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1 Introduction

In a series of papers, Fama and French (1992,1993,1995,1996,1998) developed a general
methodology for estimating factor panel models for stock returns and for testing the Arbitrage
Pricing Theory, which has been extremely influential. Connor and Linton (2007) and Con-
nor, Hagmann and Linton (2012) developed a semiparametric panel regression methodology
to describe the same phenomenon, but with the feature that stock characteristics were used
explicitly inside a model, which then allowed proper inferential procedures that account fully
for the sampling uncertainty. Specifically, they introduced a semiparametric characteristic-
based factor model in which the factor betas are smooth functions of a small number of
observable characteristics, while the factor returns are estimable quantities. Their estima-
tion methodology is based on two steps: estimating the beta functions using nonparametric
kernel smoothing for additive regression given the factor returns, and second, estimating the
factor returns by OLS or GLS given the estimated beta functions. They established some
large sample properties of their procedure and applied it to the same monthly data used in
FF, finding improved results. In addition, because their work was based on an explicit regres-
sion model, they were able to give standard errors that accounted correctly for the sampling
variability in their estimates. This methodology was based on least squares concepts and
made use of projection arguments. They required at least four moments to establish their
CLT, which may not be a binding restriction for monthly stock returns. However, for daily
stock returns this is be a bit strong, especially for small caps.

In the empirical literature, there is a lot of interest in applying factor models to daily
data. Perhaps the current state of the art for factor modelling proposed by Fan, Lv, and
Mikusheva (2013) extended the work of Bai and Ng (2002) by allowing the idiosyncratic
covariance matrix to be non-diagonal but sparse, and used thresholding techniques to impose
sparsity and thereby obtain a better estimator of the covariance matrix and its inverse in
this big-data setting. They also imposed many moments on the return series for their theo-
retical analysis, although they applied their techniques to daily data. Quantile methods are
widely used in economics and finance, see, for example, Koenker and Bassett (1978); indeed,
they are classified as "harmless econometrics”, see Angrist and Pischke (2009). They have
the advantage of being robust to large observations. Boneva, Linton, and Vogt (2015) have
applied quantile techniques to a linear in parameters panel model with unobserved effects,
extending Pesaran (2006). Sharma, Gupta, and Singh (2016) applied linear quantile regres-
sion to estimate a four factor FF "model” to daily Indian data from 1993-2016. They found
that not all factors are substantially present across all quantiles, which adds some colour to
the usual mean results. Horowitz and Lee (2005) defined an estimaiton method for additive
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a number of inference methods for quantile regression with a nonparametric component or a
large number of unknown parameters, but their tools are developed within a cross-sectional
iid setting and so do not directly apply here.

In this paper, we propose estimation and inferential methodology for the quantile version
of the Connor and Linton (2007) semiparametric panel model for financial returns, which
does not require such strong moment restrictions, thereby facilitating work with daily data.
Our contribution is summarized as follows.

First, we propose an estimation algorithm for this model. We use sieve techniques to
obtain preliminary estimators of the nonparametric beta functions, see Chen (2011) for a
review, and then update each component sequentially. We compute the estimator in two steps
for computational reasons. We have J xT unknown factor return parameters as well as J x K
sieve parameters to estimate, and to estimate these simultaneously without penalization
would be challenging. Penalization of the factor returns here would not be well motivated so
we do not pursue this. Instead we first estimate the unrestricted additive quantile regression
function for each time period and then impose the factor structure in a sequential fashion.

Second, we derive the limiting properties of our estimated factor returns and factor load-
ing functions under the assumption that the included factors all have non zero mean and
under weak conditions on cross-section and temporal dependence. A key consideration in the
panel modelling of stock returns is what position to take on the cross sectional dependence
in the idiosyncratic part of stock returns. Early studies assumed iid in the cross section, but
this turns out not to be necessary. More recent work has allowed for cross sectional depen-
dence in a variety of ways. Connor, Hagmann and Linton (2012) imposed a known industry
cluster /block structure where the number of industries goes to infinity as do the number
of members of the industry. Under this structure one obtains a CLT and inference can be
conducted by estimating only the intra block covariances. Robinson and Thawornkaiwong
(2012) considered a linear process structure driven by independent shocks. Dong, Gao and
Peng (2015) introduced a spatial mixing structure to accommodate both serial correlation and
cross—sectional dependence for a general panel data setting. Under a lattice structure or some
observable or estimable distance function that determines the ordering, Conley (1999), one
can consistently estimate the asymptotic covariance matrix. However, this type of structure
is hard to justify for stock returns, and in that case their approach does not deliver consistent
inference. Connor and Koraczyck (1993) considered a different cross-sectional dependence
structure, namely they supposed that there was an ordering of the cross sectional units such
that weak dependence of the alpha mixing variety was held. They do not assume knowl-
edge of the ordering as this was not needed for their main results. We adopt and generalize

their structure. In fact, we allow for weak dependence simultaneously in the cross-section



and time series dependence. This structure affects the limiting distribution of the estimated
factor returns in a complicated fashion, and the usual Newey—West type of standard errors
can’t be adapted to account for the cross-sectional dependence here because the ordering is
not assumed to be known. To conduct inference we have to take account of the correlation
structure. We use the so-called fix-b asymptotics to do this, namely we construct a test
statistic based on an inconsistent fixed-b kitchen sink estimator of the correlation structure,
as in Kiefer and Vogelsang (2002), and show that it has a pivotal limiting distribution that
is a functional of a Gaussian process.

Third, our estimation procedure requires only that the time series mean of factor returns
be non zero. A number of authors have noted that in the presence of a weak factor, regression
identification strategies can break down, Bryzgalova (2015). In view of this we provide a test
of whether a given factor is present or not in each time period. Fourth, we apply our procedure
to CRSP daily data and show how the factor loading functions vary nonlinearly with state.
The median regression estimators are comparable to those of Connor, Hagmann and Linton
(2012) and can be used to test asset pricing theories under comparable quantile restrictions,
see for example, Bassett, Koenker and Kordas (2004), and to design investment strategies.
The lower quantile estimators could be used for risk management purposes. The advantage
of the quantile method is its robustness to heavy tails in the response distribution, which
may be present in daily data. Indeed our theory does not require any moment conditions.

The organization of this paper is given as follows. Section 2 proposes the main model
and then discusses some identification issues. An estimation method based on B—splines is
then proposed in Section 3. Section 4 establishes an asymptotic theory for the proposed
estimation method. Section 5 discusses a covariance estimation problem and then considers
testing for the factors involved in the main model. Section 6 gives an empirical application
of the proposed model and estimation theory to model the dependence of daily returns on a
set of characteristic variables. Section 7 concludes the paper with some discussion. All the

mathematical proofs of the main results are given in an appendix.

2 The model and identification

We introduce some notations which will be used throughout the paper. For any positive num-
bers a,, and by, let a,, < b,, denote lim,,_,.a, /b, = ¢, for a positive constant ¢, and let a,, > b,
denote a,'b, = o(1). For any vector a = (ai,...,a,)T € R", denote ||a]| = (D1, a?)l/Q. For
any symmetric matrix A, denote its Ly norm as ||A|| = maxcers co [|AC]] [|C]| " We use
(N,T) — oo to denote that N and T pass to infinity jointly.

We consider the following model for the 7" conditional quantile function of the response



y;¢ for the 7" asset at time t given as

Qyzt (T|XZ7 ft + Z jt? (21>

i.e., we suppose that
Yit = fut "’ Z ]Z f]t + 52t7 (22)
fori=1,...,Nand t = 1,...,T, where y;; is the excess return to security i at time ¢; f,;

and fj are factor returns, which are unobservable; g;(X};) are the factor betas, which are
unknown but smooth functions of Xj;, where X; are observable security characteristics, and
X lies in a compact set Xj;. The error terms €;; are the asset-specific or idiosyncratic returns
and they satisfy that the conditional 7" quantile of ;; given (X;, f) is zero. The factors
and and the factor betas gj( -) should be 7 specific. For notational simplicity, we suppress
the 7 subscrlpts. For model identifiability, we assume that:

ASSUMPTION AQ. For some probability measures P; we have [ g9(x;)dP;(z;) = 0 and
/ (g?(:z:j))2dpj(:cj) =1forall j =1,...,J. Furthermore, liminfy_,. ‘Zthl jot/T‘ > 0 for
each 7.

The case where 7 = 1/2 corresponds to the conditional median, and is comparable to
the conditional mean model used in Connor and Linton (2007) and Connor, Hagmann and
Linton (2012). The advantage of the median over the mean is its robustness to heavy tails and
outliers, which is especially important with daily data. The case where 7 = 0.01, say, might
be of interest for the purposes of risk management, since this corresponds to a standard
Value-at-Risk threshold in which case (2.1) gives the conditional Value-at-Risk given the
characteristics and the factor returns at time ¢. To obtain an ex-ante measure we should have
to employ a forecasting model for the factor returns.

th

Suppose that the 7" conditional quantile function @, (7|X; = z) of the response y;; at

time t given the covariate X; = x is additive

|.Z' _h‘ut+z -1 ]t (23>

where hJ;(-) are unknown functions without loss of generality satisfying [ b9, (z;)dP;(x;) = 0

fort =1,...,T (Horowitz and Lee, 2005). Under the factor structure (2.1), we have for all j

/<%;hgt($]’)> de(a:j)I/g](:r]) dP;(z;) ( Z ) (%; ﬂ)

Provided 3/, % # 0, we can identify ¢9(z;) by
DIREAC),
g] (33] T t=1 )
I (B i) ap )

We will use this as the basis for the proposal of the estimation method in Section 3 below.

(2.5)
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3 Estimation

3.1 Factor returns and characteristic-beta functions

We propose an iterative algorithm to estimate the factor returns and the characteristic-beta
functions. The algorithm makes use of the structure in (2.2) such that it circumvents the
“curse of dimensionality” (7) while retaining flexibility of the nonparametric regression. The
right hand side of (2.1) is bilinear in unknown quantities, so it seems difficult to avoid such
an algorithmic approach.

To estimate g?(-), we first approximate them by B-spline functions described as follows.
Let bj(z;) = {bj1(x;), ..., bjky(z;)}T be a set of normalized B-spline functions of order m
(see, for example, de Boor (2001)), where Ky = Ly + m, and Ly is the number of interior
knots satisfying Ly — oo as N — oo. We adopt the centered B-spline basis functions
Bj(z;) = {Bji(z;),. .., Bjky(z;)}T, where

Bji(x;) = VEx [bj,k(l"j) - N ZN bj,k(in)] :

i=1

so that N™'S°N Bju(X;;) = 0 and var{B;(X;)} = 1. We first approximate the unknown
functions g;(z;) by B-splines such that g;(z;) = B;j(z;)TA;, where A; = (Aj1,..., \j k)7 are
spline coefficients. Hence N ! Zf\il B;(X;i)TA; = 0. Denote f; = {fut, (fie, 1 < j < J)T}T.
Let A= (A],...,A})T and let p,(u) = w(T — I(u < 0)) be the quantile check function. The
iterative algorithm is described as follows:

1. Find the initial estimates f% and /g\][q(-).

2. For given fl, we obtain

A —arg iy Zz 1Zt P <th AM Zjl 5(X5i)TA; ﬁz})'

AeR/EN

Let @j[iﬂ](xj) = Bj(xj)TABi+1]. The estimate for g;(z;) at the (i + 1) step is

~k[i+1
~i+1] 9][ ]( 7)
9; (IJ) N ]
\/N_l > in1 b (Xji)?
3. For given /g\][-iﬂ] (), we obtain for t =1,...,T
i1 . N I Ji1
At[ J = arg ftre%gl (yzt Jut = Z 1 ][ ]( J%)fjt>

We repeat steps 2 and 3, and consider that the algorithm converges at the (i + 1) step
when ||fli+0 — FUl|| < € and ||[Al+Y — All|| < ¢ for a small positive value e. Then the

final estimates are ﬁ = At[iﬂ] and g;(z;) = gj[”l](

;). Our experience in numerical analysis
suggests that the proposed method converges well and rapidly using the consistent initial
values proposed in Section 3.2. The algorithm stops after a finite number of iterations by

using the consistent initial values.



