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a b s t r a c t

Donald and Hsu (2014) studied the estimation and inference for the counterfactual
distribution and quantile functions in a binary treatment model. We extend their work
to the continuous treatment model. Specifically, we propose a weighted regression
estimator for the counterfactual distribution but we estimate the weighting function
from a covariate balancing equation by maximizing a globally concave criterion function.
We estimate the quantile function by inverting the estimated counterfactual distribution.
To test the distributional effect, we consider the (uniform) confidence bands, the sup
and L2 distance, and the Mann–Whitney test. We also consider the stochastic dominance
test for the distributional effect and the L2 test for constant quantiles. A simulation study
reveals that our tests exhibit a satisfactory finite-sample performance, and an application
shows their practical value.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Structural economic models have played an important role in empirical analyses and policy evaluation. For example,
n the context of labor economics, Keane and Wolpin (1997) and Low et al. (2010) employed a structural model to study
abor supply; Blundell et al. (2016) modeled how tax credit reform affects life-cycle female labor supply and human capital
ccumulation. Further, Low and Pistaferri (2015) studied the long-run effects of reforms to disability insurance. Structural
odels are also employed in studying market competition, firm and consumer behavior, and industry dynamics in the
ontext of the new empirical industrial organization (e.g., Berry et al., 1995; Goldberg, 1995). For a recent survey on
he use of structural economic models, see Low and Meghir (2017). The advantage of a structural model is its ability to
istinguish between an economic agent’s preferences and the economic environment. It relates outcomes to preferences
nd relevant factors in the economic environment and identifies mechanisms for outcomes’ determination, allowing the
esearcher to analyze counterfactual policies and to quantify their impacts on specific outcomes (see Heckman et al.,
998b; Lee and Wolpin, 2006; Abbott et al., 2019 for an example on changes in the labor market equilibrium; Chiappori
t al., 2018 on the marriage market equilibrium; and, Burdett and Mortensen, 1998 on wages in the frictional labor market
quilibrium). The disadvantage of the structural model is that the model is highly nonlinear with no analytical solution;
e cannot estimate the model through the traditional maximum likelihood or linear regression methods. In applications
here the researcher is only interested in a partially specified structural model such as one with conditional moment
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estrictions, the researcher can estimate the model through the generalized method of moments (GMM; e.g., Gallant
t al., 1990). In applications where the researcher is interested in a fully specified structural model, the researcher must
it the structural model numerically and estimate the model by matching the model predicted moments with the sample
oments (e.g., Gallant and Tauchen, 1996; Low et al., 2010; Low and Pistaferri, 2015).
Treatment effect models, however, identify the specific causal effect of a policy intervention without referring to
specific economic model. In contrast with structural models, treatment effect models are easy to estimate but they
annot distinguish between preferences and the environment and they cannot identify the mechanisms that determine the
utcomes; thereby, their external validity is limited. One proposal is to exploit the advantage of both models. For example,
e can fit a structural model to the control group and use the fitted model to predict the outcomes for the treatment
roup. We then validate the structural model by comparing the predicted outcomes with the observed outcomes. This idea
orks only for randomized experiments, where the control group and the treatment group are randomly specified. For
bservational data, however, the two groups are not randomly specified. Fitting the structural model to the control group
n this case will give biased estimates and a false validation. Thus, developing a method to estimate the counterfactual
istributions or their moments consistently from observational data is the first step for the estimation and validation of
structural model. This study should be viewed as contributing an approach to the aforementioned first step.
There is a large and growing literature on treatment effect models. This literature is mostly concerned with the

stimation of moments such as the average treatment effect or the quantile treatment effect (e.g., Heckman et al., 1998a;
ahn, 1998; Imbens, 2000; Hirano et al., 2003; Heckman and Vytlacil, 2005; Firpo, 2007; Florens et al., 2008; Cattaneo,
010; Chan et al., 2016; Belloni et al., 2017; Abadie and Cattaneo, 2018). For standard quantile regression allowing for
ontinuous covariates subject to parametric restrictions, see Koenker and Bassett (1978) and Firpo et al. (2009). However,
ince the potential outcomes in these studies are random, the average treatment effect and the quantile treatment effect
rovide only a partial view of the distributional effects. A complete evaluation should compare how the potential outcomes
re distributed. This is exactly what Chernozhukov et al. (2013) and Donald and Hsu (2014) did for the binary treatment
odel. This study extends their work to the continuous treatment model.
Specifically, we first show that, in the continuous treatment model, the counterfactual distribution is a weighted

xpectation conditional on the treatment variable, where the weighting function is the ratio of the probability density
f the treatment variable and the probability density of the treatment variable conditional on a set of covariates. We
hen estimate the weighting function (but not the two densities in the ratio separately) from a covariate balancing
quation by maximizing a globally concave criterion function; the procedure is computationally fast and stable. The
roposed estimation procedure generalizes the covariate balancing approach for the binary treatment (Imai and Ratkovic,
014) to the continuous treatment model. Finally, we estimate the counterfactual distribution by plugging the estimated
eighting function in a kernel regression. We estimate the quantiles by inverting the estimated distribution function,
nd we estimate the dose response function by using the estimated counterfactual distribution. We show that our
stimated distribution and quantile function weakly converge to a Gaussian process at a rate of

