 N is defined

as

�(k) ⌘ sup{�(S
1

, S
2

) : d(S
1

, S
2

) � k},

where

d(S
1

, S
2

) ⌘ min{
p

|t� s|2 + |i� j|2 : (i, t) 2 S
1

, (j, s) 2 S
2

}.
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Without loss of generality, we assume that X
ji

= [a, b]. Denote h0

t

(x) = {h0

jt

(x
j

), 1 
j  J}| and eh

t

(x) = {eh
jt

(x
j

), 1  j  J}|, where x = (x
1

, . . . , x
J

)|. Let G0

i

(X
i

) =

{1, g0
1

(X
1i

), . . . , g0
J

(X
Ji

)}|. We make the following assumptions.

(C1) {W
it

} is a random field of �-mixing random variables. The �-mixing coe�cient of {W
it

}
satisfies �(k)  K

1

e��1k for K
1

,�
1

> 0. For each given i, {W
it

}is a strictly stationary

sequence.

(C2) The conditional density p
i

(" |x
i

, f
t

) of "
it

given (x
i

, f
t

) satisfies the Lipschitz condition

of order 1 and inf
1iN,1tT

p
i

(0 |x
i

, f
t

) > 0. For every 1  j  J , the density function

p
Xji(·) of Xji

is bounded away from 0 and satisfies the Lipschitz condition of order 1

on [a, b]. The density function f
Xi(·) of Xi

is absolutely continuous on [a, b]J .

(C3) The functions g0
j

and h0

jt

are r-times continuously di↵erentiable on its support for some

r > 2. The spline order satisfies m � r.

(C4) There exist some constants 0 < c
h

 C
h

< 1 such that c
h


⇣

1

T

P
T

t=1

f 0

jt

⌘
2

 C
h

for

all j with probability tending to one.

(C5) The eigenvalues of the (J+1)⇥(J+1) matrixN�1

P
N

i=1

E(G0

i

(X
i

)G0

i

(X
i

)|) are bounded

away from zero.

(C6) Let ⌦0

N

be the covariance matrix of N�1/2

P
N

i=1

G0

i

(X
i

)(⌧�I("
it

< 0)). The eigenvalues

of ⌦0

N

are bounded away from zero and infinity.

We allow that {W
it

} are weakly dependent across i and t, but need to satisfy the strong

mixing condition given in Condition (C1). Moreover, Condition (C1) implies that {X
i

} is

marginally cross-sectional mixing, and {f
t

} is marginally temporally mixing. Similar assump-

tions are used in Gao, Lu and Tjøstheim (2006) for an alpha–mixing condition in a spatial

data setting, and Dong, Gao and Peng (2016) for introducing a spatial mixing condition in

a panel data setting. Conditions (C2) and (C3) are commonly used in the nonparametric

smoothing literature, see for example, Horowitz and Lee (2005), and Ma, Song and Wang

(2013). Condition (C4) and (C5) are similar to Conditions A2, A5 and A7 of Connor,

Matthias and Linton (2012).

Let 1
l

be the (J + 1) ⇥ 1 vector with the lth element as “1” and other elements as “0”.

Denote B(X
i

) = {B
1

(X
1i

)|, . . . , B
J

(X
Ji

)|}| and

Z
i

= [{1, B(X
i

)|}|]
(1+JKN )⇥1

. (4.1)

Let

B(x) = [diag{1, B
1

(x
1

)|, . . . , B
J

(x
J

)|}]
(1+J)⇥(1+JKN )

. (4.2)
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Define

⇤0

Nt

= N�1

X
N

i=1

E{p
i

(0 |X
i

, f
t

)G0

i

(X
i

)G0

i

(X
i

)|}. (4.3)

and

⌃

0

Nt

= ⌧(1� ⌧)(⇤0

Nt

)�1⌦0

N

(⇤0

Nt

)�1. (4.4)

The theorem below presents the asymptotic distribution of the final estimator bf
t

. Define

�
NT

=
p

K
N

/(NT ) +K3/2

N

N�3/4

p
logNT +K�r

N

. (4.5)

Let d
NT

be a sequence satisfying

d
NT

= O(�
NT

). (4.6)

Theorem 1. Suppose that Conditions (C1)-(C5) hold, and K4

N

N�1 = o(1), K�r+2

N

(log T ) =

o(1) and K�1

N

(logNT )(logN)4 = o(1). Suppose also that the algorithm in Section 3.1 con-

verges within a finite number of iterations. Then, for any t there is a stochastically bounded

sequence �
N,jt

such that as N ! 1,

p
N(⌃0

Nt

)�1/2( bf
t

� f 0

t

� d
NT

�
N,t

)
D! N (0, I

J+1

),

where �
N,t

= (�
N,jt

, 0  j  J)|, d
NT

is given in (4.6), and I

J+1

is the (J + 1) ⇥ (J + 1)

identity matrix.

Remark 1: By using the asymptotic normality provided in 1, we can conduct inference for

f 0

t

for each t, such as constructing the confidence interval. Note that in the above asymptotic

distribution, there is a bias term d
NT

�
N,t

involved. In order to let the asymptotic bias

negligible, we can further assume that K
N

T�1 = o(1), K6

N

N�1(logNT )2 = o(1), NK�2r

N

=

o(1) and r > 3. By using the cubic splines, which has the order m = 4 and letting r = m = 4,

we need NK�8

N

= o(1). If we let K
N

⇣ N1/7 and T ⇣ N% for some constant % > 1/7, then

the asymptotic bias is negligible and thus we have

p
N(⌃0

Nt

)�1/2( bf
t

� f 0

t

) ! N (0, I
J+1

).

Next theorem establishes the rate of convergence of the final estimator bg
j

(x
j

).

Theorem 2. Suppose that the same conditions as given in Theorem 1 hold. Then, for each

j, Z
{bg

j

(x
j

)� g0
j

(x
j

)}2dx
j

�
1/2

= O
p

(�
NT

) + o
p

(N�1/2), (4.7)

where �
NT

is given in (4.5).

Remark 2: The orders
p

K
N

/(NT ) and K�r

N

are from the noise and bias terms for non-

parametric estimation, respectively, and the order K3/2

N

N�3/4

p
logN from the approximation

9



of the Bahadur representation in the quantile regression setting. This says that if the order

K
N

= O((NT )1/(2r+1)) is chosen, and provided r � ↵ > 1/2, where T = O(N↵), then the

rate in (4.7) is O
P

((NT )�r/(2r+1)), which is optimal, see for example, Chen and Christensen

(2015).

Remark 3. It is possible to develop inferential results for g
j

following Chen and Liao

(2012) and Chen and Pouzo (2015). As is usual in nonparametric estimation, the weak cross-

sectional and temporal dependence does not a↵ect the limiting distribution, and so standard

techniques can be applied. In fact, one may conclude the estimation algorithm with a kernel

step and demonstrate the oracle e�ciency property, Horowitz and Mammen (2011).

5 Covariance estimation and hypothesis testing for the

factors

In order to construct the confidence interval we need to estimate ⌦0

N

and ⇤0

Nt

, since they

are unknown. For estimation of ⇤0

Nt

, if we use its sample analogue, the conditional density

p
i

(0 |X
i

, f
t

) needs to be estimated. Instead of using this direct way, we use the Powell’s

kernel estimation idea in Powell (1991), and estimate ⇤0

Nt

by

b⇤
Nt

= (Nh)�1

X
N

i=1

K

 
y
it

� bf
ut

�
P

J

j=1

bg
j

(X
ji

) bf
jt

h

!
bG
i

(X
i

) bG
i

(X
i

)|, (5.1)

where bG
i

(X
i

) = {1, bg
1

(X
1i

), . . . , bg
J

(X
Ji

)}|, whileK(·) is the uniform kernelK(u) = 2�1I(|u| 
1) and h is a bandwidth.