3.2 Initial estimators

We first approximate the unknown functions h;.(z;) by B-splines such that h;(z;) ~ Bj(x;)70,z,
where 0 = (011, ...,0,1x,)7 are spline coefficients. Let 8; = (6],,...,07,)7. Then the esti-

mators (?Luu gtT )T of (hy, 0])T are obtained by minimizing
N J
> el = b = Y Bi(X,)78;) (3.1)

with respect to (hu, 0])T € R7F ¥+ As a result, the estimator of A9 (z;) is %jt(xj) =
Bj(x;)70;. We then obtain the initial estimators of g7 (x;)

:lF Zthl hji(;)

[0
9, (x)) = ——— . (32)
\/f (% > hjt(%‘)) dP;(z;)
The initial estimator of f; is
0 . N T o)
7 = arg min prlyn = fur =D 5" (X5 fi) (3.3)
fort=1,...,T.
4 Asymptotic theory of the estimators
We suppose that there is some relabelling of the cross-sectional units ¢, , . . ., %;,,, whose generic

index we denote by ¢*, such that the cross sectional dependence decays with the distance
|i* — j*|. This assumption has been made in Connor and Korajczyk (1993). There are
available algorithms to determine the true ordering from the original ordering given the data
(and under the assumption that this ordering is monotonic). However, we shall not pursue
this, because our estimation and inference procedures do not need to know this ordering. In
fact, we allow dependence both across time and in the cross-section. For notational simplicity,
we denote the indices as {i,1 < i < N} after the ordering. Let N denote the collection of
all positive integers. We use a ¢-mixing coefficient to specify the dependence structure. Let
(Wi : 1<i< N, 1<t <T} where Wy = (X[, f; &) and ey = yso — f5 — 371 92(X;0) £,
For S1,S, C [1,...,N| x [1,...,T], let

&(S1,S2) = sup{|P(A|B) — P(A)| : A € o(Wy, (i,t) € S1), B € o(Wy, (i,t) € So)},

where o (-) denotes a o-field. Then the ¢-mixing coefficient of {W;,} for any k € N is defined

(k) = sup{o(Si, S2) : d(S1,S2) > k},

where

d(Sy, So) = min{+/|t — s[>+ |i — j|2: (i,t) € S1, (5, 8) € S}
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Without loss of generality, we assume that Xj; = [a,b]. Denote h(x) = {h}(z;),1 <
j < JY and hy(z) = {%jt(xj),l < j < J}T, where x = (xq,...,2;)7T. Let GY(X;) =
{1,¢%(X1), ..., 9%(X ;) }T. We make the following assumptions.

(C1) {Wy} is arandom field of ¢-mixing random variables. The ¢-mixing coefficient of {W;;}
satisfies ¢(k) < Kie~™* for K1, \; > 0. For each given i, {W;}is a strictly stationary

sequermnce.

(C2) The conditional density p; (€ |z;, fi) of €4 given (z, f;) satisfies the Lipschitz condition
px;,(-) of Xj; is bounded away from 0 and satisfies the Lipschitz condition of order 1

on [a,b]. The density function fx,(-) of X; is absolutely continuous on [a, b]”.

(C3) The functions g? and hgt are r-times continuously differentiable on its support for some

r > 2. The spline order satisfies m > r.

2
(C4) There exist some constants 0 < ¢, < C}, < oo such that ¢, < <% Zthl J(-)t> < (), for

all j with probability tending to one.

(C5) The eigenvalues of the (J+1)x (J+1) matrix N ! Zi\; E(GY(X;)G(X;)T) are bounded

away from zero.

(C6) Let Q% be the covariance matrix of N=1/2 3N G9(X;)(r —I(e; < 0)). The eigenvalues

of Q% are bounded away from zero and infinity.

We allow that {W;;} are weakly dependent across i and ¢, but need to satisfy the strong
mixing condition given in Condition (C1). Moreover, Condition (C1) implies that {X;} is
marginally cross-sectional mixing, and { f;} is marginally temporally mixing. Similar assump-
tions are used in Gao, Lu and Tjgstheim (2006) for an alpha-mixing condition in a spatial
data setting, and Dong, Gao and Peng (2016) for introducing a spatial mixing condition in
a panel data setting. Conditions (C2) and (C3) are commonly used in the nonparametric
smoothing literature, see for example, Horowitz and Lee (2005), and Ma, Song and Wang
(2013). Condition (C4) and (C5) are similar to Conditions A2, A5 and A7 of Connor,
Matthias and Linton (2012).

Let 1; be the (J + 1) x 1 vector with the I'" element as “1” and other elements as “0”.
Denote B(X;) = {B1(X1)7,...,By(X,;)T}T and

Ziy = {1, B(Xi)"}T ] a5 x1- (4.1)

Let
B([L‘) - [dlag{17 Bl(xl)Ta LI BJ(xJ)T}](1+J)X(1+JKN) . (42)
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Define
Af, =N Z E{p: (0|X;, f) GY(X;)G)(X)T}. (4.3)

and

X = 7(1 = 7)(AN) QN (AN (4.4)

The theorem below presents the asymptotic distribution of the final estimator fAt Define

ont =/ EKn/(NT) + KN /log NT + K. (4.5)

Let dyr be a sequence satisfying
dnr = O(énT). (4.6)

Theorem 1. Suppose that Conditions (C1)-(C5) hold, and Ky N~' = o(1), Ky " ?(logT) =
o(1) and Ky'(log NT)(log N)* = o(1). Suppose also that the algorithm in Section 3.1 con-
verges within a finite number of iterations. Then, for any t there is a stochastically bounded

sequence Oy j: such that as N — oo,
VN(ES)TVA(f — £ — dyrdng) B N(0,1,4),

where 6y = (Onjt,0 < 7 < J)7, dnr is given in (4.6), and I;41 is the (J + 1) x (J + 1)

identity matriz.

Remark 1: By using the asymptotic normality provided in 1, we can conduct inference for
f? for each t, such as constructing the confidence interval. Note that in the above asymptotic
distribution, there is a bias term dypdy, involved. In order to let the asymptotic bias
negligible, we can further assume that KyT—' = o(1), K& Nt (log NT)? = o(1), NKy*" =
o(1) and r > 3. By using the cubic splines, which has the order m = 4 and letting r = m = 4,
we need NK® = o(1). If we let Ky =< N7 and T =< N for some constant ¢ > 1/7, then

the asymptotic bias is negligible and thus we have
VNER) = 1) = N (0, L),
Next theorem establishes the rate of convergence of the final estimator g;(z;).

Theorem 2. Suppose that the same conditions as given in Theorem 1 hold. Then, for each
e
1/2
[/{ﬁj(%) = g5(z;)Y2dz;| = Op(énr) + 0, (N7Y2), (4.7)
where ¢nr 1S given in (4.5).
Remark 2: The orders /Ky /(NT) and K" are from the noise and bias terms for non-
parametric estimation, respectively, and the order K ]%,/QN —3/4,/log N from the approximation

9



of the Bahadur representation in the quantile regression setting. This says that if the order
Ky = O((NT)Y@r+1)) is chosen, and provided r — a > 1/2, where T = O(N?), then the
rate in (4.7) is Op((NT)~"/2 1), which is optimal, see for example, Chen and Christensen
(2015).

Remark 3. It is possible to develop inferential results for g; following Chen and Liao
(2012) and Chen and Pouzo (2015). As is usual in nonparametric estimation, the weak cross-
sectional and temporal dependence does not affect the limiting distribution, and so standard
techniques can be applied. In fact, one may conclude the estimation algorithm with a kernel

step and demonstrate the oracle efficiency property, Horowitz and Mammen (2011).

5 Covariance estimation and hypothesis testing for the

factors

In order to construct the confidence interval we need to estimate Q% and A%, since they
are unknown. For estimation of A%, if we use its sample analogue, the conditional density
pi (0]X5, fi) needs to be estimated. Instead of using this direct way, we use the Powell’s

kernel estimation idea in Powell (1991), and estimate A%;, by

—~ J o~ ~
KNt _ (Nh)—l Zj\il K (yit - fut - Zhjzl gj(in>fjt> @,(XZ)@Z(XJT, (51)

where G;(X;) = {1, 31(X1), ..., Gs(X,:)}7, while K(-) is the uniform kernel K (u) = 21 (|u| <
1) and h is a bandwidth.
First, we show that the estimator Ay is a consistent estimator of A%, given in the theorem

below.

Theorem 3. Suppose that the same conditions as given in Theorem 1 hold, and h — 0,
h oyt = o(1), h"IN~Y2 = O(1), where ¢y is given in (4.5). Then, we have ||An;—A%,|| =
op(1).

Moreover, the exact form of Q%; defined in Condition (C6) is given by

o _ (vT)! Zthl - HZN GOX,) (7 — I(en < 0))} {ZN GUX) (T — Iy < 0))}T]

i=1 i=1
_ T =T) N , AT -1y N :
=y 2, BEIX)GH XTI+ (NT) Y S Bluil)),

where vy = GY(X;)(1 — I(eir < 0)) for i = 1,..., N. To estimate QY, its sample analogue is
not consistent. Kernel-based robust estimators that account for heteroskedasticity and cross-
sectional correlation (HAC) are developed (Conley, 1999), and are shown to be consistent

under a variety of sets of conditions. It requires to use a truncation lag or “bandwidth”,

10



which tends to infinity at a slower rate as V. As pointed out by Kiefer and Vogelsang (2005),
this is a convenient assumption mathematically to ensure consistency, but it is unrealistic in
finite sample studies. Adopting the idea in Kiefer and Vogelsang (2005), we let the bandwidth
M be proportional to the sample size n, i.e., M = bN for b € (0,1], and then we derive the
fixed-b asymptotics (Kiefer and Vogelsang; 2005) for the HAC estimator of Q% under the

quantile setting. The HAC estimator is given as Q Ny =1 -1 Zthl Q ~Nt,Mm, Where

~ 1— N ~ —~ —
Ononr = TEZT S @ 0G0 4 N ZZ# (Z j)v,tvﬁ, (5.2)

N =1

where: Ty = Gi(X;)(7 — I(E < 0)) for i = 1,..., N, & = yie — fur — 3271 95(X;i) Fies K*(u)
is a symmetric kernel weighting function satisfying K*(0) = 1, and |K*(u)| < 1, and M
trims the sample autocovariances and acts as a truncation lag. Consistency of QN, u needs
that M — oo and M/N — 0. The following theorem provides the limiting distribution of
Qn.ar—sy when M = bN for b € (0,1].

Next, we will show asymptotic theory for the HAC covariance estimator under a sequence
where the smoothing parameter M equals to bN. Let Q° = limy_ ., 2%, and Q° can be
written as Q° = TYT, where Y is a lower triangular matrix obtained from the Cholesky

decomposition of Y.

Theorem 4. Suppose that the same conditions as given in Theorem 1 hold, and ¢npN'/? =
o(1), and K*"(u) exists for u € [—1,1] and is continuous. Let M = bN for b € (0,1]. Then

as N — oo,

O oy = T/ / L ( ; S) Byi1(r)Bya(s)Tdrds YT,

where Byi1(r) = Wypa(r) — rWyii(1) denotes a (J + 1) x 1 wvector of standard Brownian
bridges, and Wyi1(r) denotes a (J + 1)-vector of independent standard Wiener processes

where r € [0, 1].

Theorem 4 establishes the limiting distribution of SA]M M=bsN, although KAZN,M:;,N is an
inconsistent estimator of Q°. By using the result in Theorem 4, we construct asymptotically
pivotal tests involving f2.

Consider testing the null hypothesis Hy: RfY = r against the alternative hypothesis H;:
RfY # r, where R is a ¢ X (J + 1) matrix with rank ¢ and r is a ¢ x 1 vector. We construct

an F-type statistic given as
Fyipy = N(Rf, = r){RT(1 — 7) AN Qn pmsn AN RTY YRS, — 1) /g
When ¢ = 1, we can construct a t-type statistic:
NY2(Rf; — 1)
VR = DA s A} R

Ty =

11



The limiting distributions of Fi;; and Tn¢p under the null hypothesis are given in the fol-

lowing theorem.

Theorem 5. Suppose that the same conditions as given in Theorem 1 hold, and ¢pyrN'/? =
o(1), and K*"(u) exists for u € [—1,1] and is continuous. Let M = bN for b € (0,1]. Then
under the null hypothesis Hy: RfY =1, as N — oo,

Faes 2 {r(1 = 7))} W, (1) {/01 /01 —b—12K*” (r - 5) Bq(T)Bq(s)Tdrds}l W,(1)/q.

If =1, then as N — oo,
Wi(1)

VAT T I L =K (52) Buln) Ba(ydrds

Let AY = limy_,0 AY;. The limiting distributions of Fy;; and Ty, under the alternative

D
Tnep —

hypothesis Hy: Rf°? = r 4+ c¢N~/2 are given in the following theorem.