√
Nh, where h is a

hrinking bandwidth. The slower convergence rate is due to the continuous treatment variable. Despite the slower
onvergence rate, our estimated distribution and quantile function are more efficient than the ones obtained with the
rue weighting function. A similar observation is also reported by Hirano et al. (2003) for the average treatment effect in
he binary treatment model. Here, we show that their observation holds more generally. We also show that our estimated
ounterfactual distribution is generally more efficient than the one obtained when the weighting function is obtained by
stimating the numerator and denominator densities separately.
To test the distributional effects, we consider three null hypotheses: A. No distributional difference between two levels

f treatment. B. Negative distributional difference between two levels of treatment. C. No quantile difference for any levels
f treatment. Hypotheses A and B are pair-wise comparisons of the treatments, while hypothesis C is a uniform comparison
f all the treatments. We present three classes of tests for hypothesis A: (1) point-wise and uniform confidence bands, (2)
sup and L2 distance test, and (3) the Mann–Whitney test. For hypotheses B and C, we present a stochastic dominance
est and an L2 distance test, respectively. The test statistics for the pair-wise confidence band, the Mann–Whitney test,
and the L2 distance test for hypothesis C all have a familiar asymptotic distribution so critical values are easy to compute.
The statistics for the uniform band, the distance tests for hypothesis B, and the stochastic dominance test all have a
nonstandard asymptotic distribution so we compute the critical values through a bootstrap method. Each of these tests
has its own merits and weaknesses. In applications, one may apply some or all of them to obtain more precise inference
on the distributional effects.

We devote the rest of the paper to the estimation and test procedures outlined above. Specifically, Section 2 sets up
the basic framework, Section 3 presents the estimation procedure, Section 4 derives the large-sample properties of the
proposed estimators, and Section 6 presents the statistical tests of the distributional and quantile effects. Subsequently,
Section 7 reports the results of a simulation study and Section 8 applies the proposed estimation and test procedure
to analyze the effect of non-labor income on labor supply. Finally, Section 9 provides some concluding remarks. All the
technical proofs appear in the supplemental material (Ai et al., 2020).

2. Basic framework and notation

Let T denote the observed treatment variable with probability density function fT (t) and support T ⊂ R. Let Y (t) denote
he potential outcome for treatment t and let F (y) denote its cumulative distribution function. We have observations on T ,
t
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= Y (T ), and a vector of covariates X . Let {Ti,X i, Yi}
N
i=1 denote an independently and identically distributed (i.i.d.) sample

of observations drawn from the joint distribution of (T ,X, Y ). The goals of this study are (1) to estimate the counterfactual
distribution function Ft (·) and its quantile function qt (τ ) = inf{z : Ft (z) ≥ τ } for τ ∈ [0, 1] for all treatment statuses t ∈ T
nd (2) to propose statistical tests for the distributional and quantile effects.
Since the potential outcomes {Y (t)}t∈T are not simultaneously observed, the counterfactual distribution functions

Ft (y)}t∈T cannot be identified without a restriction. Following Rosenbaum and Rubin (1983), we impose the following
n-confounded assignment condition:

ssumption 1. For any t ∈ T , T ⊥ Y (t)|X .

Let fT |X (t|x) denote the conditional probability density function of T given X . Hirano and Imbens (2004) and Imai and
an Dyk (2004) called fT |X (t|x) the generalized propensity score. Let

π0(T ,X) =
fT (T )

fT |X (T |X)
.

nder Assumption 1, we show in Appendix A that

Ft (y) = E {π0(T ,X)I(Y ≤ y)|T = t} . (2.1)

oticing that E {π0(T ,X)|T = t} = 1, we can write

Ft (y) =
E {π0(T ,X)I(Y ≤ y)|T = t}

E {π0(T ,X)|T = t}
. (2.2)

f π0(T ,X) were known, we would estimate both the numerator and the denominator by kernel regression and estimate
t (y) by the ratio:

F t,h(y) =

∑N
i=1 π0(Ti,X i)I(Yi ≤ y)K

(
Ti−t
h

)
∑N

i=1 π0(Ti,X i)K
(

Ti−t
h

) , (2.3)

here K (·) is a known univariate kernel function and h is a bandwidth. It is easy to see that the value of F t,h(y) always
ies in [0, 1]. Unfortunately, the estimator F t,h(y) is infeasible because the weighting function π0(T ,X) is unknown. Next,
we turn our attention to the estimation of the weighting function and the counterfactual distribution function.

3. Estimation procedure

One obvious approach for estimating the weighting function is to estimate fT (T ) and fT |X (T |X). The estimators are
denoted by f̂T (T ) and f̂T |X (T |X) respectively. We denote this ratio estimator by π̃ (T ,X) = f̂T (T )/̂fT |X (T |X) and the resulting
estimator of the counterfactual distribution by

F̃t,h(y) =

∑N
i=1 π̃ (Ti,X i)I(Yi ≤ y)K

(
Ti−t
h

)
∑N

i=1 π̃ (Ti,X i)K
(

Ti−t
h

) .

There are three drawbacks to this approach. First, π̃ (T ,X) does not increase the efficiency of F̃t,h(y). In Theorem 4, we
erive the asymptotic properties of F̃t,h(y) and show that our estimator F̂t,h(y) (defined below) is more efficient than
t,h(y), except when the density estimates are carefully under-smoothed. In the latter case, F̂t,h(y) is as efficient as F̃t,h(y).
econd, π̃ (T ,X) is very sensitive to small values of fT |X (T |X) since small estimation errors result in large estimation errors
n π̃ (T ,X). Third, F̃t,h(y) is not guaranteed to lie in [0, 1] and can even be negative since we must use higher-order kernels
o remove the biases. To avoid or mitigate these problems, we estimate the weighting function π0(T ,X) directly. We note
hat the weighting function satisfies

E [π0(T ,X)u(T )v(X)] = E[u(T )] · E[v(X)] (3.1)

or any suitable functions u(t) and v(x). The following theorem shows that this restriction identifies the weighting function.

heorem 1. E [π (T ,X)u(T )v(X)] = E[u(T )] · E[v(X)] holds for all integrable functions u(T ) and v(X) if and only if
(T ,X) = π0(T ,X) a.s.