First, we show that the estimator b⇤
Nt

is a consistent estimator of ⇤0

Nt

given in the theorem

below.

Theorem 3. Suppose that the same conditions as given in Theorem 1 hold, and h ! 0,

h�1�
NT

= o(1), h�1N�1/2 = O(1), where �
NT

is given in (4.5). Then, we have ||b⇤
Nt

�⇤0

Nt

|| =
o
p

(1).

Moreover, the exact form of ⌦0

N

defined in Condition (C6) is given by

⌦0

N

= (NT )�1

X
T

t=1

E

⇢X
N

i=1

G0

i

(X
i

)(⌧ � I("
it

< 0))

�⇢X
N

i=1

G0

i

(X
i

)(⌧ � I("
it

< 0))

�|�

=
⌧(1� ⌧)

N

X
N

i=1

E{G0

i

(X
i

)G0

i

(X
i

)|}+ (NT )�1

X
T

t=1

X
N

i 6=j

E(v
it

v|
jt

),

where v
it

= G0

i

(X
i

)(⌧ � I("
it

< 0)) for i = 1, . . . , N . To estimate ⌦0

N

, its sample analogue is

not consistent. Kernel-based robust estimators that account for heteroskedasticity and cross-

sectional correlation (HAC) are developed (Conley, 1999), and are shown to be consistent

under a variety of sets of conditions. It requires to use a truncation lag or “bandwidth”,
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which tends to infinity at a slower rate as N . As pointed out by Kiefer and Vogelsang (2005),

this is a convenient assumption mathematically to ensure consistency, but it is unrealistic in

finite sample studies. Adopting the idea in Kiefer and Vogelsang (2005), we let the bandwidth

M be proportional to the sample size n, i.e., M = bN for b 2 (0, 1], and then we derive the

fixed-b asymptotics (Kiefer and Vogelsang; 2005) for the HAC estimator of ⌦0

N

under the

quantile setting. The HAC estimator is given as b⌦
N,M

= T�1

P
T

t=1

b⌦
Nt,M

, where

b⌦
Nt,M

=
⌧(1� ⌧)

N

X
N

i=1

bG
i

(X
i

) bG
i

(X
i

)| +N�1

X
N

i 6=j

K⇤
✓
i� j

M

◆
bv
it

bv|
jt

, (5.2)

where: bv
it

= bG
i

(X
i

)(⌧ � I(b"
it

< 0)) for i = 1, . . . , N , b"
it

= y
it

� bf
ut

�
P

J

j=1

bg
j

(X
ji

) bf
jt

, K⇤(u)

is a symmetric kernel weighting function satisfying K⇤(0) = 1, and |K⇤(u)|  1, and M

trims the sample autocovariances and acts as a truncation lag. Consistency of b⌦
N,M

needs

that M ! 1 and M/N ! 0. The following theorem provides the limiting distribution of

b⌦
N,M=bN

when M = bN for b 2 (0, 1].

Next, we will show asymptotic theory for the HAC covariance estimator under a sequence

where the smoothing parameter M equals to bN . Let ⌦0 = lim
N!1 ⌦0

N

, and ⌦0 can be

written as ⌦0 = ⌥⌥|, where ⌥ is a lower triangular matrix obtained from the Cholesky

decomposition of ⌦0

t

.

Theorem 4. Suppose that the same conditions as given in Theorem 1 hold, and �
NT

N1/2 =

o(1), and K⇤00(u) exists for u 2 [�1, 1] and is continuous. Let M = bN for b 2 (0, 1]. Then

as N ! 1,

b⌦
N,M=bN

D! ⌥

Z
1

0

Z
1

0

� 1

b2
K⇤00

✓
r � s

b

◆
B

J+1

(r)B
J+1

(s)|drds⌥|
,

where B
J+1

(r) = W
J+1

(r) � rW
J+1

(1) denotes a (J + 1) ⇥ 1 vector of standard Brownian

bridges, and W
J+1

(r) denotes a (J + 1)-vector of independent standard Wiener processes

where r 2 [0, 1].

Theorem 4 establishes the limiting distribution of b⌦
N,M=bN

, although b⌦
N,M=bN

is an

inconsistent estimator of ⌦0. By using the result in Theorem 4, we construct asymptotically

pivotal tests involving f 0

t

.

Consider testing the null hypothesis H
0

: Rf 0

t

= r against the alternative hypothesis H
1

:

Rf 0

t

6= r, where R is a q ⇥ (J + 1) matrix with rank q and r is a q ⇥ 1 vector. We construct

an F -type statistic given as

F
Nt,b

= N(R bf
t

� r)|{R⌧(1� ⌧)b⇤�1

Nt

b⌦
N,M=bN

b⇤�1

Nt

R|}�1(R bf
t

� r)/q.

When q = 1, we can construct a t-type statistic:

T
Nt,b

=
N1/2(R bf

t

� r)q
R⌧(1� ⌧)b⇤�1

Nt

b⌦
N,M=bN

b⇤�1

Nt

}�1R|
.

11



The limiting distributions of F
Nt,b

and T
Nt,b

under the null hypothesis are given in the fol-

lowing theorem.

Theorem 5. Suppose that the same conditions as given in Theorem 1 hold, and �
NT

N1/2 =

o(1), and K⇤00(u) exists for u 2 [�1, 1] and is continuous. Let M = bN for b 2 (0, 1]. Then

under the null hypothesis H
0

: Rf 0

t

= r, as N ! 1,

F
Nt,b

D! {⌧(1� ⌧)}�1W
q

(1)|
⇢Z

1

0

Z
1

0

� 1

b2
K⇤00

✓
r � s

b

◆
B

q

(r)B
q

(s)|drds

��1

W
q

(1)/q.

If q = 1, then as N ! 1,

T
Nt,b

D! W
1

(1)
p

⌧(1� ⌧)
qR

1

0

R
1

0

� 1

b

2K⇤00
�
r�s

b

�
B

1

(r)B
1

(s)drds
.

Let ⇤0

t

= lim
N!1 ⇤0

Nt

. The limiting distributions of F
Nt,b

and T
Nt,b

under the alternative

hypothesis H
1

: Rf 0

t

= r + cN�1/2 are given in the following theorem.

Theorem 6. Let ⌥⇤
t

= (R⇤�1

t

⌦0⇤�1

t

R|)1/2. Suppose that the same conditions as given in

Theorem 1 hold, and �
NT

N1/2 = o(1), and K⇤00(u) exists for u 2 [�1, 1] and is continuous.

Let M = bN for b 2 (0, 1]. Then under the alternative hypothesis H
1

: Rf 0

t

= r + cN�1/2

, as

N ! 1,

F
Nt,b

D! {⌧(1� ⌧)}�1{⌥⇤�1

t

c+W
q

(1)}|⇥
⇢Z

1

0

Z
1

0

� 1

b2
K⇤00

✓
r � s

b

◆
B

q

(r)B
q

(s)|drds

��1

{⌥⇤�1

t

c+W
q

(1)}/q.