Theorem 6. Let Y = (RA;'QCA;'RT)Y2. Suppose that the same conditions as given in
Theorem 1 hold, and ¢ N'? = o(1), and K*'(u) exists for u € [—1,1] and is continuous.
Let M = bN for b € (0,1]. Then under the alternative hypothesis Hy: Rf> =r 4+ cN~Y2, as

N — oo,
Fyep 2 {r(1—7)} {0 e+ W, (1)}
{/1 /1 —%K*” (r ; 3) Bq(T)Bq(s)Tdrds}_l {T; e+ Wo(1)}/q.

0 0

If q =1, then as N — o0,
Trilc—i‘ Wl(l)
VAT o Jy =K (552) Bi(r) B (s)drds

Remark. If K*(z) is the Bartlett kernel, then

Lt a [T — S
/O/O—b—2K ”( 2 )Bq(T)Bq(s)Tdrds
2

1 1-b
= g/o By(r)By(r)Tdr — %/O {B,(r + b)By(r)T + By(r)By(r + b)T}dr.

D
Tnip —

These results allow one to test whether the factors are zero in a particular time period or
not. Our tests are robust to the form of the cross-sectional dependence in the idiosyncratic

error.
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6 Application

In a series of important papers, Fama and French (hereafter denoted FF), building on earlier
work by Banz (1981), Basu (1977), Rosenberg, Reid and Lanstein (1985) and others, demon-
strate that there have been large return premia associated with size and value. These size and
value return premia are evident in US data for the period covered by the CRSP/Compustat
database (FF (1992)), in earlier US data (Davis (1994), and in non-US equity markets (FF
(1998), Hodrick, Ng and Sangmueller (1999)). FF (1993,1995,1996,1998) contended that
these return premia can be ascribed to a rational asset pricing paradigm in which the size
and value characteristics proxy for assets’ sensitivities to pervasive sources of risk in the
economy. Haugen (1995) and Lakonoshik, Shleifer and Vishny (1994) argued that the ob-
served value and size return premia arise from market inefficiencies rather than from rational
risk premia associated with pervasive sources of risk. They argue that these characteristics do
not generate enough nondiversifiable risk to justify the observed premia. Similarly, MacKin-
lay (1995) argues that the return premia are too large relative to the return volatility of the
factor portfolios designed to capture these characteristics, and this creates a near-arbitrage
opportunity in the FF model. Daniel and Titman (1997) argued that the factor returns
associated with the characteristics are partly an artifact of the FF factor model estimation
methodology. Hence the accuracy and reliability of FF’s estimation procedure is a critical
issue in this research controversy. FF (1993) used a simple portfolio sorting approach to
estimate their factor model.

In our data analysis, we use all securities from Center for Research in Security Prices
(CRSP) which have complete daily return records from 2005 to 2013, and have two-digit
Standard Industrial Classification code (from CRSP), market capitalization (from Compus-
tat) and book value (from Compustat) records. We use daily returns in excess of the risk-free
return of 337 stocks. We consider the same four characteristic variables as given in Connor,
Matthias and Linton (2012), and Fan, Liao and Wang (2016), which are size, value, momen-
tum and volatility. Connor, Matthias and Linton (2012) provided some detailed descriptions
of these characteristics. They are calculated using the same method as described in Fan,
Liao and Wang (2016).

We fit the quantile regression model (2.1) for each year, so that there are T' = 251
observations. By taking the same strategy as in Ma and He (2016), we select the number of

interior knots Ly by minimizing the Bayesian information criterion (BIC) given as

J ~ log(NT)

BIC(Ly) = log{(NT)_l Zj\; ZtT:l pr(Yit — J?ut - ijl 9 (X5 fie)} + WJ(LN +m).

For the estimator Ay, given in (5.1), the optimal order for the bandwidth A is in the order

of N=Y5. Similar to Ma and He (2016), we let h = xN~'/® in our numerical analysis and
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take different values for x. For the estimator Nt.v—by given in (5.2), we use different values

for b, and use the Bartlett kernel as suggested in Kiefer and Vogelsang (2005).

Figures 1-3 show the plots of the four estimated loading functions for the year of 2009,
2010, 2011, and 2012 at different quantiles 7 = 0.2, 0.5 and 0.8. We observe that the estimated
loading functions have similar shapes for these four years. Moreover, for the size, value and
momentum characteristics, the estimated functions show a clear nonlinear pattern, and at
different quantiles, the curves are different for the same characteristic. For example, for the
size characteristic, the estimated loading function fluctuates around zero and it has a sharp
drop after the value of size variable exceeds certain value at the quantiles 7 = 0.2 and 0.8.
However, it has a smooth decreasing pattern for the median with 7 = 0.5. For the momentum
characteristic, the estimated function shows different curves at the three quantiles.

Next, we let Kk = 0.5,1,1.5 and b = 0.2,0.4, 0.6, respectively, for calculation of KNt and
@Nt,M:bN. Using the year of 2012, we test for the statistical significance of each factor at
each time point, based on the t-type statistic proposed and its distribution given in Theorem
5. Then for each factor, we find the percentage of the t-type statistics that are significant at
a 95% confidence level across the 251 time periods. Table 1 shows the annualized standard
deviations of the factor returns, the percentage of significant t-type statistics for each factor,
and the average p-value at 7 = 0.5. We can see that the results for different values of x and b
are consistent. Moreover, all five factors are statistically significant with the average p-value

smaller than 0.05.

7 Conclusions and discussion

We have taken for granted that the J factors are present in the sense that

T
1 0
plim— 570 7.1
oo T ; gt 7& ( )
for j =1,...,J. For the factors in our application this is quite a standard assumption, but in

some cases one might wish to test this because if this condition fails, then the right hand side
of (2.4) is close to zero and this equation can’t identify ¢7(z;). We outline below a test of the
hypothesis (7.1) based on the unstructured additive quantile regression 2.3). A more limited
objective is to test whether for a given time period ¢, f;; = 0, which we provide above.

We are interested in testing the hypothesis that

1

T
Hy, : lim T ; hji(z;) = 0 for all x;, (7.2)

7 T—oo
against the general alternative that limy_,« Zthl hit(x5) = pj(x;) with [ pj(x;)?dPj(x;) >
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Table 1: Factor return statistics at 7 = 0.5 for the year of 2012.

(c,b) Intercept Size Value  Momentum  Volatility
Annualized volatility — 0.026 0.026 0.025 0.025 0.026
(0.5,0.2) % Periods significant ~ 92.00 63.35 65.74 66.14 77.69
Overall p-value < 0.001 0.011 0.010 0.011 < 0.001
Annualized volatility — 0.023 0.022 0.022 0.022 0.023
(0.5,0.4) % Periods significant ~ 93.22 66.93  68.53 69.32 79.28
Overall p-value < 0.001 0.006 0.006 0.005 < 0.001
Annualized volatility  0.020 0.020 0.019 0.019 0.019
(0.5,0.6) % Periods significant ~ 93.62 72.11 71.71 71.31 81.67
Overal p-value < 0.001 0.003 0.003 0.002 < 0.001
Annualized volatility — 0.028 0.032 0.027 0.027 0.029
(1.0,0.2) % Periods significant ~ 91.63 54.58 61.35 62.55 76.49
Overall p-value < 0.001 0.030 0.016 0.017 0.001
Annualized volatility — 0.024 0.027 0.024 0.024 0.025
(1.0,0.4) % Periods significant ~ 93.23 60.96 65.34 67.73 76.89
Overall p-value < 0.001 0.018 0.009 0.008 < 0.001
Annualized volatility  0.021 0.025 0.021 0.020 0.021
(1.0,0.6) % Periods significant ~ 93.63 64.94 68.13 70.52 81.27
Overall p-value < 0.001 0.010 0.005 0.004 < 0.001
Annualized volatility — 0.030 0.035 0.029 0.029 0.031
(1.5,0.2) % Periods significant ~ 91.63 51.39 58.17 60.96 75.29
Overall p-value < 0.001 0.043 0.020 0.022 0.002
Annualized volatility — 0.026 0.031 0.026 0.025 0.027
(1.5,0.4) % Periods significant ~ 92.82 56.57 64.94 66.53 75.69
Overall p-value < 0.001 0.028 0.013 0.011 < 0.001
Annualized volatility = 0.023 0.027 0.022 0.022 0.022
(1.5,0.6) % Periods significant  93.63 64.14 66.93 69.32 78.49
Overall p-value < 0.001 0.017 0.006 0.005 < 0.001
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Figure 1: The plots of the estimated loading functions for the year of 2009 (dotted-dashed
red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)
at 7 =0.2.

Size Characteristics, t=0.2 Value Characteristics, t=0.2

Momentum Characteristics, T = 0.2 Volatility Characteristics, t=0.2

0. We also may be interested in a joint test Hy = ﬂjelJHoAj, where [ is a set of integers, a
subset of {1,2,...,J}. These are tests of the presence of a factor.
We let )
J (35 Ralen)) dPi(;) — ang

5’}7,”7,11 = 9 (73>
Sn, T

where szt(~) is the estimated additive component function from the quantile additive model
at time ¢, while a,, 1, s, 1 are constants to be determined. Under the null hypothesis (7.2) we
may show that

Tt = N(0,1),
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Figure 2: The plots of the estimated loading functions for the year of 2009 (dotted-dashed
red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)
at 7 = 0.5.

Size Characteristics, t = 0.5 Value Characteristics, t= 0.5

Momentum Characteristics, t = 0.5 Volatility Characteristics, t= 0.5

-2 -1 0 1 2 3 -1 0 1 2 3

while under the alternative we have 7;,, 7 — oo with probability one.

8 Appendix

We first introduce some notations which will be used throughout the Appendix. Let Apax (A) and
Amin (A) denote the largest and smallest eigenvalues of a symmetric matrix A, respectively. For an
m x n real matrix A, we denote ||A|, = maxi<i<m Y_j_; [Aij|. For any vector a = (a1,...,a,)7 €
R™, denote ||a||,, = maxi<i<n |a;|. We first study the asymptotic properties of the initial estima-

tors §[-0 } (xj) of g?(xj). The following theorem gives an asymptotic expression of 5[.0]

] () and its
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Figure 3: The plots of the estimated loading functions for the year of 2009 (dotted-dashed
red lines), 2010 (dotted magenta lines), 2011 (dashed blue lines), and 2012 (solid black lines)
at 7 =0.8.

Size Characteristics, t = 0.8 Value Characteristics, T = 0.8

‘- KN
B - <

Volatility Characteristics, t = 0.8

convergence rate that will be used in the proofs of Theorems 1 and 2.

Proposition 1. Let Conditions (C1)-(C4) hold. If, in addition, KA N~' = o(1), K5 "(logT) =
o(1) and Ky'(log NT)(log N)* = o(1), then for every 1 < j < J,

SUD,. €a,b) |§§°]<xj>—g?<mj>|=0p<KNNNT+K2 N=¥4/log NT + Ky") + 0p(N /%),

1/2
[/{ [O] g] x])}Qd% :Op(\/W‘FKif/QN_BM\/W‘*‘K&T)+0p(N_1/2)-

(A1)
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8.1 Proof of Proposition 1

We first present the following several lemmas which will be used in the proof of Proposition 1.
According to the result on page 149 of de Boor (2001), for h?t satisfying the smoothness condition
given in (C2), there exists 0% € RE» such that hgt(:xj) = ﬁgt(xj) + bji(z)

E?t(xj) = Bj(xj)TB?t and 51_1tp seu[pb] bji(x)| = O(KN"). (A.2)
75 Tjcla,

Denote h0(z) = {Egt($j)7 1<j<J}T, and

ble) = D27 ila) — Bla)TO]

where B(z) = {B1(z1)7,...,Bj(z;)T}T. Then by (A.2), we have

SUPgefap)” |0t(2)] = O(KN).

Let 69 = (8Y7,...,00)T. Then B(x)(hyt, 0])T = (hut, he(2)T)T and B(z)(h,, 6;T)T = (hS,, kY (z)T)T,

where B(x) is defined in (4.2). We introduce some additional notation that were used in Koenker
and Bassett (1978), and Horowitz and Lee (2005). Let d(N) = (1 + JKy). Let N = {1,...,N}
and S denote the collection of all d(IN)-element subsets of N'. Let M (s) denote the submatrix
(subvector) of a matrix (vector) M with rows (components) indexed by the elements of s € S.
Let Z=(Zy,...,ZN)7, where Z; is defined in (4.1), and Y; = (yiu,1 < i < N)T. Then Z(s) is
the d(N) x d(N) matrix, whose rows are Z;’s with ¢ € s, and Y; (s) is the d(N) x 1 vector, whose
elements are y;;’s with ¢ € s for each given t. We first give the Bernstein inequality for a ¢-mixing

sequence, which is used through our proof.