This result suggests a possible way to estimate the weighting function. The challenge is that (3.1) implies an infinite
umber of equations. With a finite sample of observations, it is impossible to solve this infinite number of equations.
o overcome this difficulty, we approximate the infinite-dimensional function space by a sequence of finite-dimensional
ieve spaces. Specifically, let uK1 (T ) = (uK1,1(T ), . . . , uK1,K1 (T ))

⊤ and vK2 (X) =
(
vK2,1(X), . . . , vK2,K2 (X)

)⊤ denote known
asis functions with dimensions K ∈ N and K ∈ N, respectively, and let K = K · K . The functions u (t) and v (x) are
1 2 1 2 K1 K2

3
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pproximation sieves that can approximate any suitable functions u(t) and v(x) arbitrarily well (see Elbadawi et al., 1983;
allant and Nychka, 1987; Gallant and Tauchen, 1989, 1996; Coppejans and Gallant, 2002; Ai and Chen, 2003; Chen, 2007
or discussions on the sieve approximation). Since the sieve approximating space is a subspace of the original function
pace, π0(T ,X) also satisfies

E
[
π0(T ,X)uK1 (T )vK2 (X)⊤

]
= E[uK1 (T )] · E[vK2 (X)]⊤. (3.2)

Unfortunately, π0(T ,X) is not the only solution to (3.2). Indeed, for any increasing and globally concave function ρ(v),
with

Λ∗

K1×K2 = arg max
Λ∈RK1×K2

E
[
ρ(uK1 (T )

⊤ΛvK2 (X))
]
− E[uK1 (T )]

⊤ΛE[vK2 (X)], (3.3)

∗

K (T ,X) = ρ ′

(
uK1 (T )

⊤Λ∗

K1×K2
vK2 (X)

)
also solves (3.2), where ρ ′(v) denotes the first derivative. Since there are many ρ(·)

functions, there are many solutions. We shall choose a ρ(·) that has an intuitive interpretation and aids the asymptotic
distribution derivations.

For our choice of ρ(·), we start with the traditional approach, which would estimate the weights by maximizing the
log-likelihood (or generalized log-likelihood) function, subject to the sample analog of (3.2). We consider the generalized
empirical likelihood (EL) estimation method that solves the following entropy maximization problem:⎧⎨⎩ {π̂i}

N
i=1 = argmax

{
−N−1∑N

i=1 πi logπi

}
subject to 1

N

∑N
i=1 πiuK1 (Ti)vK2 (X i)⊤ =

(
1
N

∑N
i=1 uK1 (Ti)

)(
1
N

∑N
j=1 vK2 (X j)⊤

)
.

(3.4)

Two observations are immediate. First, by including a constant of one in the sieve base functions, (3.4) guarantees that
N−1∑N

i=1 π̂i = 1. Second, we notice that

max

{
−N−1

N∑
i=1

πi logπi

}
= −min

{
N∑
i=1

{N−1πi} · log
N−1πi

N−1

}
.

The entropy maximization problem minimizes the Kullback–Leibler divergence between the weights {N−1πi}
N
i=1 and the

empirical frequencies {N−1
}, subject to the sample analogue of (3.2). This is similar to the exponential tilting problem

considered in Kitamura and Stutzer (1997) and Imbens et al. (1998) . The difference is that their problem is parametric
while ours is non-parametric.

The entropy maximization problem is difficult to solve. However, setting ρ(v) = − exp(−v − 1) for any v ∈ R, we
show in Appendix C that the dual problem to the entropy maximization problem has the solution

π̂K (Ti,X i) = ρ ′

(
uK1 (Ti)

⊤Λ̂K1×K2vK2 (X i)
)
,

where Λ̂K1×K2 maximizes the globally concave function

ĜK1×K2 (Λ) =
1
N

N∑
i=1

ρ
(
uK1 (Ti)

⊤ΛvK2 (X i)
)
−

(
1
N

N∑
i=1

uK1 (Ti)

)⊤

Λ

⎛⎝ 1
N

N∑
j=1

vK2 (X j)

⎞⎠ . (3.5)

hus, the choice ρ(v) = − exp(−v − 1) corresponds to the generalized EL estimation method. Moreover, it satisfies the
nvariance property −ρ ′′(v) = ρ ′(v), which greatly simplifies the asymptotic distribution derivations.

Having estimated the weighting function, we proceed by estimating the counterfactual distribution function Ft (y) by
lugging in the estimated weighting function

F̂t,h(y) =

∑N
i=1 π̂K (Ti,X i)I(Yi ≤ y)K

(
Ti−t
h

)
∑N

i=1 π̂K (Ti,X i)K
(

Ti−t
h

) .

We estimate the quantile function of Y (t) by inverting the estimated distribution function:

q̂t,h(τ ) = inf
{
y : F̂t,h(y) ≥ τ

}
, τ ∈ (0, 1).