If q = 1, then as N ! 1,

T
Nt,b

D! ⌥⇤�1

t

c+W
1

(1)
p

⌧(1� ⌧)
qR

1

0

R
1

0

� 1

b

2K⇤00
�
r�s

b

�
B

1

(r)B
1

(s)drds
.

Remark. If K⇤(x) is the Bartlett kernel, then

Z
1

0

Z
1

0

� 1

b2
K⇤00

✓
r � s

b

◆
B

q

(r)B
q

(s)|drds

=
2

b

Z
1

0

B
q

(r)B
q

(r)|dr � 1

b

Z
1�b

0

{B
q

(r + b)B
q

(r)| +B
q

(r)B
q

(r + b)|}dr.

These results allow one to test whether the factors are zero in a particular time period or

not. Our tests are robust to the form of the cross-sectional dependence in the idiosyncratic

error.
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6 Application

In a series of important papers, Fama and French (hereafter denoted FF), building on earlier

work by Banz (1981), Basu (1977), Rosenberg, Reid and Lanstein (1985) and others, demon-

strate that there have been large return premia associated with size and value. These size and

value return premia are evident in US data for the period covered by the CRSP/Compustat

database (FF (1992)), in earlier US data (Davis (1994), and in non-US equity markets (FF

(1998), Hodrick, Ng and Sangmueller (1999)). FF (1993,1995,1996,1998) contended that

these return premia can be ascribed to a rational asset pricing paradigm in which the size

and value characteristics proxy for assets’ sensitivities to pervasive sources of risk in the

economy. Haugen (1995) and Lakonoshik, Shleifer and Vishny (1994) argued that the ob-

served value and size return premia arise from market ine�ciencies rather than from rational

risk premia associated with pervasive sources of risk. They argue that these characteristics do

not generate enough nondiversifiable risk to justify the observed premia. Similarly, MacKin-

lay (1995) argues that the return premia are too large relative to the return volatility of the

factor portfolios designed to capture these characteristics, and this creates a near-arbitrage

opportunity in the FF model. Daniel and Titman (1997) argued that the factor returns

associated with the characteristics are partly an artifact of the FF factor model estimation

methodology. Hence the accuracy and reliability of FF’s estimation procedure is a critical

issue in this research controversy. FF (1993) used a simple portfolio sorting approach to

estimate their factor model.

In our data analysis, we use all securities from Center for Research in Security Prices

(CRSP) which have complete daily return records from 2005 to 2013, and have two-digit

Standard Industrial Classification code (from CRSP), market capitalization (from Compus-

tat) and book value (from Compustat) records. We use daily returns in excess of the risk-free

return of 337 stocks. We consider the same four characteristic variables as given in Connor,

Matthias and Linton (2012), and Fan, Liao and Wang (2016), which are size, value, momen-

tum and volatility. Connor, Matthias and Linton (2012) provided some detailed descriptions

of these characteristics. They are calculated using the same method as described in Fan,

Liao and Wang (2016).

We fit the quantile regression model (2.1) for each year, so that there are T = 251

observations. By taking the same strategy as in Ma and He (2016), we select the number of

interior knots L
N

by minimizing the Bayesian information criterion (BIC) given as

BIC(L
N

) = log{(NT )�1

X
N

i=1

X
T

t=1

⇢
⌧

(y
it

� bf
ut

�
X

J

j=1

bg
j

(X
ji

) bf
jt

)}+ log(NT )

2NT
J(L

N

+m).

For the estimator b⇤
Nt

given in (5.1), the optimal order for the bandwidth h is in the order

of N�1/5. Similar to Ma and He (2016), we let h = N�1/5 in our numerical analysis and
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take di↵erent values for . For the estimator b⌦
Nt,M=bN

given in (5.2), we use di↵erent values

for b, and use the Bartlett kernel as suggested in Kiefer and Vogelsang (2005).

Figures 1-3 show the plots of the four estimated loading functions for the year of 2009,

2010, 2011, and 2012 at di↵erent quantiles ⌧ = 0.2, 0.5 and 0.8. We observe that the estimated

loading functions have similar shapes for these four years. Moreover, for the size, value and

momentum characteristics, the estimated functions show a clear nonlinear pattern, and at

di↵erent quantiles, the curves are di↵erent for the same characteristic. For example, for the

size characteristic, the estimated loading function fluctuates around zero and it has a sharp

drop after the value of size variable exceeds certain value at the quantiles ⌧ = 0.2 and 0.8.

However, it has a smooth decreasing pattern for the median with ⌧ = 0.5. For the momentum

characteristic, the estimated function shows di↵erent curves at the three quantiles.

Next, we let  = 0.5, 1, 1.5 and b = 0.2, 0.4, 0.6, respectively, for calculation of b⇤
Nt

and

b⌦
Nt,M=bN

. Using the year of 2012, we test for the statistical significance of each factor at

each time point, based on the t-type statistic proposed and its distribution given in Theorem

5. Then for each factor, we find the percentage of the t-type statistics that are significant at

a 95% confidence level across the 251 time periods. Table 1 shows the annualized standard

deviations of the factor returns, the percentage of significant t-type statistics for each factor,

and the average p-value at ⌧ = 0.5. We can see that the results for di↵erent values of  and b

are consistent. Moreover, all five factors are statistically significant with the average p-value

smaller than 0.05.

7 Conclusions and discussion

We have taken for granted that the J factors are present in the sense that

p lim
T!1

1

T

TX

t=1

f 0

jt

6= 0 (7.1)

for j = 1, . . . , J. For the factors in our application this is quite a standard assumption, but in

some cases one might wish to test this because if this condition fails, then the right hand side

of (2.4) is close to zero and this equation can’t identify g0
j

(x
j

). We outline below a test of the

hypothesis (7.1) based on the unstructured additive quantile regression 2.3). A more limited

objective is to test whether for a given time period t, f
jt

= 0, which we provide above.

We are interested in testing the hypothesis that

H
0Aj

: lim
T!1

1

T

TX

t=1

h
jt

(x
j

) = 0 for all x
j

, (7.2)

against the general alternative that lim
T!1

1

T

P
T

t=1

h
jt

(x
j

) = µ
j

(x
j

) with
R
µ
j

(x
j

)2dP
j

(x
j

) >
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Table 1: Factor return statistics at ⌧ = 0.5 for the year of 2012.

(c, b) Intercept Size Value Momentum Volatility

Annualized volatility 0.026 0.026 0.025 0.025 0.026

(0.5, 0.2) % Periods significant 92.00 63.35 65.74 66.14 77.69

Overall p-value < 0.001 0.011 0.010 0.011 < 0.001

Annualized volatility 0.023 0.022 0.022 0.022 0.023

(0.5, 0.4) % Periods significant 93.22 66.93 68.53 69.32 79.28

Overall p-value < 0.001 0.006 0.006 0.005 < 0.001

Annualized volatility 0.020 0.020 0.019 0.019 0.019

(0.5, 0.6) % Periods significant 93.62 72.11 71.71 71.31 81.67

Overal p-value < 0.001 0.003 0.003 0.002 < 0.001

Annualized volatility 0.028 0.032 0.027 0.027 0.029

(1.0, 0.2) % Periods significant 91.63 54.58 61.35 62.55 76.49

Overall p-value < 0.001 0.030 0.016 0.017 0.001

Annualized volatility 0.024 0.027 0.024 0.024 0.025

(1.0, 0.4) % Periods significant 93.23 60.96 65.34 67.73 76.89

Overall p-value < 0.001 0.018 0.009 0.008 < 0.001

Annualized volatility 0.021 0.025 0.021 0.020 0.021

(1.0, 0.6) % Periods significant 93.63 64.94 68.13 70.52 81.27

Overall p-value < 0.001 0.010 0.005 0.004 < 0.001

Annualized volatility 0.030 0.035 0.029 0.029 0.031

(1.5, 0.2) % Periods significant 91.63 51.39 58.17 60.96 75.29

Overall p-value < 0.001 0.043 0.020 0.022 0.002

Annualized volatility 0.026 0.031 0.026 0.025 0.027

(1.5, 0.4) % Periods significant 92.82 56.57 64.94 66.53 75.69

Overall p-value < 0.001 0.028 0.013 0.011 < 0.001

Annualized volatility 0.023 0.027 0.022 0.022 0.022

(1.5, 0.6) % Periods significant 93.63 64.14 66.93 69.32 78.49

Overall p-value < 0.001 0.017 0.006 0.005 < 0.001
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Figure 1: The plots of the estimated loading functions for the year of 2009 (dotted-dashed