Lemma 1. Let {&} be a sequence of centered real-valued random variables. Let S, = Y 1 &.
Suppose the sequence has the ¢-mixing coefficient satisfying ¢(k) < exp(—2ck) for some ¢ > 0 and
sup;>q |§i| < M. Then there is a positive constant Cy depending only on ¢ such that for all n > 2

0182 )
v®n + M? + eM(logn)?”’

P(|S,| > ¢) < exp(—

where v2 = sup;~o(var(&;) + 2 Zj>z~ |cov(&,&5)]).

Proof. The result of Lemma 1 is given in Theorem 2 on page 275 of Merlevéde, Peligrad and Rio
(2009) when the sequence {&;} has the a-mixing coefficient satisfying a(k) < exp(—2ck) for some
¢ > 0. Thus, this result also holds for the sequence having the ¢-mixing coefficient satisfying

o(k) < exp(—2ck), since a(k) < ¢(k) < exp(—2ck). O

Lemma 2. There is a subset s € S such that the objective function (3.1) has at least one minimizer
of the form (hus, @)T =7 (s) 1Y, (s), and (hy, gtT)T is a unique solution to (3.1) almost surely for

sufficiently large N.

Proof. The proof of this lemma is given in Lemma A.2 of Horowitz and Lee (2005). O
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We first obtain the Bahadur representation for 5t = (Eut, 5{ )T through the following lemmas.
To obtain the Bahadur representation for 5t, we basically extend the result established for the i.i.d.
case by Horowitz and Lee (2005) to the mixing distribution by following similar procedures as given
in Lemmas A.1-A.7 of Horowitz and Lee (2005), and we also need the results to hold uniformly in
t, which requires to apply the Bernstein’s inequality for mixing distributions in Lemma 1 and the

union bound of probability. Denote ¥; = (hy, 8])T and 99 = (h9,,07T)T. Define
Gin,i(0¢) = [1 — I{ew < Z] (9 — 9Y) — be(Xi) Y Zi,
ini(90) = [ = B[{Z] (9¢ — 9)) — bu(X)}Xs, fi]] Zi,
where Fj(e|X;, fi) = Ple; < el Xy, f1), and Gun,i(01) = Gun,i(9:) — Gy (90).
Lemma 3. Under Conditions (C1) and (C2), and KyN~'(log KNT)(log N)* = o(1) and K" =
o(), supycrar N1 S Gona (99) 1] = Op (K> N~1/2log KNT).
Proof. Tt is easy to see that E{N~ 121 1 GtNZ(ﬂ )} =0. Write Z; = (Zi1,..., Zjqn))T- Let
Ginyie(9e) = [1 — Hew < Z] (01 — 99) — b(X:)}) Zie
— 1= F{Z] (9 = 97) = be(Xi) }|Xs, fill Zie,

where £ = 1,...,d(N), so that Gin;(99) = {Gini(99),1 < £ < d(N)}T and Gy (9)) =
[Fz[{*bt(Xz)HXuft] — I{Eit S *bt(XZ)}]szg Then fOI‘ each f,

E{Gunu(90)?} = ElVar{I(ei < —by(X))|X;, fi} 22, =< E(Z},) < 1,
and by Condition (C1), for ¢ # 7/,

|E{étN,ie(ﬁt)étN,M(ﬂt)}| < 2{op(Ji" — i|)}1/2[E{étN,ié('ﬁt)z}E{étN,w(1915)2}]1/2

< 12K eMIT=il2,

for some constant 0 < ¢; < co. Hence, by the above results, we have

sup[E{GtN (9} Z |C’ov Gthz(’ﬂt) Gth’f(ﬂt))”

<c3

<eg+ supz 12K e” Mli'—il/2 <ecp+c2K1(1—e /\1/2)

for some constants 0 < cz,c3 < oo. Moreover, supi|C~}tN7Z-g(19t)| < C4K]1V/2 for some constant 0 <
¢4 < o0o. Thus, by the Bernstein’s inequality in Lemma 1, we have for N sufficiently large and

KnN~Y(log KnT)(log N)* = o(1),

N o~
P (‘Nl Zi:l Ginie(9y)] > aN~1/%\/log KNT)
C1a®N (log KnNT)
esN + 2Ky + aN'/2\/Tog KnTey K3/ (log N)?

< exp(— < (KNT)~Cre/Ges),
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Then by the union bound of probability, we have

N ~
P (SUPSUP’NIZ. 1GtN,z‘£(’l9t)| > aN"/? logKNT> < d(N)T(KNT)~C10°/(es),
t 0 i=

Therefore,

P<1iu£THN 12 Gini(90)|| > aK NN 1/2\/10gTNT> < d(N)T(KyT)-Cre/(3e)
t

< (14 JKN)T(KNT)™?
by taking a large enough. The proof is complete. O
Lemma 4. sup;<,<7 [N SN Gini(9)]| = Ous (K3l *N7H).
Proof. The proof of this lemma follows the same procedure as in Lemma A.4 of Horowitz and Lee
(2005) by using the result in (A.9) which holds uniformly in ¢t =1,..., 7. O
Lemma 5. Under Conditions (C1) and (C2), and K3 N~'(log NT)?(log N)® = o(1) and K' =
o(1),

1 -1
sup sup ||IN~ g Gth Yy) — E Gth ﬂt
1SIST 9, — 0| | <CRy PN —1/2

= O,(K2N 3/ fiog NT),
Proof. Let By = {0, : |9, — 99| < CK}V/QNAM}. By taking the same strategy as given in Lemma
A.5 of Horowitz and Lee (2005), we cover the ball By with cubes C = {C(¥¢,)}, where C(¥:,) is a
cube containing (9, —9Y) with sides of C{d(N)/N°}'/? such that ¥, € By. Then the number of
the cubes covering the ball By is V = (2N2)¥N). Moreover, we have ||(9; — 99) — (91, — 99)|] <
C{d(N)/N5/?} for any ¥9; — ) € C(9,), where v = 1,..., V. First we can decompose

sup ||[N~ 12 Gini(90) — 12 Gen,i(99)]]
Y:€BN
< max sup IN~! GtN,(ﬁt -1 Gth(ﬂtv)H
1<U<V (,'9 190)6(3(1915 'U) Z Zl 1
1 -l
T IV Z G (91.0) Zz— Guv(87)]
= Ayng + Ainp2 (A.3)

Let yv = C{d(N)/n®?}. By the same argument as given in the proof of Lemma A.5 in Horowitz
and Lee (2005), we have

< .
Ay < R ITen 10| + pax, ITen 20l (A4)
where
Tingy = N1 Z NZi|| [Fi[Z] (910 — 07) — bu(X5) + || Zil 7w | X, 2]

—F[Z (91,0 — 9)) = bu(X3) = || Zillww | X, fi]]

Tinogw = N1 Zl Lingvi =N~ 12 1Zil| [I{eir < Z] (91,0 — 9)) — be(Xi) + 1| Zillyw}
— FA{Z] (910 — 9)) — 0e(X3) + (| Zil 7w | X, £2})
—[[{eir < Z] (010 — 9)) — be(Xi)} = FAZT (910 — 97) — be(X3)| X, f1}]] -
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By Condition (C2), we have for some constants 0 < ¢1, a2 < 00,

sup - max Loy 10| < 17N max 1 Zil||Zi| < e2{d(N)/N°2} Ky = O(K3N75/%).  (A.5)
1<t<T 10V

Next we will show the convergence rate for maxj<,<v [Tty 20|. It is easy to see that E(I'yn 2,,:) = 0.

Also |T'yn20,i] < 4|Z;]] < cll(']l\,/2 for some constant 0 < ¢; < oo. Moreover,
2

E(||Zi|[{ei < Z] (91 — 9)) = 0:(Xa) + | Zillyn} — Heir < Z] (010 — 97) — be(Xi)}]

= B{|ZiIP| Zi Iy} < K N? < e Ky PN T2,
for some constants 0 < ¢35 < ca < co. Hence E(FtN’zv,i)Q < CQKJ?</~/2N_5/2. By Condition (C1), we
have for i # j,

‘ N 3/2 A
[B(Cen 20 Ten 20| < 2615 — i)Y {E T 20, B (D 20,) Y2 < 2009(]5 — i) K3 N ~5/2.

Hence

E(TyN20.) +22 NET N 20, 0eN 20,5
< oKy N75% 4 dey Zk:l Kye MR PN
< KYPNT2(1 4 4K (1 — e M/2) 1) = g K3 N5/2,
where c3 = ¢o(1+4K7(1—e~*1/2)~1). By Condition (C1), for each fixed ¢, the sequence {(Xj, fi, €it),1 <

i < N} has the ¢-mixing coefficient ¢(k) < Kie MF for K1,\; > 0. Thus, by the Bernstein’s in-

equality given in Lemma 1, we have for N sufficiently large,
(|FtN 2] > aK32N"Y(log NT)3)

C1 (a3 (log NT)3)?
N3N + 2Ky + aK3*(log NT)3c1 K3/ * log(N)?

S (NT)—C4a2KN

< exp( 3/2

for some constant 0 < ¢4 < co. By the union bound of probability, we have

P ( sup max |I'yn o] > aKg/QN_l(logNT)3)
1<t<T 1<V

< (2N2)d(N)T(NT)—C4a2KN < Qd(N)N2(1+JKN)—C4a2KNTl—C4a2KN'
Hence, taking a large enough, one has
P sup max, ITen 20| > CLK?’/QN_l(logN)3 < 2w N—ENp—KxN,
1<e<T 1<vs

Then we have

sup  max [Tz = O O, {K3* N~ (log NT)?}. (A.6)
1<t<T 10V

Next we will show the convergence rate for A¢n 2. Let gin i ¢(9¢0) be the /™ element in ét N,i(Pe0)—
étN’i(ﬁ?) for ¢ = 1,...,d(N). It is easy to see that E{gin,i¢(P:v)} = 0. Also |ginie(Frp)] <
41 Zy| < clKjl\,/2 for some constant 0 < ¢; < co. Moreover,
2
E [[Hei < 27 (900 — 99) — b(X0)} — Tew < —bi(X0)) 2]
< B0 — O KN < GOKNNTKY? = OKy N2
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for some constant 0 < ¢j < co. Hence E(Gini¢(9:0))? < 4CKyN~Y2. By Condition (C1), we
have for 7 # j,

‘E(gthﬁ(ﬁtv)gtN,] K(ﬂtv)| < 4¢(’J - Z|)1/2{E(FtN 20, Z)E( tN 21;])}1/2-

Hence

E(gthE '19tv +2Z gthé "9tv)gtN,j€("9tv)|
/ —-1/2 Mk/2/ 1/2
< /CKyN +42k:1 Kie NP2 CR N~
< GCKNyNTY2(1 44K, (1 — e M/2)7Y) = Ky N~V2,

where ¢y = ¢, C(1 44K (1 — e *1/2)~1), Thus, by the Bernstein’s inequality given in Lemma 1 and
K% N~(log NT)?(log N)® = o(1), we have for N sufficiently large,

<|N 12 Ginie(Ory)| > aK NN~ 3/4\/logNT>

C1(aKnyN'Y*/log NT)?
e KNN-12N + 2Ky + aKyNY4(log NT)/2¢, K3/ (log N)?

< (NT)~ 0" Kn (A7)

< exp(—
for some constant 0 < c3 < co. By the union bound of probability, we have
P ( s, sup [NV G| > KN 3/4\/logNT> < d(N)T(NT) ",
1<t<T 1<¢<d(N

Hence,

N ~
P( supTHN 12 Gini(94.) —N—IZ._l Gini(9)]| > aKi,/2N_3/4\/logNT>
1<t< =
< d(N)T(NT)~ % K

By the union bound of probability again, we have
P (ﬁ?ETAt“’ > akPN _3/4\/W> < 2N N (N)T(NT) -5 KN
Hence, taking a large enough, one has
P (12% Aol > aK¥?N 3/4\/logw> < KN KNy N~ENT— KN,

Then we have

sup |Ana| = Op{KY*N3/*\/log NT}. (A.8)

1<t<T
Therefore, by (A.3), (A.4), (A.5), (A.6) and (A.8), we have

sup sup |[N™ IZ GtNlﬂt 122_ Gth (9?)]]