We estimate the dose response function m(t) = E[Y (t)] =
∫
ydFt (y) by plugging in the estimated counterfactual

distribution:

m̂h(t) =

∫
yd̂Ft,h(y) =

∑N
i=1 π̂K (Ti,X i)K

(
Ti−t
h

)
Yi∑N

π̂ (T ,X )K
(

Ti−t
) .
i=1 K i i h

4
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Galvao andWang (2015) and Alejo et al. (2018) also studied the continuous treatment model. They considered a general
setting, in which the parameter of interest β(t) uniquely solves the moment condition

E[M(Y (t);β(t))] = 0 for all t ∈ T , (3.6)

here M(·) is a known function. Their setting encompasses our model. For example, M(Y (t);β(t)) = Y (t) − β(t) gives
he dose response function β(t) = m(t), M(Y (t);β(t)) = I(Y (t) ≥ β(t)) − τ gives the τ−quantile β(t) = qt (τ ), and
(Y (t);β(t)) = I(Y (t) ≤ y) − β(t) gives the counterfactual distribution function β(t) = Ft (y). Under the un-confounded
ssignment condition, Galvao and Wang (2015) derived the following moment condition:

E [w0(X, Y ; t)M(Y ;β(t))] = 0, (3.7)

here w0(x, y; t) = fT |X,Y (t|x, y)/fT |X (t|x) is their weighting function. With an initial consistent estimate ŵ(x, y; t), they
stimated β(t) by solving the empirical analogue of (3.7):

1
N

N∑
i=1

ŵ(X i, Yi; t)M(Yi; β̂(t)) = 0.

(Galvao and Wang, 2015) derived the asymptotic distribution of β̂(t) uniformly over t under some high-level assumption
n ŵ(x, y; t). However, they noted that a non-parametrically estimated w(x, y; t) does not satisfy their high-level

assumption but a parametrically estimated w(x, y; t) does. In a sequel study, Alejo et al. (2018) estimated w(x, y; t) by
using the Box–Cox model.

There are several differences between their approach and ours. The first difference is the weighting function. Their
weighting function depends on all observed variables while our weighting function does not depend on the observed
outcome variable. This difference implies that the non-parametric estimate of their weighting function converges to the
true function at a rate slower than the non-parametric estimate of our weighting function. Consequently, their estimator
of the counterfactual distribution (as well as the quantile and dose response) function converges to the true function at
a rate slower than that of our estimator. The second difference is how the weighting function is estimated. We estimate
our weighting function by solving the sample analogue of the covariate balancing equation (3.2), which guarantees that
the estimated weights are positive and have a sum of one. They placed no corresponding restriction on their weighting
function so they had to estimate the weighting function by the ratio of the estimated conditional densities. Their estimated
weights could be negative if a higher-order kernel is used. Moreover, if the value of fT |X (t|x) is small, small estimation
rrors in f̂T |X (t|x) lead to large estimation errors in the estimated weights, resulting in an unstable estimate of β(t).
The covariate balancing equation would improve the finite sample performance of the estimator even if we specified a

arametric weighting function. For example, in the binary treatment model, Kang and Schafer (2007) and Smith and Todd
2005) documented that the popular propensity score method could give a substantially biased estimate of the average
reatment effect when the propensity score function P0(X) = P(T = 1|X) is slightly mis-specified. Imai and Ratkovic
(2014) noticed that the true propensity score function satisfies

E
[
T · P0(X)−1v(X)

]
= E[v(X)] for all integrable functions v(X).

For a parametric propensity score P(X; γ ), they imposed the covariate balancing equation

E
[
T · P(X; γ )−1vK2 (X)

]
= E[vK2 (X)], (3.8)

where vK2 (X) is a K2-dimensional basis functions, with K2 fixed and possibly larger than the dimension of γ . They
estimated γ from the covariate balancing equation (3.8) by GMM estimation or EL estimation. Although neither the
GMM nor EL enforces the sample analogue of (3.8), they documented that their estimated propensity score substantially
improves the finite sample performance of the average treatment effect estimator. Notice that (3.8) is a special case of
(3.2), with uK1 (T ) = T and π0(T ,X) = T · P(T = 1)/P0(X) + (1 − T ) · P(T = 0)/(1 − P0(X)). Evidently, we impose more
restrictions (i.e., K1 > 1) and enforce the sample analogue of (3.2). Thus, there is reason to believe our procedure could
have a similar finite sample performance.

4. Large sample properties

4.1. Preliminaries

To derive the large-sample properties of the estimated distribution, quantile, and dose response functions, we first
show that the estimated weighting function π̂K (t, x) is consistent and compute its convergence rate under the L2 norm.
We impose the following conditions throughout the study:

Assumption 2. (i) The support X of the control variables X is a compact subset of Rr . The support T of the treatment
variable T is a compact subset of R. (ii) There exist two positive constants η1 and η2 such that

0 < η1 ≤ π0(t, x) ≤ η2 < ∞ , ∀(t, x) ∈ T × X .
5
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ssumption 3. There exist a ΛK1×K2 ∈ RK1×K2 and a constant α > 0 such that

sup
(t,x)∈T ×X

⏐⏐ρ ′−1 (π0(t, x))− uK1 (t)
⊤ΛK1×K2vK2 (x)

⏐⏐ = O(K−α),

where ρ(v) = − exp (−v − 1) and K = K1 · K2.