red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)

at ⌧ = 0.2.
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0. We also may be interested in a joint test H
0

= \
j2IJH0Aj

, where I
J

is a set of integers, a

subset of {1, 2, . . . , J}. These are tests of the presence of a factor.

We let

b⌧
j,n,T

=

R ⇣
1

T

P
T

t=1

bh
jt

(x
j

)
⌘
2

dP
j

(x
j

)� a
n,T

s
n,T

, (7.3)

where bh
jt

(·) is the estimated additive component function from the quantile additive model

at time t, while a
n,T

, s
n,T

are constants to be determined. Under the null hypothesis (7.2) we

may show that

b⌧
j,n,T

D! N (0, 1),

16



Figure 2: The plots of the estimated loading functions for the year of 2009 (dotted-dashed

red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)

at ⌧ = 0.5.
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while under the alternative we have b⌧
j,n,T

! 1 with probability one.

8 Appendix

We first introduce some notations which will be used throughout the Appendix. Let �
max

(A) and

�
min

(A) denote the largest and smallest eigenvalues of a symmetric matrix A, respectively. For an

m⇥ n real matrix A, we denote kAk1 = max
1im

P
n

j=1

|A
ij

|. For any vector a = (a
1

, . . . , a
n

)| 2

Rn, denote ||a||1 = max
1in

|a
i

|. We first study the asymptotic properties of the initial estima-

tors bg[0]
j

(x
j

) of g0
j

(x
j

). The following theorem gives an asymptotic expression of bg[0]
j

(x
j

) and its
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Figure 3: The plots of the estimated loading functions for the year of 2009 (dotted-dashed

red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)

at ⌧ = 0.8.
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convergence rate that will be used in the proofs of Theorems 1 and 2.

Proposition 1. Let Conditions (C1)-(C4) hold. If, in addition, K4

N

N�1 = o(1), K�r+2

N

(log T ) =

o(1) and K�1

N

(logNT )(logN)4 = o(1), then for every 1  j  J ,

sup
xj2[a,b] |bg

[0]

j

(x
j

)� g0
j

(x
j

)| = O
p

(K
N

/
p
NT +K2

N

N�3/4

p
logNT +K�r

N

) + o
p

(N�1/2),
Z

{bg[0]
j

(x
j

)� g0
j

(x
j

)}2dx
j

�
1/2

= O
p

(
p

K
N

/(NT ) +K3/2

N

N�3/4

p
logNT +K�r

N

) + o
p

(N�1/2).

(A.1)
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8.1 Proof of Proposition 1

We first present the following several lemmas which will be used in the proof of Proposition 1.

According to the result on page 149 of de Boor (2001), for h0
jt

satisfying the smoothness condition

given in (C2), there exists ✓0

jt

2 RKn such that h0
jt

(x
j

) = eh0
jt

(x
j

) + b
jt

(x
j

)

eh0
jt

(x
j

) = B
j

(x
j

)|✓0

jt

and sup
j,t

sup
xj2[a,b]

|b
jt

(x
j

)| = O(K�r

N

). (A.2)

Denote eh0
t

(x) = {eh0
jt

(x
j

), 1  j  J}|, and

b
t

(x) =
X

J

j=1

h0
jt

(x
j

)�B(x)|✓0

t

where B(x) = {B
1

(x
1

)|, . . . , B
J

(x
J

)|}|. Then by (A.2), we have

sup
x2[a,b]J |bt(x)| = O(K�r

N

).

Let ✓0

t

= (✓0|
1t

, . . . ,✓0|
Jt

)|. Then B(x)(eh
ut

, e✓|
t

)| = (eh
ut

,eh
t

(x)|)| and B(x)(h0
ut

,✓0|
t

)| = (h0
ut

,eh0
t

(x)|)|,

where B(x) is defined in (4.2). We introduce some additional notation that were used in Koenker

and Bassett (1978), and Horowitz and Lee (2005). Let d(N) = (1 + JK
N

). Let N = {1, . . . , N}

and S denote the collection of all d(N)-element subsets of N . Let M (s) denote the submatrix

(subvector) of a matrix (vector) M with rows (components) indexed by the elements of s 2 S.

Let Z = (Z
1

, . . . , Z
N

)|, where Z
i

is defined in (4.1), and Y
t

= (y
it

, 1  i  N)|. Then Z (s) is

the d(N) ⇥ d(N) matrix, whose rows are Z
i

’s with i 2 s, and Y
t

(s) is the d(N) ⇥ 1 vector, whose

elements are y
it

’s with i 2 s for each given t. We first give the Bernstein inequality for a �-mixing

sequence, which is used through our proof.

Lemma 1. Let {⇠
i

} be a sequence of centered real-valued random variables. Let S
n

=
P

n

i=1

⇠
i

.

Suppose the sequence has the �-mixing coe�cient satisfying �(k)  exp(�2ck) for some c > 0 and

sup
i�1

|⇠
i

|  M . Then there is a positive constant C
1

depending only on c such that for all n � 2

P (|S
n

| � ")  exp(� C
1

"2

v2n+M2 + "M(log n)2
),

where v2 = sup
i>0

(var(⇠
i

) + 2
P

j>i

|cov(⇠
i

, ⇠
j

)|).

Proof. The result of Lemma 1 is given in Theorem 2 on page 275 of Merlevéde, Peligrad and Rio

(2009) when the sequence {⇠
i

} has the ↵-mixing coe�cient satisfying ↵(k)  exp(�2ck) for some

c > 0. Thus, this result also holds for the sequence having the �-mixing coe�cient satisfying

�(k)  exp(�2ck), since ↵(k)  �(k)  exp(�2ck).

Lemma 2. There is a subset s 2 S such that the objective function (3.1) has at least one minimizer

of the form (eh
ut

, e✓|
t

)| = Z (s)�1 Y
t

(s), and (eh
ut

, e✓|
t

)| is a unique solution to (3.1) almost surely for

su�ciently large N .

Proof. The proof of this lemma is given in Lemma A.2 of Horowitz and Lee (2005).
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We first obtain the Bahadur representation for e#
t

= (eh
ut

, e✓|
t

)| through the following lemmas.