1<t<T 9:€Bn

= O, {K3 N2 4 K3¥* N~ (log NT)? + K¥*N~3/4/log NT}

— 0,(K3>N~%1\/log NT).
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Let Uy = N71 Zf\il pi (01X5, fr) Z:Z]. By the same reasoning as the proofs for (ii) of Lemma
A.7 in Ma and Yang (2011), we have with probability approaching 1, as N — oo, there exist
constants 0 < C7 < (9 < oo such that

C1 < Amin(¥UNt) < Amax(Unt) < O, (A.9)
uniformly int =1, ..., 7.
Lemma 6. Under Conditions (C2) and (C3), as N — oo,
U Gini(0) = —(0¢ = 9)) + N1, Z i (01X, ft) Zibe(Xi) + Ry,
where ||Ry,|| < C’*{K}V/QHQ% — 99|12 + K}V/2_2T} for some constant 0 < C* < oo, uniformly in t.

Lemma 7. Under Condition (C2),

sup [N ST pi (01X i) Zibi(X)]| = O(KRT).
1<t<T

Proof. The proofs of Lemmas 6 and 7 follow the same procedure as in Lemmas A.6-A.7 of Horowitz

and Lee (2005) by using the results (A.2) and (A.9) O

Lemma 8. Under Conditions (C1)-(C3), and K3 N~ = o(1), K3 N 1(log NT)?(log N)® = o(1)
and K" (log T) = o(1),

9y — Y = Dyi1 + Dio + R, (A.10)
where
—1
Dty = [ IZ O‘Xuft)ZZ:| [ 122 Zilr = I(ei < 0))] (A.11)
J
Dyea = W3t [N 2 016 1) Y lbﬁom}] , (A12)

uniformly in t, and the remaining term Ry: satisfies

sup || Ryil| = Op(K32N"1 4+ K32N-3/4\/log NT + KN*™* + N~V2K /#7112 flog KN T)

1<t<T
= Op( 3/2 3/4\/logNT—i-K1/2 &) ) + 0,(N~Y/2).

3/2

Proof. By Lemma 6, we have
9y =00 = NI ST pi (01X, i) Zibu(X0) — UkGina (D) + Ry,
Moreover,
Wi Gini(01) = Wy Guni(9) — WG i (99) — W [Guni(91) — G i(99)).
Thus,
9 —9) = UINT? Z Gini(9)) + Uint Z i (01Xi, fr) Zibe(Xi) + Ry, (AL13)
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where
R ~1y-1§ 9 11N & 3 ~ 0 «
Ry, = -V N Zi:l Gin,i(Y) + Y N Zizl[GtN,i(ﬁt) — Gin,i(07)] + Ry (A.14)
By Lemmas 4 and 5 and (A.9), we have

*ok —1 -1 N Q
sup ||RNl| < sup [[Uryll sup [[NT'Y 0 Gini()]|
1<t<T 1<t<T 1<t<T i=1
-1 -1 N~ 9 ~ 0 *
+ sup H‘I’Ntll S INTYY D (Guvi(90) — Guni(99)]]] + sup [|Riv|
1<t< =1 1<t<T
=0 (K3/2N +( K2 )34\ log NT + K3/ >

Define Gynio(9?) = {7 — I(eix < 0)}Z;p and Gyni(9Y) = {Ginie(99),1 < £ < d(N)}. Then
E{ém,m(ﬁ?) — Gy ie(99)} = 0. Moreover,

E{@m,iz(ﬂ?) - éﬁv,ie(ﬂ?)}Q < E[H{ey < —b(X;)} — I{ea < O}Zz‘,z]Q <CKLy"
for some constant 0 < C' < oo, and by Condition (C1), we have
E{Gune(8?) = Gin it HGun e (97) — G e (99)}

< 2x 43o(|i' — i} [B{Gini0(99) — Conie(99) Y E{Gin,re (87) — Gunire (99) Y]/
S C/Kle_)\lli/_il/zK&T-

Hence, by the above results, we have
Z {GtN i0(99) — Gin o (9))})°
- —2 I e =il —i] -
<N'CKy + N Ziﬁcme R ovl

<ONT'KN +CO'KiNAN(1— e M) IR < C"N KR,
for some constant 0 < C" < co. Thus

E|IN 12 AGwi(97) = Cuna(9)}|* = Z Z AGw i) = Gun e (99)})
gc”(1+JKN) KN

Therefore, by the Bernstein’s inequality and the union bound of probability, we have

sup ||N~ 12 AGui(99) = GO = Op(N 72K PH 2 log KnT). (A.15)

1<t<T

Therefore, by (A.13), (A.14) and (A.15), we have 5,5 — ) = Dnijy + Do + Ry, where

sup || Ryi|| = Op (K32 N~1 4+ (K3 N)=3/*\/log NT + KN*™* + N~V2K[/*T12, flog KN T).
1<t<T
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Proof of Proposition 1. By (A.10) in Lemma 8, we have

hjt(x;) — E‘?t(xj) = 1;+1B($)(DNt,1 + Dni2) + 1}+1B($)RM’

and

sup {N~ 12 (17,1 B(X:)Rive)*}'/2 < S [ BNt [[Amax {N™ 12 B;(X;i)Bj(X;0) 12

1<t<T
= Oy (K3 N3/ log NT + K\*7) + 0,(N~1/2),

sup  sup ’1;+1B(33)RN15|
1<1<T z€fa,b)

< sup |[B(2)T1j]| sup ||Rel]
z€la,b]’ 1<e<T

= O(K DO, (KY2N' + KN~/ Jlog NT + K> + N-V2 K> V2 flog K T)
= O, (K} N34\ /log NT + KL%) + 0,(N~1/?),

by the assumption that K5 N1 = o(1), Ky t?(logT) = o(1) and r > 2. Since hgt(azj) = %gt(xj) +
bjt(z;), then we have

hjt(xj) — B, (x;) = 11, B(2)(Dnea + Dii2) — bje(x) + 17, B(x) Ryt

Also by (A.2), we have sup;<;<r SUPgefa b7 1}+1IB%($)DN,5,2 = Op(Ky"). Then Ejt(xj) - h?t(:cj) can
be written as

Bji(a;) — h,(2;) = 17, B(2) Dive s + 0w i), (A.16)

where the remaining term 7y j:(z;) satisfies

sup [N~ Z Le(X X VPY2 = Op(KN") + Op (K3 N34 log NT) + 0,(N~V/2), (A.17)

1<t<T

sup { [ v e(w;)2dug} ' = Op(Ky") + Op(Ky N34 \/log NT) + 0,(N~1/?),

1<t<T
(5D SuDzefa 11 (75)] = Op(Ky") + Op(KZN~**\/log NT) + 0,(N~'/?). (A.18)

Moreover, by Berntein’s inequality, we have supy<;<7 [|Dn¢,1|| = Op(v/ Kn/N+/log KNT'). Hence,

sup  sup |1JT»+1]B%(:U)DN,571]:Op(\/logKNTKN/\/N),

1<t<T $E[a b]

Sup N P (1B D)} = 0p(Vlog KNTV/ENN). (A.19)

Therefore, by (A.16), (A.17), (A.18) and (A.19), we have

sup N~ Z {hjt Xji) — h?t(in)}Q = Op((log KNT)K N /N + N_Qr)a

1<t<T
1i1tlgTsupx clab] |h]t(x]) h (2;)] = Op(\/log KNTKNyN~Y2 4 K\"). (A.20)
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Moreover, by ¢, < N"1 2N, hgt(XjZ-)2 < C}, almost surely given in Condition (C3) and the above
result, we have with probability approaching 1, as N — oo, ¢, < N1 Ef\il hjt(Xﬂ)Q < Cy. By
(A.16), we have with probability approaching 1, as N — oo,

NS 0 -1 N ST

=C{N! ZNzl h9y(Xji)? — N1 ZNzl e (X5i)%}

—oN Y {ﬁjt (51) = W3y (X o) Yhu(X0)

=C'N Z ]+1 x) Dy, 1h «(Xji) + oen (A.21)

for some constant 0 < ¢’ < oo, where gy = C'N~! Z]\il Nt (X -i)hgt(Xli). Moreover by (A.17),

su < (' su -1 1/2 -1 10 l 1/2
lﬁth‘QtN’ N 1§t£T Z {nNJt Z { (X })
= Op(KKfr) + Op(Kjfif/2N—3/4\/10gW) + Op(N_1/2). (A.22)

Hence by (A.16), (A.21) and the fact that 9 = y/limy oo N=1XN ) A (X;0)2, we have with
probability approaching 1, as N — oo,

)/ N—IZ?V R (X2 — Wy () £

= {hje(x;) — Wy (z)) }/\/N ! Z hje(X;i)? + hy JUj){l/\/N_l Zjiﬁjt(in)Q —1/f}
= 1}+1E(IE)DN1:,1/\/N_1 Zi:1 hji(X5)% + h(g)'t(xj){l/\/N_l Zjvzl hje(Xji)2 = 1/ £5,}

+ UN,jt(xj)/\/Nl Zj\;l R (Xji)?

= 17, B(2)Dyt,1/ f} + {11 B(2) Dyt + by () H1/{ /N Zilﬁjt(Xﬁ)Q -1/}
+ " ()

= 13T+1]B( z)Dne, 1/th + {1J+1 ()Dne1 + h]t (z)}C'N~ ! Z j+1B<m)DNt71h?t<in)
+ C" v + C'nn ji ()

for some constants 0 < C”, C" < co. Let oy = T7! Ethl C" oty and nyr () =T 1 Ethl C'"nn ji ().
By (A.18) and (A.22), we have

lon| = Op(Ky") + Op (K32 N=3/4/log NT) + 0,(N~/?), (A.23)

{/nNT’j(xi)Qdfﬂj}l/Q = Op(KR") + Op(K§*N™¥4\/log NT) + 0,(NV/?),
SUD,, cfap) [INT (25)] = Op(KN") + Op(KXN~*/"\/log NT) + 0,(N~1/2). (A.24)

By the definitions of §[p](xj) and g?(xj) given in (3.2) and (2.5), respectively, and h (X)) =
g?(X i) fjt, we have with probability approaching 1, as (N,T) — oo,

3, (25) = 6 (w)) = xrja(w;) + Onrya(a) + Onryalag) + on + v (a;), (A.25)
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where

Onrja(z)) 12 17,8 DNtl/fjtv
nrjaley) = C(TN) Y S a1 B DNHgAXﬁ)g;’(xj)(f%)Z,
D7) 3(2) = C'(TN) 12 17,B DNtlZ 11, B(X3) Dneag) (Xji) £t

Define ¢t o = Zi(T — I(es < 0))( J(-)t)Q. Then E(¢ite) = 0. Moreover, E(t;;,)? < ¢; for some
constant 0 < ¢; < 0o, and by Condition (C1), we have

| E(Wiejse)l < 200(V1i =GP+ 1t = sP)} 2 {E Wi ) E(Wys.0)*}
< 2e{¢(V/]i = j2 + [t — s]2)}'/2.

Hence by Condition (C1), we have

T N
E((NT)_lzt 12, bit )
VEY2S S Bt < 20N, 5, 6/ TP
§261K1 NT —2 Ztt/ Zii, 67 ‘z71/|2+‘t7t/‘2/2

<2¢(NT) %K, Ztt/ Z” =\ /2) (i [+ ]t=t'])

T N
< 261K1(NT)_ (NT)(Zk Oe—(>\1/2) )(Zk:() e—()\l/Q)k)

<20 K1 (NT) 2(NT){1 — e~ /2372 = 96 K1 {1 — e~ M/2 ) 2(NT) !

Thus,

H (NT) YD, S0 2l I < ) (£
- Zezl B{(NT)"! thl Zi:l bire}? = O{Kn(NT)™'}. (A.26)

Therefore, by Markov’s inequality we have

o 7 57 - e < s

Moreover, |[N~1 SN IB%(Xi)leHg?(in)H = Op(1) and sup, ¢[q ]g?(xj)] < (' for some constant
C’" € (0,00) by Condition (C3). Hence by the above results and (A.9), we have

= O,[{Kn(NT)'}"7].

sup,, . |®nTi2(z;)| < O sup,. 1g%(z)| x ||IN! N B(X:) 15 192(X0)|| x |[[¥t %
Pz;elab] IFNT}2\Tj)| = Pz;€lab] 195\ L) ie1 i) Lj+195(Aji N

[vry S SO 2 = Hew < 0D = O VRNV

(A.27)

Moreover, by following the same procedure as the proof in (A.26), we have E||N~! Zf\i 1 Zi(T —
I(gis < 0))|> = Op(KxyN~1). Then we have T~ ' S°L [INTP SN Zi(r—I(eir < 0))]]? = Op(Ky N~
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Hence,
SUP, cfa,p) | PNT),3(25)]
B T
<T ! Zt:l Supxe[a,b]J{le‘JrlB( )DNt 1} SUPg; gla,b] ‘g] (xJ)H |
< C'supge(o s [1B(@) Ll P[0T thl Nt Zizl Zi(r = I(ei < 0))[]?