Assumption 4. (i) The smallest eigenvalues of E
[
uK1 (T )uK1 (T )

⊤
]
and E

[
vK2 (X)vK2 (X)⊤

]
are bounded away from zero

uniformly in K1 and K2. (ii) There are two sequences of constants ζ1(K1) and ζ2(K2) satisfying supt∈T ∥uK1 (t)∥ ≤ ζ1(K1)
and supx∈X ∥vK2 (x)∥ ≤ ζ2(K2) such that

√
NK−α

→ 0 and ζ (K )
√
K 2/N → 0 as N → ∞, where K = K1 · K2 and

ζ (K ) = ζ1(K1)ζ2(K2).

Assumption 2(i) requires the covariates and the treatment variable to be bounded. This condition, although restrictive,
is commonly imposed in the non-parametric regression literature. However, we can replace it with a restriction on the tail
distribution of (X, T ). For example, Chen et al. (2008, Assumption 3) assumed that the support ofX is the entire Euclidean
space but imposed

∫
Rr (1 + |x|2)ωfX (x)dx < ∞ for some ω > 0. Assumption 2 (ii) requires the weighting function to be

bounded and bounded away from zero. We can relax Assumption 2 (ii) by allowing η1 (η2) to go to zero (infinity) slowly
as N → ∞. Notice that uK1 (t)

⊤ΛvK2 (x) is a linear sieve approximation for ρ ′−1 (π0(t, x)). Assumption 3 requires the
sieve approximation error to shrink to zero at a polynomial rate. A variety of sieve basis functions satisfy this condition.
The polynomial rate is positively affected by the smoothness of ρ ′−1 (π0(t, x)) and negatively affected by the number of
continuous covariates. Assumption 4 (i) ensures that the sieve estimator is non-degenerate. This condition is common in
the sieve regression literature (see Andrews, 1991; Newey, 1997). If the approximation error is nonzero, Assumption 4
(ii) imposes a restriction on the growth rate of the smoothing parameters K1 and K2 to ensure under-smoothing. If the
approximation error is zero for some fixed K , Assumption 4 (ii) is not needed.

Under these conditions, we prove the following results:

Proposition 1. Assume that Assumptions 2–4 hold. We have∫
T ×X

|π̂K (t, x) − π0(t, x)|2dFT ,X (t, x) = Op

(
max

{
K−2α,

K
N

})
,

1
N

N∑
i=1

|π̂K (Ti,X i) − π0(Ti,X i)|2 = Op

(
max

{
K−2α,

K
N

})
.

The next proposition provides a representation of the influence function.

roposition 2. Assume that Assumptions 2–4 hold. For any square-integrable random variable φ(T ,X, Y ) ∈ L2 such that
[φ(T ,X, Y )|T = t,X = x] is continuously differentiable, we have the following representation:

1
√
N

N∑
i=1

{π̂K (Ti,X i)φ(Ti,X i, Yi) − E[π0(T ,X)φ(T ,X, Y )]}

=
1

√
N

N∑
i=1

{
π0(Ti,X i)φ(Ti,X i, Yi) − π0(Ti,X i) · E[φ(Ti,X i, Yi)|Ti,X i]

+ E[π0(Ti,X i)φ(Ti,X i, Yi)|X i] − E[π0(T ,X)φ(T ,X, Y )]

+ E[π0(Ti,X i)φ(Ti,X i, Yi)|Ti] − E[π0(T ,X)φ(T ,X, Y )]
}

+ op(1).

4.2. Asymptotic distribution

To derive the asymptotic properties of the estimated distribution and quantile function, we impose the following
additional conditions.

Assumption 5. For each t ∈ T , Y (t) has a compact support.

Assumption 6. (i) For any given (t, x) ∈ T × X , the conditional distribution function FY |T ,X (y|t, x) is continuous in y ∈ Y .
(ii) For any y ∈ Y , FY |T ,X (y|t, x) is continuously differentiable with respect to (t, x) ∈ T × X . (iii) The density function
fT (t) is third-order continuously differentiable; (iv) The function Ft (y) is continuous in y and third-order continuously
differentiable with respect to t .

Assumption 7. K (·) is a univariate kernel function, symmetric around the origin, and satisfying (i)
∫
K (u)du = 1; (ii)∫

u2K (u)du = κ21 ∈ (0,∞); (iii)
∫
K 2(u)du = κ02 < ∞; and, (iv)

∫
|K (u)|2+δdu < ∞, for some δ > 0.
6
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ssumption 8. As N → ∞, h → 0 and Nh → ∞.

We do not need Assumption 5 to derive the large-sample properties of the estimated distribution function but we need
it to derive those of the estimated quantile function (also see Assumption 3.1 of Donald and Hsu (2014)). Assumption 8
is common in the kernel regression literature (see Li and Racine, 2007).

Theorem 2. Assume that Assumptions 1–8 hold and Nh5
→ 0. We show that, for any fixed t ∈ T ,

sup
y∈Y

⏐⏐⏐⏐⏐√Nh
{̂
Ft,h(y) − Ft (y)

}
−

√
h
N

N∑
i=1

ψt,h(Yi, Ti,X i; y)

⏐⏐⏐⏐⏐ = oP (1),

here

ψt,h(Yi, Ti,X i; y) =
π0(Ti,X i)

pt,h
K
(
Ti − t

h

){
I(Yi ≤ y) − FY |T ,X (y|Ti,X i)

}
nd pt,h = E

[
K ( T−t

h )
]
. Furthermore, we have

√
Nh
{̂
Ft,h(·) − Ft (·)

}
⇒ Ψt (·).

where “⇒" denotes weakly convergence, and Ψt (·) is a mean-zero Gaussian process with covariance function

Ωt (y1, y2) = lim
h→0

h · E
[
ψt,h(Yi, Ti,X i; y1)ψt,h(Yi, Ti,X i; y2)

]
=

κ02

fT (t)
×

E
[
π0(Ti,X i)2

{
I(Yi ≤ y1) − FY |T ,X (y1|Ti,X i)

} {
I(Yi ≤ y2) − FY |T ,X (y2|Ti,X i)

} ⏐⏐⏐⏐Ti = t
]
,

and κij =
∫
uiK j(u)du.