To obtain the Bahadur representation for e#
t

, we basically extend the result established for the i.i.d.

case by Horowitz and Lee (2005) to the mixing distribution by following similar procedures as given

in Lemmas A.1-A.7 of Horowitz and Lee (2005), and we also need the results to hold uniformly in

t, which requires to apply the Bernstein’s inequality for mixing distributions in Lemma 1 and the

union bound of probability. Denote #
t

= (h
ut

,✓|
t

)| and #0

t

= (h0
ut

,✓0|
t

)|. Define

G
tN,i

(#
t

) = [⌧ � I{"
it

 Z|
i

(#
t

� #0

t

)� b
t

(X
i

)}]Z
i

,

G⇤
tN,i

(#
t

) = [⌧ � F
i

[{Z|
i

(#
t

� #0

t

)� b
t

(X
i

)}|X
i

, f
t

]]Z
i

,

where F
i

("|X
i

, f
t

) = P ("
i

 "|X
i

, f
t

), and eG
tN,i

(#
t

) = G
tN,i

(#
t

)�G⇤
tN,i

(#
t

).

Lemma 3. Under Conditions (C1) and (C2), and K
N

N�1(logK
N

T )(logN)4 = o(1) and K�1

N

=

o(1), sup
1tT

||N�1

P
N

i=1

eG
tN,i

(#0

t

)|| = O
p

(K1/2

N

N�1/2

p
logK

N

T ).

Proof. It is easy to see that E{N�1

P
N

i=1

eG
tN,i

(#0

t

)} = 0. Write Z
i

= (Z
i,1

, . . . , Z
i,d(N)

)|. Let

eG
tN,i`

(#
t

) = [⌧ � I{"
it

 Z|
i

(#
t

� #0

t

)� b
t

(X
i

)}]Z
i,`

� [⌧ � F
i

[{Z|
i

(#
t

� #0

t

)� b
t

(X
i

)}|X
i

, f
t

]]Z
i,`

,

where ` = 1, . . . , d(N), so that eG
tN,i

(#0

t

) = { eG
tN,i`

(#0

t

), 1  `  d(N)}| and eG
tN,i`

(#0

t

) =

[F
i

[{�b
t

(X
i

)}|X
i

, f
t

]� I{"
it

 �b
t

(X
i

)}]Z
i,`

. Then for each `,

E{ eG
tN,i`

(#
t

)2} = E[V ar{I("
it

 �b
t

(X
i

))|X
i

, f
t

}Z2

i,`

] ⇣ E(Z2

i,`

) ⇣ 1,

and by Condition (C1), for i 6= i0,

|E{ eG
tN,i`

(#
t

) eG
tN,i

0
`

(#
t

)}|  2{�(|i0 � i|)}1/2[E{ eG
tN,i`

(#
t

)2}E{ eG
tN,i`

0(#
t

)2}]1/2

 c
1

2K
1

e��1|i0�i|/2,

for some constant 0 < c
1

< 1. Hence, by the above results, we have

sup
i

[E{ eG
tN,i`

(#
t

)}2 +
X

i

0 6=i

|Cov( eG
tN,i`

(#
t

), eG
tN,i

0
`

(#
t

))|]

 c
2

+ sup
i

X
i

0 6=i

c
1

2K
1

e��1|i0�i|/2  c
2

+ c
1

2K
1

(1� e��1/2)�1  c
3

for some constants 0 < c
2

, c
3

< 1. Moreover, sup
i

| eG
tN,i`

(#
t

)|  c
4

K1/2

N

for some constant 0 <

c
4

< 1. Thus, by the Bernstein’s inequality in Lemma 1, we have for N su�ciently large and

K
N

N�1(logK
N

T )(logN)4 = o(1),

P

✓
|N�1

X
N

i=1

eG
tN,i`

(#
t

)| � aN�1/2

p
logK

N

T

◆

 exp(� C
1

a2N(logK
N

T )

c
3

N + c2
4

K
N

+ aN1/2

p
logK

N

Tc
4

K1/2

N

(logN)2
)  (K

N

T )�C1a
2
/(3c3).

20



Then by the union bound of probability, we have

P

✓
sup
t

sup
`

|N�1

X
N

i=1

eG
tN,i`

(#
t

)| � aN�1/2

p
logK

N

T

◆
 d(N)T (K

N

T )�C1a
2
/(3c3).

Therefore,

P

 
sup

1tT

||N�1

X
N

i=1

eG
tN,i

(#0

t

)|| � aK1/2

N

N�1/2

p
logK

N

T

!
 d(N)T (K

N

T )�C1a
2
/(3c3)

 (1 + JK
N

)T (K
N

T )�2.

by taking a large enough. The proof is complete.

Lemma 4. sup
1tT

||N�1

P
N

i=1

G
tN,i

(e#
t

)|| = O
a.s.

(K3/2

N

N�1).

Proof. The proof of this lemma follows the same procedure as in Lemma A.4 of Horowitz and Lee

(2005) by using the result in (A.9) which holds uniformly in t = 1, ..., T .

Lemma 5. Under Conditions (C1) and (C2), and K2

N

N�1(logNT )2(logN)8 = o(1) and K�1

N

=

o(1),

sup
1tT

sup
||#t�#0

t ||CK

1/2
N N

�1/2

||N�1

X
N

i=1

eG
tN,i

(#
t

)�N�1

X
N

i=1

eG
tN,i

(#0

t

)||

= O
p

(K3/2

N

N�3/4

p
logNT ).

Proof. Let B
N

= {#
t

: ||#
t

�#0

t

||  CK1/2

N

N�1/2}. By taking the same strategy as given in Lemma

A.5 of Horowitz and Lee (2005), we cover the ball B
N

with cubes C = {C(#
t,v

)}, where C(#
t,v

) is a

cube containing (#
t,v

�#0

t

) with sides of C{d(N)/N5}1/2 such that #
t,v

2 B
N

. Then the number of

the cubes covering the ball B
N

is V = (2N2)d(N). Moreover, we have ||(#
t

� #0

t

)� (#
t,v

� #0

t

)|| 
C{d(N)/N5/2} for any #

t

� #0

t

2 C(#
t,v

), where v = 1, . . . , V . First we can decompose

sup
#t2BN

||N�1

X
N

i=1

eG
tN,i

(#
t

)�N�1

X
N

i=1

eG
tN,i

(#0

t

)||

 max
1vV

sup
(#t�#0

t )2C(#t,v)

||N�1

X
N

i=1

eG
tN,i

(#
t

)�N�1

X
N

i=1

eG
tN,i

(#
t,v

)||

+ max
1vV

||N�1

X
N

i=1

eG
tN,i

(#
t,v

)�N�1

X
N

i=1

eG
tN,i

(#0

t

)||

= �
tN,1

+�
tN,2

(A.3)

Let �
N

= C{d(N)/n5/2}. By the same argument as given in the proof of Lemma A.5 in Horowitz

and Lee (2005), we have

�
tN,1

 max
1vV

|�
tN,1v

|+ max
1vV

|�
tN,2v

|, (A.4)

where

�
tN,1v

= N�1

X
N

i=1

||Z
i

||
⇥
F
i

[Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

) + ||Z
i

||�
N

|X
i

, f
t

]

�F
i

[Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

)� ||Z
i

||�
N

|X
i

, f
t

]
⇤
,

�
tN,2v

= N�1

X
N

i=1

�
tN,2v,i

= N�1

X
N

i=1

||Z
i

||
⇥
[I{"

it

 Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

) + ||Z
i

||�
N

}

� F
i

{Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

) + ||Z
i

||�
N

|X
i

, f
t

}]

�[I{"
it

 Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

)}� F
i

{Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

)|X
i

, f
t

}]
⇤
.
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By Condition (C2), we have for some constants 0 < c
1

, c
2

< 1,

sup
1tT

max
1vV

|�
tN,1v

|  c
1

�
N

max
1iN

||Z
i

||||Z
i

||  c
2

{d(N)/N5/2}K
N

= O(K2

N

N�5/2). (A.5)

Next we will show the convergence rate for max
1vV

|�
tN,2v

|. It is easy to see that E(�
tN,2v,i

) = 0.