= Op(KEN7h). (A.28)

By letting
Cntj(5) = Pnrj2(z) + Prrjs(z)) + on + v (@), (A.29)

by (A.23), (A.24), (A.27) and (A.28), we have
SUD,. e () [ONT5(25)| = Op(VEN/(NT) + KRN~ + KX N~3/*\/log NT + K") + 0,(N~'/?)
= Op(VEN/(NT) + KXN3/*\/log NT + Ky") + 0,(N~'/?),
([ Gy ey} 2 = O,/ RnJIVE) + RPN lg NT + K57) +0,(N 7). (A.30)

Therefore, Proposition 1 follow from the above two results, (A.25) and (A.29). Moreover, by the

definition of Dy given in (A.11), we have

CDNTj,l(xj) = 1;+1B( ) |: NT -1 Zt L Zz 1 Ezt < 0)):| ( ](-)t)_l
Hence

_ _ _ T N
Py, clag) [P35 (25)] < O BT all % R [(ND)TE YD S Zir = Iz < 0))

= Op{Kn(NT)~?}

{ / By () 2d; 12 < Oy e BB (X0) By (X0 V203 ¢
VTS ST 2~ e < O] = Op{KP(NT) 2y,

Therefore, the result (A.1) follows from the above result, and (A.25), (A.29) and (A.30). O

8.2 Proofs of Theorems 1 and 2

We first present the following several lemmas that will be used in the proofs of Theorems 1 and 2.
Lemmas 11-13 are used in the proof of Lemma 10, and Lemma 16 is used for the proof of Lemma
14. Lemmas 9, 10 and 14 are used in the proof of the main theorems. We define the infeasible

estimator fy" = {fu, (fj,1 <j < J)T}T as the minimizer of

Zjv (Wit = f“t_ZJ 95(Xji) fo)- (A.31)
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Lemma 9. Under Conditions (C1), (C2), (C4), (C5) and (C6), we have as N — oo,
\/N(E?Vt)_l/Q(ft* - fto) — N(07 IJ+1)7

where XY, is given in (4.4).

Proof. By Bahadur representation for the ¢-mixing case (see Babu (1989)), we have

— R =Ag{N"! Z —I(git < 0))} + v, (A.32)

and |[une|| = 0,(N~V/?) for every t, where Ay; = N~ Zfil pi (01X, f1) QY(X:)QY(X:)T. By
Conditions (C2), (C4) and (C5), we have that the eigenvalues of A};, are bounded away from zero
and infinity. By similar reasoning to the proof for Theorem 2 in Lee and Robinson (2016), we have
HAJ_VH‘ = Op(1) and ||An: — A%,|| = 0p(1). Thus, the asymptotic distribution in Lemma 9 can be
obtained directly by Condition (C6). O

’T ]

Recall that the initial estimator

replaced by g g0 }(Xﬂ) in (A.31). Then we have the following result for J?t[ .

given in (3.3) is defined in the same way as f; with g; (Xj5)

Lemma 10. Let Conditions (C1)-(C5) hold. If, in addition, KaN~' = o(1), K" ?(log T) = o(1)
and K (log NT)(log N)* = o(1), then for any t there is a stochastically bounded sequence S ji

such that as N — 00,
VN = £ = dnréng) = op(1),

where 6y = (On,jt,0 < j < J)T and dn is given in (4.6).

Proof. Denote g = {g;(-),1 < j < J}. Define
J
Lni(f,9) - Z Vit — fut — Z] 9;(Xji) fit)
J
- N7 IZZ P r(Yit — fgt - ZJ 1 g;( Jl)f]t)

so that f; and ft[o]are the minimizers of Ly(fi,¢°) and Ln(f:,gl%), respectively, where gl% =
{A[O (1),1<j<J}and ¢° = {g?(-), 1 < j < J}. According to the result on page 149 of de Boor
(2001), for g? satisfying the smoothness condition given in (C2), there exists )\? € R%» such that

9)(xj) = g% () + rj(z;)
9 (x;) = Bj(x;)TA) and supsup, e[,y |rj(z;)| = O(K).
J

Since f{g — g, O(z;)}2dx; = Op(d3y) + 0p(N~/2) by Proposition 1, then there exists Aj yr €
REN such that gj[- J(2) = Bj(a;)T Ay nr and ||Aj v —X0|| = Op(d%p) +0,(N~Y/2). In the following,
we will show that for any g;(z;) = Bj(x;)TA; not depending on f; satisfying ||A; — )\?H < C{dnt +

o(N~1/2)} for some constant 0 < C < oo, letting ft be the minimizer of Ly(f, g), we have

Fi = 10 = dnrba = ARHN VST QUG — (e < 0)} + 0, (N2, (A.33)
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Hence the result in Lemma 10 follows from (A.32) and (A.33). We have ||f; — f7|| = op(1), since

\Lne(fi:9) — Lve(fr 6°)]
<2N~! Zjvzl | ijl{gj(in) — 95 (X5} el + 2N Zj\; | ijl{gj(Xﬁ) - 95 (X;i)} il
< Cr.C{dnr +o(N~Y2)} = o(1),

for some constant 0 < C7, < oo, where the first inequality follows from the fact that |p;(u — v) —

pr(w)] < 2Jof. Thus [|f;=fPI| = 0,(1). Let X = (X1,..., Xn)T, Qi(Xi) = {L.g1(X14), -, 9 (Xi)}T
and F = {f1,..., fr}T. For g;(x;) = Bj(x;)TA; satisfying ||A; — AgH < C{dyr +o(N"Y2)} and f,

in a neighborhood of f7, write

Lyt(fe,9) = B{Lne(fo. 91X, F} = (fe = f)H{Wnea — EWnea | X, F)}

+Whia(fi,9) — E(Wni2(fi, 9)| X, F), (A.34)

where
WNt 1= =N~ Z Qz ¢T(y’bt - ft Qz( z)) (A35)
Waia(firg) = IZ Apr(yie = f1Qi(X0) = pr(yae — £ Qil(X2) (A.36)

+(fe = OTQi(X) Y- (yir — FTQi(X0))}-

In Lemma 11, we will show that as N — oo

E{Ln¢(ft,9)|X,F} = —(fe = f{)TEWn1 | X, F)+ <ft — IOVTAR(fe = 1) + o1 fe = F2I1P),

where g;j(x;) = Bj(x;)TA;, uniformly in [|A; — )\9|| < CN'{dNT + o(N~V2)} and ||f; — || < @,
where wy is any sequence of positive numbers satisfying wy = o(1). Substituting this into (A.34),

we have with probability approaching 1,

Lnie(fe,9) = —(fi — f} )TWNt1+ (fr — OTAN(fe — D)
+ Waia(fir 9) — EWnia(fi 9)| X, F)+o(|| £ — £211%).

In Lemma 12, we will show that Wx¢a(fi, 9) — E(Wni2(fi, 9)|X, F) =o,(|| fr — f2I> + N~1), where
gj(z;) = Bj(z;)TA;, uniformly in [|A; — /\O|| < Cdyp and ||f; — f°|| < @wy. Thus, we have
fo— £9 = (A,) " Wi + 0p(N~1/2). Since [|(A%,)™! — (Ane) | = 0,(1), we have

fo— 12 = A Wi + 0, (N71/2). (A.37)

In Lemma 13, we will show that for any ¢ there is a stochastically bounded sequence d ;; such that

as N — oo,
Wi =N"! ZZ . QY (X)) + dnrdng + 0p(NTH2). (A.38)
where oy = (On1,0 < j < J)T and gj(z;) = Bj(x;)TA;, uniformly in [[A; — A9|| < Cldnr +
o(N~1/2)}. Hence, result (A.33) follows from (A.37) and (A.38) directly. Then the proof is complete.
O

31



Lemma 11. Under Conditions (C2), (C4) and (C5),

E{Lne(ft, 9)|X, F} = —(fi — fO)TE(Wnea | X, F)+ (ft — FOTAN(fe = 1) + op(ILfe = £IIP),

uniformly in ||, —A?H < é{dNT—i-O(N_l/Q)} and || fe — fP|| < wn, where gj(z;) = Bj(x;)TAj and

wy is any sequence of positive numbers satisfying wy = o(1).
Proof. By using the identity of Knight (1998) that
v
polu=0) = prlu) = 00, () + [ (1w 9) = Tw < 0)ds, (439
0

we have

(yzt ft QZ( 1)) - PT(yit - prTQZ(Xl))
—(fr — FOTQi(X) Y- (yir — £,7Qi(X))

(fe—f)TQi(X3)
+ /0 (I (it — 1, TQi(X0) < ) = Iyir — ;7 Qi(X,) < 0)) ds. (A.40)

By Lipschitz continuity of p;(¢|X;, f¢) given in Condition (C1) and boundedness of ]Qt in Condition
(C3), we have

F{f{T(Qi(X:) — QV(X0)) + 81Xy, fu} — FAST(Qi(Xi) — QX)) Xs, fi}
= spi £, T(Qi(X:) — QY(X2))|Xi, fi} + o(s),

where o(-) holds uniformly in [|A; = AJ|| < C{dn7 +o(N~Y2)} and || f; — f9|| < wy. Then we have

E{Li(fr.9)|X. F}
=== WX P+ N ST [ T @) — QU + o1 1)
~ FUTT(Qu(X) — QU(X0)[X0. fi))ds
= BB X E) N Y QX0 — QX)X i)
[(ft N 12 Xi)Qi(X,)T }(ft—ff’)]
(o= TEWia|XF) 4 3 (fy — f9)7
VY AT - Q?(Xi>>|xi,ft}czxxi)czi(Xi)T] (i~ f9)
Fo (= MY QXTI - 19)]. (A41)

Since sup, (.4 \gj(xj)—g?(xjﬂ = 0(1), then sup ¢ » |f?T(Qi(x)—Q?(:r))] = 0(1). By similar reason-
ing to the proof for Theorem 2 in Lee and Robinson (2016), we have N~! le\il Qi(X)Q:(X)T =
E{Qi(X;)Qi(Xi)T} + 0p(1). Hence, by these results and Condition (C4), we have the result in
Lemma 11. O
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Lemma 12. Under Conditions (C2), (C4) and (C5), we have
Wita(f,9) = EWnia(fi )X F) =op((| fi = fI* + N7

uniformly in [|X; — AI|| < C{dnr + o(N"Y2)} and ||f; — f°|| < wn, where Wiya(fi,9) is defined

in (A.36), gj(z;) = Bj(z;)TAj, and wy is any sequence of positive numbers satisfying wn = o(1).

Proof. By (A.40), we have

(fe—=f)TQ4i(Xs) 0 0
Whiioi(ft,9) = /0 (I(yit — f7Qi(X5) < s) — Iy — f; ' Qi(Xy) < 0)) ds,

and thus

(fe—F2)TQ:(X5) 0 0
E(Wyiailfo 9)| Xi, fi)= /0 EAST(Qu(X0) — QUX,) + s|X0, i}
— FA{£7T(Qi(X:) — QX)) | X, fe})ds

By following the same reasoning as the proof for (A.41), we have

sup  |E(Wne2i(ft, 9)| X, ft)_é(ft — OTPi(01 X5, £)Qi(X)Qi(X)T(fr — )] = oI fe — f211?).

X;€la,b)’

Hence with probability approaching 1, as N — oo,

sup | E(Whi2i(fi, )1 Xi, £)] < Cwllfe — F11%
X;€la,b)’

for some constant 0 < Cyy < oo. Moreover,

E{Wnt2i(ft,9)}>
(fe=F)TQ:(X5) 0 0 )
= E[E[{/O (I(yi — [T Qi(Xs) < 5) — I(yir — f, " Qi(X;) < 0))ds}?| X5, fi]]
E[E[I(yi — £,7Qi(X:) < (fe — f)TQi(X4)) — I(yie — f,TQi(X;) < 0))]
< {(fr = F)TQi(X0) | Xi, fi]]
= BB I(ei < f7Qi(X:) — f)TQi(X:)%) — I(ear < f{T(Qi(X:) — Qi(X,)°)]
< {(fr — fF)TQi(X0) Y Xi, fil]
< C"E|(fi — [)TQi(X:)|* < C"E||fe — fII° (A.42)

for some constants 0 < C” < oo and 0 < C"” < co. Therefore, for N — oo,

E{Wnt2(fi:9) = EWnia(fi, 9)1 X, F)}?

=N? ZN E Wi 2i(fi,9) — EWni(fr 9)1 X, fo))?