The following theorem shows that the estimated counterfactual distribution function F̂t,h(y) is more efficient than the
nfeasible F t,h(y).

Theorem 3. Assume Assumption 8 holds and Nh5
→ 0. For any fixed t ∈ T , we have

√
Nh
{
F t,h(·) − Ft (·)

}
⇒ Ψ t (·),

where Ψ t (·) is a Gaussian process with covariance function

Ω t (y1, y2) =
κ02

fT (t)
· E
[
π0(T ,X)2{I(Y ≤ y1) − Ft (y1)}{I(Y ≤ y2) − Ft (y2)}|T = t

]
.

Furthermore, we have Ωt (y, y) < Ω t (y, y). Hence, F̂t,h(y) is more efficient than F t,h(y).

The theorem above states that a perfectly estimated weighting function is not as important as the information
ontained in the covariate-balancing equation. It is not clear if a less accurately estimated weighting function is still
ot as important. To study this problem, we consider estimating the weighting function by using separate kernel density
stimates. Specifically, let K1(t), K2(x), and K3(x, t) denote kernel density functions of orders s1, s2, and s3, respectively.
lthough we can construct a kernel function of any order, the bias of the kernel density estimator is bounded by the
moothness condition of the density function. Since the joint density function is as smooth as the marginal density
unctions, it is reasonable to assume that s3 = min{s1, s2} and let K3(x, t) = K1(t) · K2(x). Let r denote the dimension of
. Let K1,h1 (t) = h−1

1 K1

(
t
h1

)
, K2,h2 (x) = h−r

2 K2

(
x
h2

)
, and K3,h3 (x, t) = K1,h1 (t)K2,h2 (x). We estimate the density functions

as follows:

f̂T (Ti) =
1

N − 1

N∑
j=1,j̸=i

K1,h1 (Tj − Ti), f̂X (X i) =
1

N − 1

N∑
j=1,j̸=i

K2,h2 (X j − X i),

f̂T ,X (Ti,X i) =
1

N − 1

N∑
j=1,j̸=i

K2,h2 (X j − X i)K1,h1 (Tj − Ti),

f̂T |X (Ti|X i) = f̂T ,X (Ti,X i)/̂fX (X i).

We estimate the weighting function as

π̃ (Ti,X i) =
f̂T (Ti)
f̂T |X (Ti|X i)
7
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nd the counterfactual distribution function as

F̃t,h(y) =

∑N
i=1 π̃ (Ti,X i)I(Yi ≤ y)K

(
Ti−t
h

)
∑N

i=1 π̃ (Ti,X i)K
(

Ti−t
h

) .

We prove the following result in the supplemental materials.

Theorem 4. Assume that Nhr
2h1 → ∞, Nhh2s1

1 → 0, Nhh2s2
2 → 0, Nh5

→ 0, and log2 N
N ·

h
h21h

2r
2

→ 0. In addition, assume that
one of the following conditions holds:

(C1) :
h
h1

→ 0 and
Nh5

h4
1

→ 0; (C2) :
h1

h
→ 0 and

Nh2s1
1

h2s1−1 → 0.

Then, for any fixed t ∈ T , we have
√
Nh
{̃
Ft,h(·) − Ft (·)

}
⇒ Ψ̃t (·),

where Ψ̃t (·) is a Gaussian process with covariance function Ω̃t (y1, y2) given by

Ω̃t (y1, y2) = Ω t (y1, y2)

f (C1) holds, and

Ω̃t (y1, y2) = Ωt (y1, y2)

f (C2) holds.

The theorem above states that, for the estimated distribution function to have a familiar limiting distribution, the
andwidths h and h1 cannot shrink at the same rate. If h shrinks at a faster rate than h1, F̃t,h(y) is less efficient than F̂t,h(y).

his can happen if h shrinks at a rate slightly faster than N−1/5 and h1 shrinks at a rate slightly faster than N−
1

2s1+1 with
1 > 2. Both rates minimize the mean-squared error of the estimated density. On the other hand, if h1 shrinks at a faster
ate than h, F̃t,h(y) is as efficient as F̂t,h(y). However, this would require a careful selection of (h, h1, h2), a large degree
f under-smoothing in f̂T (Ti) regardless of the order of K1 (·), and a very high-order kernel K2 (·). In particular, we cannot

choose h1 to minimize the mean-squared error of f̂T (Ti). Given the difficulty in calibrating the bandwidths to satisfy all
conditions in the theorem, case (C2) is less likely to happen in applications. Additionally, we have to contend with the
possibility of a negative distribution estimate. In Section 7 of the supplemental material, we compare the performance
between the proposed estimator F̂t,h and the plug-in estimator F̃t,h via a simulation study. The simulation results indicate
that the proposed estimator dominates the naive estimator.