Also |�
tN,2v,i

|  4||Z
i

||  c
1

K1/2

N

for some constant 0 < c
1

< 1. Moreover,

E
⇥
||Z

i

||I{"
it

 Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

) + ||Z
i

||�
N

}� I{"
it

 Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

)}
⇤
2

⇣ E{||Z
i

||2||Z
i

||�
N

}  c⇤
2

�
N

K1/2

N

 c
2

K3/2

N

N�5/2,

for some constants 0 < c⇤
2

< c
2

< 1. Hence E(�
tN,2v,i

)2  c
2

K3/2

N

N�5/2. By Condition (C1), we

have for i 6= j,

|E(�
tN,2v,i

�
tN,2v,j

)|  2�(|j � i|)1/2{E(�2
tN,2v,i

)E(�2
tN,2v,j

)}1/2  2c
2

�(|j � i|)K3/2

N

N�5/2.

Hence

E(�
tN,2v,i

)2 + 2
X

j>i

|E(�
tN,2v,i

�
tN,2v,j

)|

 c
2

K3/2

N

N�5/2 + 4c
2

X
N

k=1

K
1

e��1k/2K3/2

N

N�5/2

 c
2

K3/2

N

N�5/2(1 + 4K
1

(1� e��1/2)�1) = c
3

K3/2

N

N�5/2,

where c
3

= c
2

(1+4K
1

(1�e��1/2)�1). By Condition (C1), for each fixed t, the sequence {(X
i

, f
t

, "
it

), 1 
i  N} has the �-mixing coe�cient �(k)  K

1

e��1k for K
1

,�
1

> 0. Thus, by the Bernstein’s in-

equality given in Lemma 1, we have for N su�ciently large,

P
⇣
|�

tN,2v

| � aK3/2

N

N�1(logNT )3
⌘

 exp(�
C
1

(aK3/2

N

(logNT )3)2

c
3

K3/2

N

N�5/2N + c2
1

K
N

+ aK3/2

N

(logNT )3c
1

K1/2

N

log(N)2
)  (NT )�c4a

2
KN

for some constant 0 < c
4

< 1. By the union bound of probability, we have

P

 
sup

1tT

max
1vV

|�
tN,2v

| � aK3/2

N

N�1(logNT )3
!

 (2N2)d(N)T (NT )�c4a
2
KN  2d(N)N2(1+JKN )�c4a

2
KNT 1�c4a

2
KN .

Hence, taking a large enough, one has

P

 
sup

1tT

max
1vV

|�
tN,2v

| � aK3/2

N

N�1(logN)3
!

 2KNN�KNT�KN .

Then we have

sup
1tT

max
1vV

|�
tN,2v

| = O
p

{K3/2

N

N�1(logNT )3}. (A.6)

Next we will show the convergence rate for �
tN,2

. Let eg
tN,i,`

(#
t,v

) be the `th element in eG
tN,i

(#
t,v

)�
eG
tN,i

(#0

t

) for ` = 1, . . . , d(N). It is easy to see that E{eg
tN,i,`

(#
t,v

)} = 0. Also |eg
tN,i,`

(#
t,v

)| 
4|Z

i`

|  c
1

K1/2

N

for some constant 0 < c
1

< 1. Moreover,

E
⇥
[I{"

it

 Z|
i

(#
t,v

� #0

t

)� b
t

(X
i

)}� I{"
it

 �b
t

(X
i

)}]Z
i`

⇤
2

 c0
1

||#
t,v

� #0

t

||K1/2

N

 c0
1

CK1/2

N

N�1/2K1/2

N

= c0
1

CK
N

N�1/2
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for some constant 0 < c0
1

< 1. Hence E(eg
tN,i,`

(#
t,v

))2  c0
1

CK
N

N�1/2. By Condition (C1), we

have for i 6= j,

|E(eg
tN,i,`

(#
t,v

)eg
tN,j,`

(#
t,v

)|  4�(|j � i|)1/2{E(�2
tN,2v,i

)E(�2
tN,2v,j

)}1/2.

Hence

E(eg
tN,i,`

(#
t,v

))2 + 2
X

j>i

|E(eg
tN,i,`

(#
t,v

)eg
tN,j,`

(#
t,v

)|

 c0
1

CK
N

N�1/2 + 4
X

N

k=1

K
1

e��1k/2c0
1

CK
N

N�1/2

 c0
1

CK
N

N�1/2(1 + 4K
1

(1� e��1/2)�1) = c
2

K
N

N�1/2,

where c
2

= c0
1

C(1+ 4K
1

(1� e��1/2)�1). Thus, by the Bernstein’s inequality given in Lemma 1 and

K2

N

N�1(logNT )2(logN)8 = o(1), we have for N su�ciently large,

P

✓
|N�1

X
N

i=1

eg
tN,i,`

(#
t,v

)| � aK
N

N�3/4

p
logNT

◆

 exp(� C
1

(aK
N
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p
logNT )2

c
2

K
N

N�1/2N + c2
1

K
N

+ aK
N

N1/4(logNT )1/2c
1

K1/2

N

(logN)2
)  (NT )�c3a

2
KN (A.7)

for some constant 0 < c
3

< 1. By the union bound of probability, we have

P

 
sup

1tT

sup
1`d(N)

|N�1

X
N

i=1
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Hence,
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X
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eG
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X
N

i=1

eG
tN,i

(#0

t

)|| � aK3/2
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N�3/4

p
logNT

!

 d(N)T (NT )�c3a
2
KN .

By the union bound of probability again, we have
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| � aK3/2
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N�3/4

p
logNT

!
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Hence, taking a large enough, one has
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Then we have
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p
logNT}. (A.8)

Therefore, by (A.3), (A.4), (A.5), (A.6) and (A.8), we have
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Let  
Nt

= N�1

P
N

i=1

p
i

(0 |X
i

, f
t

)Z
i

Z|
i
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Proof of Proposition 1. By (A.10) in Lemma 8, we have

eh
jt

(x
j

)� eh0
jt

(x
j

) = 1|
j+1

B(x)(D
Nt,1

+D
Nt,2

) + 1|
j+1

B(x)R
Nt

,

and

sup
1tT

{N�1

X
N

i=1

(1|
j+1

B(X
i

)R
Nt

)2}1/2  sup
1tT

||R
Nt

||[�
max

{N�1

X
N

i=1

B
j

(X
ji

)B
j

(X
ji

)|}]1/2

= O
p

(K3/2

N

N�3/4

p
logNT +K1/2�2r

N

) + o
p

(N�1/2),

sup
1tT

sup
x2[a,b]J

|1|
j+1

B(x)R
Nt

|

 sup
x2[a,b]J

||B(x)|1
j+1

|| sup
1tT

||R
Nt

||

= O(K1/2

N

)O
p

(K3/2

N

N�1 +K3/2

N

N�3/4

p
logNT +K1/2�2r

N

+N�1/2K�r/2+1/2

N

p
logK

N

T )

= O
p

(K2

N

N�3/4

p
logNT +K1�2r

N

) + o
p

(N�1/2),

by the assumption that K4

N

N�1 = o(1), K�r+2

N

(log T ) = o(1) and r > 2. Since h0
jt

(x
j

) = eh0
jt

(x
j

) +

b
jt

(x
j

), then we have

eh
jt

(x
j

)� h0
jt

(x
j

) = 1|
j+1

B(x)(D
Nt,1

+D
Nt,2

)� b
jt

(x
j

) + 1|
j+1

B(x)R
Nt

.