<N~ QZ RE{Wn12i(fi,9)}> + 2E[E(Wn,2:(fe, 9)| Xi, f1)]?]
QRCE|fe — 1P + 208 Elfe — 1Y) < C"NTLE|| fi - £P,
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for some constant 0 < C"” < co. By following the same routine procedure as the proof in Lemma

5 by appyling the Bernstein’s inequality, we have

s o= S22 Wiafo ) — EOWana(fo )X, B)] = Op(N~172).
X=X <Cdn, || fe—fPl|<wn

Hence, we have [Wiya(ft,9) = E(Wni2(ft, 9)| X, F)| = Op(Hft—ftOH*gﬂN*lﬂ), uniformly in ||A; —
A?H < Cdyr and I1f: — f2|| < wn. Since

N7V2) fe = 2132 < N7YI = LA+ 11 fe = £ — £
<N 'wy+|fi — =N,

then we have Wyt a(fi, 9) — E(Wne2(f, 9)|X, F) =0, (|| fr — 2>+ N71), uniformly in ||A; — A?H <
CdNT andHft—ftOHSYDN. ]

Lemma 13. Under Conditions (C1), (C2), (C4) and (C5), for any t there is a stochastically

bounded sequence dn j; such that as N — oo,
Wiip =N Z GY(X)r(eit) + dnrdng + 0p(N71?),

uniformly in ||A; — )\?H < é{dNT + o(N_l/Q)}, where Wiy 1 is defined in (A.35), Ont = (0n,jt,0 <
j < J)Tand g;j(x;) = Bj(x;)TA;.

Proof. Write

Whii1 = Whe1 + Wi 12 + Whe 13, (A.43)
where
Wi = N3 QX0 (v — ffTQO( Xi)),
Wiz = (Whji2,0 <j < J)T=N"" Z QY (X)) (yir — 1;TQY(X)),
Witz = (Whtjas,0 < j < J)T
=N Z Xi){tbr (yir — 1T Qi(X3)) — or (yir — 1T QY (X))}

It is easy to see that E(Wpyj12) = 0. Also by the ¢-mixing distribution condition given in Condition
(C1), we have var(Wnyj12) < Cwy, N 1di 7 for some constant 0 < Cy,, < 0o, then by following

the routine procedure as the proof in Lemma 5, we have
—-1/2
SUD| 5, x0| <Gy Wt 12] = 0p(N1/2). (A.44)
Moreover,

E(Wij13/X, F)= Z X)) E{I(yir — 1;TQP(X) < 0) = I(yar — £;7Qi(X:) < 0)|X, i}

0
=N g 'i)/
Zzzl I T(Qi(X:)—QI (X))

= NS g (Xm 01X, ) AT(QUX) — Qi(X0) + O(dip) + o(N V).

pi(s| Xi, fi)ds
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Let
dnrdn = N""3 " i (X5a)pi(01Xe ) 1T (QUX) — Qu(X) + Oldir).

Since N71Y° N {g5(Xji) — o (ij')}2 < {Cldnr + o(N~Y/2))}2, then as N — oo, |dnrdn,i| <
Cs(dyt 4 o(N~1/2)) for some constant 0 < Cs5 < co. Therefore,

E(Wnj13|X, F) = dyron i + o(N71/2). (A.45)

Also by the ¢-mixing condition given in Condition (C1), we have E{Wx;13 — E(Wntj 13X, F)}? <
Ci{N~tdny for some constant 0 < C} < oo. Therefore, by following the procedure as the proof in

Lemma 5, we have
SUD| 5, - 20| <Fdyr WNti13 — E(Whij3X, F)) =op(N7'/%). (A.46)
Therefore, the result in Lemma 13 is proved by (A.43), (A.44), (A.45) and (A.46). O
Let A = (A],...,AT)T. For given £91 we obtain

A argmln{ NT)~ ZZ 1215 P - (yit — f[o] Z Bj(Xji)TA, ]?{0])}.

Let g; [1]( j) = Bj(xj)Txgl]. The estimate for g;(z;) at the 15 step is

3 @) =g M)V g

zlj

We define the infeasible estimator of A as

J
= argmm{ (NT) 121 1Zt P (yit — f, —ijl B;(X;i)TA; ]Qt)}.

Let g3 (x;) = Bj(a;)TA; and G5 (2;) = g3 (2,)/ |/ N~ Ny 03 (Xj0)2.

Lemma 14. Let Conditions (C1)-(C5) hold. If, in addition, Ky N~' = o(1), K" ?(log T) = o(1)
and K ' (log NT)(log N)* = o(1), then for every 1 < j < J,

1/2
[ [ - g?<xj>}2dxj} = O,(KYANT) 2 4 K, (A.47)
and
/ (G () (w5) — () Py = Op( o) + 0p(N"12). (A.48)

Therefore, for every 1 < j < J,
/{@m( ;) — 99(x;) 2 dz; = Op(dip) + op(N2). (A.49)

Proof. Denote ¢%(z) = {@?(xj),l < j < J}T and g*(x) = {gj(x;),1 < j < J}T. Let AV =
A, AT Let BH(z) = [diag[Bl(:cl)T -, By(x)]jxsky- Then B*(z)A* = g*(z) and
B*(2)A% = g°(z). Let W2 = {B;(X;:)Tf%,1<j < J}T,

Jt’

\I/NT— NT lzl lzt lfa Oleaft) zt’
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and r*., = Tj (X]Z)fot ].\/,[OI'GOVGI'7 define

7,0t
Unt1 = (NT) 121 1Zt X I(gi < 0)), (A.50)
Unt2 = (NT Z i Z W3 -0 X, f) <Zjl T;,it) . (A.51)

Let 1; be the J x 1 vector with the 4 component being one and others being zero. By the same
procedure as the proof of Lemma 8, for K3 (log(NT))?(NT)~! = o(1), we obtain the Bahadur

representation for A* — A0 as
A=AV = \Ilj_\,lT(UNJ + UN72) + Ryr (A.52)
and the remaining term R}, satisfies

Ryl = Op(KYP(NT) ™! + KYP(NT) ™4 log(NT) + K \* 7 4 (NT) /2K 12112
:OP(KJ?)V/Z(NT)_?’MW%—K}V/%%) + o, ((NT)"1/2),

By (A.52) and following the same reasoning as the proof for (A.20), we have sup, ¢(a4 |97 (25) —
— —r * 1/2 — —r
g?($j)| = Op(KN(NT)"V2 + K", [f{gj (x) — g?(xj)}dej]l/z = Op(KN/ (NT)™'/2 4+ K"), and
[N~1 Zi]il{g;(in) - g?(in)}Q]l/2 = Op(.KJl\,/2(]\7T)_1/2 + K"). Therefore, we have
NS g xn2y ! NS gox2 =0 KY*(NT) "% + Ky
{ Zi:lgj( i) —A Zi:19j< i)} = Op( (NT)™ =+ K\"),

and thus

sup 155(23) = 6)(05)| = Op(RN(NT) 2+ Ky,

[ / (7 (25) — 6%(a;) )2 = Op(KLP(NT) V2 4+ Ky).

Then the result (A.47) is proved. Define

(f NT 121 1Zt 1 yzt_fut_z B z ]f]t)
NT - Zz 1 Zt 1 yzt - fut - Z;}_l Bj(in)T}\(;fjt).

Hence, A and A* are the minimizers of L’jVT(ﬁO], A) and Li+(f° A), respectively. In Lemma 15,
we will show that

AN = X0 — kUl = Opldwr) + 0p(N712), (A.53)

Hence, by (A.52), (A.53) and ||0+Un2|| = O(Ky"), we have
A = X*|| = Op(dnr) + 0p(N7172). (A.54)

Then we have f{:q\;[l] i)—9; *(x;) Y2 dx; = Op(d%7) and N1 ZZ 1{A*[1 (z j)—g]’f(in)}2 = Op(d%7)-
Thus,

I~ - N - — -r
VN DIRCE I{VNlZizlgAXﬁ)?} L= Oy (KNP (INT) 2+ K,

and the result (A.48) follows from the above results directly. O
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Lemma 15. Let Conditions (C1)-(C4) hold. If, in addition, KaN—' = o(1), K5 "?(log T) = o(1)
and K ' (log NT)(log N)* = o(1), then we have

[AM =X — Wb Unal| = Op(dnr) + 0p (N2,
where Uy, is defined in (A.50).

Proof. By Lemma A.32 and (A.32), we have H/;[O} — 2| < Cy(dnt + N™Y2) for some constant
0 < Cf < oo. Let Wy = {Bj(X;i)Tfj,1 < j < J}T. Let f = (f],...,f])7 satisfying that
£ — f2 < Cpdyr + N~Y2). Write

Nr(fs )
= E{Lyr(f, )X, F} = (A = X {Vnra(f) = E(VNra(f)| X, F)}
+ VNr2(fi A) = E(VNr2(f, A)| X, F), (A.55)
where
Vra(f) = (NT)™ ZZNZI ZtT:l Witthr (yit — fut — AOTWi), (A.56)

Vara(f,A) = (NT)™ Zjvzl Zthl{Pr(yit = fut = XTWat) = pr(yit — fur — A7TWi)
A= AT Watbr (yie — fur = ATWa)}-

By following the same reasoning as in the proofs of Lemmas 11 and 12, we have
* 1
E{Lnp(f, N)|X} = —(A—AO)TE(VNT,l(f)\X,F)+§()‘—>\0)T‘1’NT(>\—>\O)+0p(|\>\—AO!IZ), (A.57)
Vira(f, A) = E(Vra(f, )X, F) =op(|[A = A°[[* + (NT) ™), (A.58)

uniformly in ||f; — f2]] < Cp(dyt + N7Y/2) and |[|A — X°|| < ¢n7, where gy is any sequence of
positive numbers satisfying ¢y = o(1).Thus, by (A.55), (A.57) and (A.58), we have

1
Lyr(£,2) = =X = ANTVara (45 A = ANTONr(A = A% 4o, ([[A = A% + (NT) 1),
uniformly in ||f; — f2]| < Cp(dnt + N712) and ||X — A%|| < sy7. Therefore, we have
A = X0 = W Vv (F1%) + 0, {(NT) 712},

By following the same reasoning as the proof for (A.9), as (N, T') — oo with probability approaching
1, we have ||U || < C% for some constant 0 < C% < oo. In Lemma 16, we will show that
HVNTJ(f[O]) —Unt1|| = Op(dnT) + 0p( N1/2). Therefore, the result in Lemma 15 follows from the

above results, and thus the proof is completed. O

Lemma 16. Let Conditions (C1)-(C4) hold. If, in addition, K3 N~' = o(1), K" ?(log T) = o(1)
and Ky'(log NT)(log N)* = o(1), then we have

IVz (F) = Unzall = Opldnr) + 0p(N T2,
where Vnr1 and Unra are defined in (A.56) and (A.50), respectively.
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Proof. Write
Vnra(f) = Ve + Ve (f) + Vivras(f), (A.59)

where

Var = Unry = (NT) ™! ZN ZtT . Witr (eir),
Vnraa(f) = (NT)™! Zl . Zt \(Wie = Wy Dz (2it),
Varas(f) = (NT)™! 21:1 thl Witdtor (it — fur — A'TWir)) — (i) }.