Next, we derive the asymptotic properties of statistics that are functions of the estimated distribution function. We
begin with the quantile function, which is Hadamard differentiable. By applying the delta method and Theorem 20.8 and
Lemma 21.3 of van der Vaart (1998), we have

√
Nh
{̂
qt,h(τ ) − qt (τ )

}
= −

1
fY (t)(qt (τ ))

·
√
Nh
{̂
Ft,h(qt (τ )) − Ft (qt (τ ))

}
+ op(1),

here fY (t) is the density function of Y (t). The following result is an application of Theorem 2.

orollary 5. Assume that Assumptions 1–8 hold and Nh5
→ 0. We show that, for any fixed t ∈ T ,

√
Nh
{̂
qt,h(·) − qt (·)

}
⇒ Qt (·),

where Qt (·) is a mean-zero Gaussian process with covariance function Γt (τ1, τ2) for all (τ1, τ2) ∈ [0, 1] × [0, 1], where

Γt (τ1, τ2) =
1

fY (t)(qt (τ1))fY (t)(qt (τ2))
×
κ02

fT (t)

× E
[
π0(T ,X)2

{
I(Y ≤ qt (τ1)) − FY |T ,X (qt (τ1)|T ,X)

}
×
{
I(Y ≤ qt (τ2)) − FY |T ,X (qt (τ2)|T ,X)

} ⏐⏐⏐⏐T = t
]
.

We also apply Theorem 2 to the estimated dose response function and obtain the following corollary:

orollary 6. Assume that Assumptions 1–8 hold and Nh5
→ 0. For any fixed t ∈ T , we have

√
Nh {m̂h(t) − m(t)}

d
−→ N(0, Vt ), with

Vt =
κ02

· E
[
π0(T ,X)2 {Y − E[Y |T ,X]}

2
⏐⏐⏐⏐T = t

]
.

fT (t)
8
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Kennedy et al. (2017, Theorem 3) estimated the dose response function through a parametric weighting function.
Although we use a non-parametric weighting function, our estimated dose response function is as efficient as theirs.

4.3. Consistent variance

In this section, we present some consistent estimates of the variance functions Ωt (y, y), Γt (y, y) and Vt . Let

p̂t,h =
1
N

N∑
i=1

K
(
Ti − t

h

)
, f̂Y (t)(y) = ∂t F̂t (y),

F̂Y |T ,X (y|t, x) =

∑N
i=1 I(Yi ≤ y)K

(
Ti−t
hT

)∏r
j=1 K

(
Xji−xj
hX

)
∑N

i=1 K
(

Ti−t
hT

)∏r
j=1 K

(
Xji−xj
hX

) ,

Ê[Y |T = t,X = x] =

∑N
i=1 YiK

(
Ti−t
hT

)∏r
j=1 K

(
Xji−xj
hX

)
∑N

i=1 K
(

Ti−t
hT

)∏r
j=1 K

(
Xji−xj
hX

)
and

ψ̂t,h(Ti,X i, Yi; y) =
π̂K (Ti,X i)

p̂t,h
K
(
Ti − t

h

){
I(Yi ≤ y) − F̂Y |T ,X (y|Ti,X i)

}
.

We estimate the variance functions as follows:

Ω̂t (y, y) =
h
N

N∑
i=1

{
ψ̂t,h(Ti,X i, Yi; y)

}2
,

Γ̂t (τ , τ ) =
1

f̂Y (t) (̂qt (τ ))2
·
h
N

N∑
i=1

{
ψ̂t,h(Ti,X i, Yi; q̂t,h(τ ))

}2
,

V̂t =
h
N

N∑
i=1

{
π̂K (Ti,X i)

p̂t,h
K
(
Ti − t

h

){
Yi − Ê[Yi|Ti,X i]

}}2

.

The consistency results Ω̂t (y, y)
p

−→ Ωt (y, y), Γ̂t (τ , τ )
p

−→ Γt (τ , τ ), and V̂t
p

−→ Vt follow from standard argument.

5. Data-driven smoothing parameter

The large-sample properties of the proposed estimator hold for a range of values of K and h. This presents a dilemma
for applied researchers, who have only one finite sample. Too little smoothing yields a large variance and too much
smoothing yields a large bias. Therefore, applied researchers would like to have some guidance on the choice of K and h.
In this section, we propose a cross-validation method for choosing the smoothing parameters K and h.

The proposed method combines several methods proposed in the non-parametric regression literature. We notice that
the weighting function satisfies

E [π0(T ,X)Y |T ] = m(T ).

We follow Härdle et al. (1988) by choosing K and h to minimize the mean-squared error

E
[
(π̂K (T ,X)Y − m̂h(T ))2

]
.

To avoid over-fitting, we follow Kennedy et al. (2017, Section 3.5) and Li and Racine (2007, Section 15.2) and adopt the
generalized cross-validation function

CV (K1, K2, h) =

{(
1 −

K1 · K2

N

)(
1 −

K (0)
Nh

)}−2

·
1
N

N∑
i=1

{π̂K (Ti,X i)Yi − m̂h(Ti)}2 .

lternatively, we can apply the leave-one-out approach and define

CV (K1, K2, h) =

{(
1 −

K1 · K2

N

)}−2 1
N

N∑{
π̂K (Ti,X i)Yi − m̂(−i)

h (Ti)
}2
,

i=1

9
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m̂(−i)
h (Ti) =

∑
j̸=i YjK

(
Tj−Ti

h

)
π̂K (Tj,X j)∑

j̸=i K
(

Tj−Ti
h

)
π̂K (Tj,X j)

.

Then, we choose K1, K2, and h to minimize CV (K1, K2, h).

6. Testing distributional effects

Detecting evidence of a treatment effect is one of the goals of the program evaluation literature. The existing literature
is mostly concerned with comparing some moments of counterfactual distributions (e.g., means and quantiles). However,
for the best detection of a treatment effect, one should compare the entire distributions. This section considers three
hypotheses.