Also by (A.2), we have sup
1tT

sup
x2[a,b]J

���1|
j+1

B(x)D
Nt,2

��� = O
p

(K�r

N

). Then eh
jt

(x
j

)�h0
jt

(x
j

) can

be written as

eh
jt

(x
j

)� h0
jt

(x
j

) = 1|
j+1

B(x)D
Nt,1

+ ⌘
N,jt

(x
j

), (A.16)

where the remaining term ⌘
N,jt

(x
j

) satisfies

sup
1tT

[N�1

X
N

i=1

{⌘
N,jt

(X
ji

)}2]1/2 = O
p

(K�r

N

) +O
p

(K3/2

N

N�3/4

p
logNT ) + o

p

(N�1/2), (A.17)

sup
1tT

{
Z
⌘
N,jt

(x
j

)2dx
j

}1/2 = O
p

(K�r

N

) +O
p

(K3/2

N

N�3/4

p
logNT ) + o

p

(N�1/2),

sup
1tT

sup
xj2[a,b] |⌘N,jt

(x
j

)| = O
p

(K�r

N

) +O
p

(K2

N

N�3/4

p
logNT ) + o

p

(N�1/2). (A.18)

Moreover, by Berntein’s inequality, we have sup
1tT

||D
Nt,1

|| = O
p

(
p
K

N

/N
p
logK

N

T ). Hence,

sup
1tT

sup
x2[a,b]J

|1|
j+1

B(x)D
Nt,1

| = O
p

(
p
logK

N

TK
N

/
p
N),

sup
1tT

{N�1

X
N

i=1

(1|
j+1

B(X
i

)D
Nt,1

)2}1/2 = O
p

(
p
logK

N

T
p
K

N

/N). (A.19)

Therefore, by (A.16), (A.17), (A.18) and (A.19), we have

sup
1tT

N�1

X
N

i=1

{eh
jt

(X
ji

)� h0
jt

(X
ji

)}2 = O
p

((logK
N

T )K
N

/N +N�2r),

sup
1tT

sup
xj2[a,b] |ehjt(xj)� h0

jt

(x
j

)| = O
p

(
p

logK
N

TK
N

N�1/2 +K�r

N

). (A.20)

26



Moreover, by c
h

 N�1

P
N

i=1

h0
jt

(X
ji

)2  C
h

almost surely given in Condition (C3) and the above

result, we have with probability approaching 1, as N ! 1, c
h

 N�1

P
N

i=1

eh
jt

(X
ji

)2  C
h

. By

(A.16), we have with probability approaching 1, as N ! 1,

1/

r
N�1

X
N

i=1

eh
jt

(X
ji

)2 � 1/

r
N�1

X
N

i=1

h0
jt

(X
ji

)2

= C 0{N�1

X
N

i=1

h0
jt

(X
ji

)2 �N�1

X
N

i=1

eh
jt

(X
ji

)2}

= C 0N�1

X
N

i=1

{eh
jt

(X
ji

)� h0
jt

(X
ji

)}h0
jt

(X
ji

)

= C 0N�1

X
N

i=1

1|
j+1

B(x)D
Nt,1

h0
jt

(X
ji

) + %
tN

(A.21)

for some constant 0 < C 0 < 1, where %
tN

= C 0N�1

P
N

i=1

⌘
N,jt

(X
ji

)h0
jt

(X
ji

). Moreover by (A.17),

sup
1tT

|%
tN

|  C 0 sup
1tT

[N�1

X
N

i=1

{⌘
N,jt

(X
ji

)}2]1/2[N�1

X
N

i=1

{h0
jt

(X
ji

)}2]1/2

= O
p

(K�r

N

) +O
p

(K3/2

N

N�3/4

p
logNT ) + o

p

(N�1/2). (A.22)

Hence by (A.16), (A.21) and the fact that f0

jt

=
q

lim
N!1N�1

P
N

i=1

h0
jt

(X
ji

)2, we have with

probability approaching 1, as N ! 1,

eh
jt

(x
j

)/

r
N�1

X
N

i=1

eh
jt

(X
ji

)2 � h0
jt

(x
j

)/f0

jt

= {eh
jt

(x
j

)� h0
jt

(x
j

)}/
r
N�1

X
N

i=1

eh
jt

(X
ji

)2 + h0
jt

(x
j

){1/
r
N�1

X
N

i=1

eh
jt

(X
ji

)2 � 1/f0

jt

}

= 1|
j+1

B(x)D
Nt,1

/

r
N�1

X
N

i=1

eh
jt

(X
ji

)2 + h0
jt

(x
j

){1/
r
N�1

X
N

i=1

eh
jt

(X
ji

)2 � 1/f0

jt

}

+ ⌘
N,jt

(x
j

)/

r
N�1

X
N

i=1

eh
jt

(X
ji

)2

= 1|
j+1

B(x)D
Nt,1

/f0

jt

+ {1|
j+1

B(x)D
Nt,1

+ h0
jt

(x
j

)}{1/
r

N�1

X
N

i=1

eh
jt

(X
ji

)2 � 1/f0

jt

}

+ C 00⌘
N,jt

(x
j

)

= 1|
j+1

B(x)D
Nt,1

/f0

jt

+ {1|
j+1

B(x)D
Nt,1

+ h0
jt

(x
j

)}C 0N�1

X
N

i=1

1|
j+1

B(x)D
Nt,1

h0
jt

(X
ji

)

+ C 000%
tN

+ C 00⌘
N,jt

(x
j

)

for some constants 0 < C 00, C 000 < 1. Let %
N

= T�1

P
T

t=1

C 000%
tN

and ⌘
NT,j

(x
j

) = T�1

P
T

t=1

C 00⌘
N,jt

(x
j

).

By (A.18) and (A.22), we have

|%
N

| = O
p

(K�r

N

) +O
p

(K3/2

N

N�3/4

p
logNT ) + o

p

(N�1/2), (A.23)

{
Z
⌘
NT,j

(x
j

)2dx
j

}1/2 = O
p

(K�r

N

) +O
p

(K3/2

N

N�3/4

p
logNT ) + o

p

(N�1/2),

sup
xj2[a,b] |⌘NT,j

(x
j

)| = O
p

(K�r

N

) +O
p

(K2

N

N�3/4

p
logNT ) + o

p

(N�1/2). (A.24)

By the definitions of bg[0]
j

(x
j

) and g0
j

(x
j

) given in (3.2) and (2.5), respectively, and h0
jt

(X
ji

) =

g0
j

(X
ji

)f0

jt

, we have with probability approaching 1, as (N,T ) ! 1,

bg[0]
j

(x
j

)� g0
j

(x
j

) = �
NTj,1

(x
j

) + �
NTj,2

(x
j

) + �
NTj,3

(x
j

) + %
N

+ ⌘
NT,j

(x
j

), (A.25)

27



where

�
NTj,1

(x
j

) = T�1

X
T

t=1

1|
j+1

B(x)D
Nt,1

/f0

jt

,

�
NTj,2

(x
j

) = C 0(TN)�1

X
T

t=1

X
N

i=1

1|
j+1

B(X
i

)D
Nt,1

g0
j

(X
ji

)g0
j

(x
j

)(f0

jt

)2,

�
NTj,3

(x
j

) = C 0(TN)�1

X
T

t=1

1|
j+1

B(x)D
Nt,1

X
N

i=1

1|
j+1

B(X
i

)D
Nt,1

g0
j

(X
ji

)f0

jt

.