Since ||[N 7! Zf\il B(X:)¥-(eit)|| = Op(N~1/2), we have with probability approaching 1,
sup IVr2ll < Tﬁlz N~ 12 B(X;)Y-(gir)
|| fe—FRI<SCr(dnT+N—1/2)

x sup fe — 2 = OIN"Y2(dyp + N7V} = o(N"Y2 + dyr).  (A.60)
| fe—fRISCp(dnr+N=1/2)

By following the same procedure as the proof for (A.68), we have for any vector a € REN/ with
llal| =1,
var(a™Vyr3(f)a) =O{Kn(dnr + N~/?)(NT)™},

uniformly in ||f; — fP|| < Cy(dn + N~/2). Then by the procedure as the proof in Lemma 5, we

have
sup IVaras(f) — E{Vir.1s(H)}=0p{K N  (dnr + NV V2(NT) 1/
[|fe—fA<SCr(dnr+N—1/2)
= op(dnT).
Hence,
1V (F%) — B{Var,13(FO}] = op(dnr). (A.61)
Let
K‘it(f) ut fut + Z f]t) + T, zt)
Then there exist constants 0 < C, C’ < oo such that
EWVir (X FY] < CUEINT) S0 ST Bi(X) I (e < 0) — e < ral £)} X F|
<D S B(Xawa(Ppi01 X £ (A62)

uniformly in ||f; — f2|| < Cy(dnT + N~'/2). Moreover, by (A.32) and Lemma 10, we have
[vr 3 S B P01 £
D) SDY Y B O R CTAR NS QU 1 < 0|
= O(dnT) + 0p(N71/2). (A.63)
Since [|[(NT) ™! 3211 2oty QV(Xi) (1 — I(eir < 0))|| = Op{(NT)~/?}, and

Y S B(Xm(01Xi £)]| = Oy(1).
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we have
(v S ST B RO 7RI (Y ) QR T < )|
= Op{(NT)"/?}. (A.64)
Therefore, by (A.62), (A.63), we have with probability approaching 1,
1BV 1s(F) X, F}|| = O(dnr) + o(N~12). (A.65)
By (A.61) and (A.65), we have
IVirs(FI = Op(dnr) + op(NH2). (A.66)
Therefore, the result in Lemma 16 follows from (A.59), (A.60), and (A.66) directly. O

Proofs of Theorems 1 and 2. Based on (A.49) in Lemma 14, the result in Lemma 10 holds for Atm
with a different bounded sequence. Then the result (A.49) in Lemma 14 holds for g i ](mj). This
process can be continued for any finite number of iterations. By assuming that the algorithm in
Section 3.1 converges at the (i + 1) step for any finite number i, the results in Lemmas 10 and 14
hold for ft = At[iﬂ] and g; = /g\[z +1}( xj). Hence, Theorem 1 for ﬁ follows from Lemmas 9 and 10,
directly, and Theorem 2 for g; is proved by using Lemma 14. O

8.3 Proofs of Theorem 3

Proof. We prove the consistency of A ~t. Define

(0 LT 0K £
Any = (Nh)™! ZL K (ylt Fat Zf]al . (Xﬂ)fﬁ)> QV(X)QY(X))T,

and

(TS (X T
Ave=v0) 'Y K (y” et Zél & (X”)fﬁ)> Qu(Xi)Qi(X)T.

We will show [|[Axy — An¢|| = 0p(1) and |[Ay; — AQ,|| = 0,(1), respectively. Let di(X;) = {fur +
ST G (X5 Fied = % + X1 00(Xi) 5} Then,
Ayt — Ani = D1+ Dy,
where
Dt = (2NR) ™! ZZN {I(leit] < h) = I(lew — di(Xi)] < h)}Q)(X)QY(X)T,
Dyt = (2Nh) 12 (| — dir(X3)| < h){Qi(X0)Qi(X:)T — QY(X)QI(X:)T}.

Since there exist some constants 0 < ¢y, c; < oo such that with probability approaching 1,

~

BlaAX)Y = [ E(@)x(e)de < o [ Bo)dn < rdhr +o(N ),
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where ¢y is given in (4.5), and the last inequality follows from the result in Theorem 2, then there

exists some constant 0 < ¢ < oo such that with probability approaching 1,

ElAne — Anel| < c@NI) S Elda(X, 0(X:)QV(X,)T
[Ane = Anell < c@NR)™HY 7 Blda(Xi)] x [1Q7(X:) Q7 (X:)T]|
N ~

< c@Nh)TY T B{du(X) P EIQ)(X)Q! (X:)TIIPY?

< ce)?(2NR) " (VEn/(NT) + K3*N=3*\/log N + K3")x

Zizl{EHQ?(Xi)Q?(Xi)T\|2}1/2-
By Condition (C3), we have sup, (4,5 |g?(a:j)| < (' for all j, for any vector a €R/*! and ||a|* =1,
we have

aTQf (X,)QY (X;)Ta= {ao +Z Xji)aj}? < (J + D{ag + g5 (Xji)?a3}
< (J+1){ag + (C )za?} <Ca

for some constant 0 < C, < co. Hence, ||Q%(X;)Q%(X;)T|| < C,, and thus we have

N

E||[Ay; — ANtH<001/ (2Nh) " Hpnr + o(N7V2)) ., Ca

=27 661/2 Coh™ (o1 + 0o(NTH2)) = 0(1)

by the assumption that h~'¢n7 = o(1) and h"'N~1/2 = O(1). Hence, we have ||[Dyy1|| = 0p(1).
Moreover, for any vector a € R/*1 and HaH2 = 1, we have with probability approaching 1, there

exists a constant 0 < C' < oo such that

|aT Dy 0a|<(2Nh) ™! Z [{ao + Z Xji)a;}? — {ao + Z Xji)a; ¥
<C@2Nn) Z Zj G5 (X50) = 97 (Xj0) }aj
<C(2h)~! Z AN Z A35(X50) = g (Xj0)Y2a3} /2
= O(h){O0(¢nT) + o(N~V%)} = 0(1).

Hence, we have ||Dy¢2|| = op(1). Therefore, HKNt — Ayl < [|Dntal| + [|Dne2l] = op(1). Next, we
will show [|Ay; — AQy,|] = 0p(1). Since

1B {(2h) " I (lewe| < h) = pi (01X:) | X, fie} |

= |(2h) ™ i (W™ |G, fo) +pi (=07 |G, fu)} = s (01, i) |

=127 [{ps (0" | X, fe) — i (01 X5, o)} + {pi (=R | X5, fr) — pi (0|1X5, fi)}]] < R

for some constant 0 < ¢ < oo, where h* and h** are some values between 0 and h, and the last

inequality follows from Condition (C2), then by the above result and Condition (C5),

BN — Al =[N Z {2h) " I (lea] < h) = pi (01X, f)}QF (X)) Q7 (X)T]]|
< Jdh|INT! Zizl EQY(X:)QY(X)T|| = O(h) = o(1). (A.67)
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Moreover, by Conditions (C1), we have E{I(|e;| < h)} < 2C*h for some constant C* € (0, 00), and
then for any vector a € R+ with ||a]| =1, by Conditions (C1), (C2) and (C3), we have

var(aTAya)
= (2Nh) Zvar (Z I(leit] < h){ao + Z Xji)a;} )
< (2Nh) 22 2{o(|i — ')}/ ?x
1/2 1/2
(B|r0el <0t + 7 b | ) (B |1t < oo+ 57, dixinas) )
< (J+1)*{ag + C?a3}(2NR)” (2C*h)22”, 2{g(|i —i')}'/?
< (J+ D)Xag + CPaIN 207K, Yy e Ca/AD
< (J+1)Had + C%a2}20 KyN 1 — e~ M/} = O(N 1) = o(1). (A.68)

By (A.67) and (A.68), we have ||Ay;—A%,|| = 0p(1). Hence, [|An;— A%, || < [|An:— Anel|+ || Ani —
A?Vt” = 0p(1). O

8.4 Proofs of Theorem 4

Proof. Let Spnye = Z[TN] QY(X;)(t — I(eit < 0)), where [a] denotes the largest integer no greater
than a. Let M = bN. Define Ax,(r) = N=2 0N 5 (01X, £) QU(X)Q(Xi)T, F we(r) = NY28,ny,,

and
Dy () — N? (K* (UZ]NH) e ([Zz])) B <K ([Zz]) _ K <[TN—1>> .

Denote Kj; = K*(53), and @y = D) SN Qi(X)Qi(X)T — N1 5,3, Then

. N N
1
Qnenv =N E i E , 'UthZ] ]t-i-th

_ 1§ E
N i1 vzt l] ]t +th

Define §nt = >, Uit. By the assumptions in Theorem 1, ¢n7N 1/2 — o(1) and by the results in

Lemmas 9-16, we have

Fo— 1= AN QUG (7 — Tz < 0))} + 0, (N112), (4.69)
sup [7(z;) ~ ()| = Oplont) + 0p(N112) = 0 (V112 (A.70)

Let 7 € (0,1]. Let Spnp = X001 QU(X0) (r — I(E), < 0)), where 20, = yie — { fur + 371 90(X;i) e}
By Lemma 13, we have

N2 5y = N7Y28 ]| = 0p(1). (A.71)

For any given f; € R7*! define Spnye(ft) = Z[TN] QYUX:) (T — I(eit(fr) < 0)), where ei(fr) =

Yit — {fur + ijl g?(X ji)[jt}. Following similar arguments to the proof in Lemma 16, we have

sup IN Y211 (f) = Spnie (FY) = EL{Spage(fr) = Spage ()X, FJ|| = 0,(1).
I fe—fRN<C(dnT+N—1/2?)
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Moreover,

N7V2E{Syn(fr) — Spnpe(£0)}X, F]

= 3 QU B £9) < 0) ~ Iewlf) < 0))IXi £l (A.72)
and thus by Taylor’s expansion, we have

HN—”?E[{STN]t(ft) — Sye(F0)} X, F]
NS (01X 1) QUEDQIX)T( — £l = 0,(0). (A73)
Hence, by (A.71), (A.72) and (A.73), we have
NGy g = N2 S QU (7~ I < 0))
N2 Z i (01X, £1) QY(X)QY(X)T(fr = ) + 0p(1).

This result, together with (A.69), implies

N7Y280nye = Fne(r) — Ane(r){Ane(1)} 71 F we(1) + 0p(1). (A.74)

Thus, N~Y28y, = 0p(1). By following the argument above again, we have ||[N~1/2 Z] 1 0 KGN —
N~ 1/223 10Nl = Op(1). Also [[N7 1/22] 1 Uity ]l = Op(1) by the weak law of large

numbers. Hence, ||[N~1/2 Z] 1 Uit K x| = Op(1). Therefore

- Z UJt = Op(1)0p(1) = 0p(1).

By (A.69) and (A.70), Wyt = op(1). By this result and also applying the identity that Zf\il aiby =

(Zl Har—agy) Zl bj)+an Zl L by to Z] ) K07 and then again to the sum over i, we obtain

~ i x=N-1 N1 § . . . 128 A—1/28
Qe v=pn = N 122-:1 N 1Zj:1 N*((Kf; = Kijpn) = (K1 — Kiya )N 28, NTV2S],

N ~.
+ ]\[71 Zj:1 vjtK;NS}Vt + Op(l),

and thus
* * * S\it §Tt
QNtM bN = Zz 1 Z] 1 Ky = Kija) = (B — Kz’+1,j+1))\/7ﬁ \/7%
+o,(1). (A.75)
Moreover,
N (K = K j1) = (K — K ge)) = =Don{(i = j)/NY. (A.76)

Also limpy 00 Dyn (1) = blzK*”(%), HANt(r)—rA?H = 0p(1), where Ag = limy_seo A?Vt and F n¢(r) z
Wip1(r)YT. Thus,

(Ane(r), F xe(r)T, Do (1)) 2 (TAQ,TWJH( ), ﬁK*" (b)> (A.T7)
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Hence, by (A.74), (A.75), and (A.76), it follows that
N 1 1
Qne M=bN = / / —Dyn (r = 8)[F ne(r) = Ane (1) {Ane(D) 1 e (1)]
0o Jo
X [Fne(s) = Ane(s){Ane(1)} 1 ve(1)]Tdrds + op(1). (A.78)
By the continuous mapping theorem,

QNM bN*)T/ / 77K*”

Then the proof is completed. O

2 W1 () = W (D H W a(s) — sWyia (1)} drdsTT.

8.5 Proofs of Theorems 5 and 6

Proof. By (A.69), fi— f2 = N"2AN(1) 71 ne(1) + 0p(N1/2). Then under Hy, we have
NY2(Rf, — ) = RAn: (1) F ne(1) + 0,(1). (A.79)

It directly follows from (A.77), (A.78) and (A.79) that

Frnip B {RAO*lTWHl( DIT{RT(1 —7)AY?

o

X RAg_ TWJJ’_l( )/q

)BJ+1(T)BJ+1(S)TdeSTT)A?_lRT}71

Since RAY™ YW, (1) is a ¢ x 1 vector of normal random variables with mean zero and variance
RAYIYYTAYIRT RAD 'YW, 1 (1) can be written as T; W, (1), where Ty Y;T = RA) ' TYTAY I RT.
Then replacing RAY ' YW,,1(1) by Y;W,(1) and canceling Y} in the above equation, we have the
result in Theorem 5. Moreover, under the alternative that Hy: RfY =7+ cN —1/2 we have
NY2(Rf, —r) = NY2(Rf) = r) + RAN«(1) " F ne(1) + 0p(1)
= c+ RANi(1) 7' F ja(1) 4 0p(1).

Thus by (A.77), we have

Frnip 3 {e+ RAO*TWJH(l)}T{Rr(l —7)AY?

o [

x {c+ RAY'YW, 1 (1)} /g.

)BJ+1(T)BJ+1(3>TdeSTT)A?_1RT}_1

Also ¢+ RAY 'YW, 1(1) = ¢ + YW, (1) = Y5(Y;te + Wy(1)). Then the result in Theorem 6

follows from the above results. The proof is completed. O
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