Define  
it,`

= Z
i`

(⌧ � I("
it

< 0))(f0

jt

)2. Then E( 
it,`

) = 0. Moreover, E( 
it,`

)2  c
1

for some

constant 0 < c
1

< 1, and by Condition (C1), we have

|E( 
it,`

 
js,`

)|  2{�(
p
|i� j|2 + |t� s|2)}1/2{E( 

it,`

)2E( 
js,`

)2}1/2

 2c
1

{�(
p
|i� j|2 + |t� s|2)}1/2.

Hence by Condition (C1), we have

E((NT )�1

X
T

t=1

X
N

i=1

 
it,`

)2

= (NT )�2

X
t,t

0

X
i,i

0
E( 

it,`

 
i

0
t

0
,`

)  2c
1

(NT )�2

X
t,t

0

X
i,i

0
{�(

p
|i� j|2 + |t� s|2)}1/2

 2c
1

K
1

(NT )�2

X
t,t

0

X
i,i

0
e��1

p
|i�i

0|2+|t�t

0|2/2

 2c
1

(NT )�2K
1

X
t,t

0

X
i,i

0
e�(�1/2)(|i�i

0|+|t�t

0|)

 2c
1

K
1

(NT )�2(NT )(
X

T

k=0

e�(�1/2)k)(
X

N

k=0

e�(�1/2)k)

 2c
1

K
1

(NT )�2(NT ){1� e�(�1/2)}�2 = 2c
1

K
1

{1� e�(�1/2)}�2(NT )�1.

Thus,

E

����(NT )�1

X
T

t=1

X
N

i=1

Z
i

(⌧ � I("
it

< 0))(f0

jt

)2
����
2

=
X

d(N)

`=1

E{(NT )�1

X
T

t=1

X
N

i=1

 
it,`

}2 = O{K
N

(NT )�1}. (A.26)
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Moreover, by following the same procedure as the proof in (A.26), we have E||N�1
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By letting
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by (A.23), (A.24), (A.27) and (A.28), we have
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Therefore, Proposition 1 follow from the above two results, (A.25) and (A.29). Moreover, by the
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Therefore, the result (A.1) follows from the above result, and (A.25), (A.29) and (A.30).

8.2 Proofs of Theorems 1 and 2

We first present the following several lemmas that will be used in the proofs of Theorems 1 and 2.

Lemmas 11-13 are used in the proof of Lemma 10, and Lemma 16 is used for the proof of Lemma

14. Lemmas 9, 10 and 14 are used in the proof of the main theorems. We define the infeasible
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Lemma 9. Under Conditions (C1), (C2), (C4), (C5) and (C6), we have as N ! 1,
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Conditions (C2), (C4) and (C5), we have that the eigenvalues of ⇤0
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are bounded away from zero
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Hence the result in Lemma 10 follows from (A.32) and (A.33). We have || ef
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where �
N,t

= (�
N,jt

, 0  j  J)| and g
j

(x
j

) = B
j

(x
j

)|�
j

, uniformly in ||�
j

� �0

j

||  eC{d
NT

+

o(N�1/2)}. Hence, result (A.33) follows from (A.37) and (A.38) directly. Then the proof is complete.
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Lemma 11. Under Conditions (C2), (C4) and (C5),
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Lemma 12. Under Conditions (C2), (C4) and (C5), we have
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for some constants 0 < C 00 < 1 and 0 < C 000 < 1. Therefore, for N ! 1,
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for some constant 0 < C 0000 < 1. By following the same routine procedure as the proof in Lemma

5 by appyling the Bernstein’s inequality, we have
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Lemma 13. Under Conditions (C1), (C2), (C4) and (C5), for any t there is a stochastically
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N,jt

such that as N ! 1,
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It is easy to see that E(W
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) = 0. Also by the �-mixing distribution condition given in Condition
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the routine procedure as the proof in Lemma 5, we have
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Moreover,
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Let
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Also by the �–mixing condition given in Condition (C1), we have E{W
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Therefore, the result in Lemma 13 is proved by (A.43), (A.44), (A.45) and (A.46).
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and r⇤
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Let 1
j

be the J ⇥ 1 vector with the jth component being one and others being zero. By the same

procedure as the proof of Lemma 8, for K4
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and the result (A.48) follows from the above results directly.
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Lemma 15. Let Conditions (C1)-(C4) hold. If, in addition, K4
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By following the same reasoning as in the proofs of Lemmas 11 and 12, we have
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Proof. Write
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By following the same procedure as the proof for (A.68), we have for any vector a 2 RKNJ with
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Therefore, by (A.62), (A.63), we have with probability approaching 1,
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Therefore, the result in Lemma 16 follows from (A.59), (A.60), and (A.66) directly.

Proofs of Theorems 1 and 2. Based on (A.49) in Lemma 14, the result in Lemma 10 holds for bf [1]

t
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and thus by Taylor’s expansion, we have

||N�1/2E[{S
[rN ]t

(f
t

)� S
[rN ]t

(f0

t

)}|X,F]

�N�1/2

X
[rN ]

i=1

p
i

(0 |X
i

, f
t

)Q0

i

(X
i

)Q0

i

(X
i

)|(f0

t

� f
t

)|| = o
p

(1). (A.73)
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Hence, by (A.74), (A.75), and (A.76), it follows that
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Then the proof is completed.
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N1/2(R bf
t

� r) = R⇤
Nt

(1)�1z
Nt

(1) + o
p

(1). (A.79)

It directly follows from (A.77), (A.78) and (A.79) that
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0

Z
1
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� 1

b2
K⇤00(

r � s

b
)B

J+1

(r)B
J+1

(s)|drds⌥|)⇤0�1

t

R|}�1

⇥R⇤0�1

t

⌥W
J+1

(1)/q.

Since R⇤0�1

t

⌥W
J+1

(1) is a q ⇥ 1 vector of normal random variables with mean zero and variance

R⇤0�1

t

⌥⌥|⇤0�1

t

R|, R⇤0�1

t

⌥W
J+1

(1) can be written as⌥⇤
t

W
q

(1), where⌥⇤
t

⌥⇤|
t

= R⇤0�1

t

⌥⌥|⇤0�1

t

R|.

Then replacing R⇤0�1

t

⌥W
J+1

(1) by ⌥⇤
t

W
q

(1) and canceling ⌥⇤
t

in the above equation, we have the

result in Theorem 5. Moreover, under the alternative that H
1

: Rf0

t

= r + cN�1/2, we have

N1/2(R bf
t

� r) = N1/2(Rf0

t

� r) +R⇤
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(1)�1z
Nt

(1) + o
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(1)
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(1)�1z
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p

(1).

Thus by (A.77), we have
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(1)}/q.

Also c + R⇤0�1

t

⌥W
J+1

(1) ⌘ c + ⌥⇤
t

W
q

(1) = ⌥⇤
t

(⌥⇤�1

t

c + W
q

(1)). Then the result in Theorem 6

follows from the above results. The proof is completed.
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