6.1. Distributional differences between two treatments

The first hypothesis compares the counterfactual distributions of two treatment levels. For fixed t0 and t1, we consider
the following null and alternative hypotheses:

H0 : Ft1 (y) = Ft0 (y) for all y ∈ Y;

H1 : Ft1 (y) ̸= Ft0 (y) for some y ∈ Y.
(6.1)

We present three classes of tests for 6.1.

6.1.1. Confidence bands
The first class of tests is to test the difference∆t1,t0 (y) = Ft1,h(y)−Ft0,h(y). Letting ∆̂t1,t0 (y) = F̂t1,h(y)−F̂t0,h(y), Theorem 2

hows that
√
Nh
(
∆̂t1,t0 (y) −∆t1,t0 (y)

)
converges in distribution to a normal distribution point-wise for each y ∈ Y , and

√
Nh
(
∆̂t1,t0 (y) −∆t1,t0 (y)

)
converges in distribution to a Gaussian process uniformly over y ∈ Y . Based on these results,

e construct point-wise confidence bands and uniform confidence bands. With ψ̂t,h(Yi, Ti,X i; y) defined as in 4.3 , we
stimate the variance of ∆̂t1,t0 (y) by

Σ̂t1,t0 (y) =
h
N

N∑
i=1

{
ψ̂t1,h(Yi, Ti,X i; y) − ψ̂t0,h(Yi, Ti,X i; y)

}2
.

or some small α > 0, let z1−α/2 denote the (1 − α/2) quantile of the standard normal distribution. The point-wise
onfidence bands are given by

CI1−α(y) =

[
∆̂t1,t0 (y) − z1−α/2 · Σ̂

1/2
t1,t0 (y)/

√
Nh, ∆̂t1,t0 (y) + z1−α/2 · Σ̂

1/2
t1,t0 (y)/

√
Nh
]
.

e reject the null hypothesis if 0 is outside the point-wise confidence bands.
The point-wise confidence bands have the correct coverage probability for each y but not uniformly over all y. To

onstruct the uniform confidence bands, we must find the critical value that yields the correct coverage probability for all
. LetΣ̃t1,t0 (y) denote a uniform consistent estimator of the variance of ∆̂t1,t0 (y). Then

√
NhΣ̃−1/2

t1,t0 (y)
(
∆̂t1,t0 (y) −∆t1,t0 (y)

)
onverges in distribution to the standard Gaussian process uniformly over y ∈ Y . The Kolmogorov–Smirnov (KS) maximal
-statistic is

tKS = sup
y∈Y

√
Nh · Σ̃

−1/2
t1,t0 (y) · |∆̂t1,t0 (y) −∆t1,t0 (y)|.

Let t̂1−α denote the critical value satisfying P
(
tKS > t̂1−α

)
= α. The uniform confidence bands are given by[

∆̂t1,t0 (y) − t̂1−α · Σ̃
1/2
t1,t0 (y)/

√
Nh, ∆̂t1,t0 (y) + t̂1−α · Σ̃

1/2
t1,t0 (y)/

√
Nh
]
.

e reject the null hypothesis if 0 is outside the uniform confidence bands.
The distribution of tKS is unknown. To compute the critical value, we apply the exchangeable bootstrap (Praestgaard

nd Wellner, 1993; Van Der Vaart and Wellner, 1996). The idea is to bootstrap the distribution of tKS . Let (w1, . . . , wN )
denote an independent sample drawn from a distribution satisfying Condition EB in Section 5 of Chernozhukov et al.
(2013) (e.g., an exponential distribution). Compute

F̂∗

t,h(y) =

∑N
i=1wi · π̂K (Ti,X i)I(Yi ≤ y)K

(
Ti−t
h

)
∑N

i=1wi · π̂K (Ti,X i)K
(

Ti−t
h

) ,

ˆ∗ ∗̂ ∗̂ ∗̂
√ {ˆ∗ ˆ }
∆t1,t0 (y) = Ft1,h(y) − Ft0,h(y), and Zt1,t0 (y) = Nh ∆t1,t0 (y) −∆t1,t0 (y) .

10
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he bootstrap algorithm involves repeating the calculation above multiple times:

1. Draw B samples (w1b, . . . , wNb), b = 1, 2, . . . , B.
2. Compute {∆̂∗

t1,t0;b(y) : 1 ≤ b ≤ B} and {̂Z∗

t1,t0;b(y) : 1 ≤ b ≤ B}.
3. To bootstrap the variance, let qp(y) denote the pth quantile of {∆̂∗

t1,t0;b(y) : 1 ≤ b ≤ B} and let zp denote the pth
quantile of N(0, 1). The bootstrap variance is

Σ̃
1/2
t1,t0 (y) =

q0.75(y) − q0.25(y)
z0.75 − z0.25

.

4. Compute the maximal t-statistic

t̂KS;b = sup
y∈Y

Σ̃
−1/2
t1,t0 (y) · |̂Z∗

t1,t0;b(y)|, for 1 ≤ b ≤ B.

5. t̂1−α is the (1 − α) sample quantile of {̂tKS;b : 1 ≤ b ≤ B}.

.1.2. KS and Cramér–von Mises (CvM) test
The second class of tests is distance tests. We consider two distance measures: the sup and the L2 distance. The sup

istance gives the KS test statistic

ÎKS = sup
y∈Y

⏐⏐̂Ft1,h(y) − F̂t0,h(y)
⏐⏐

nd the L2 distance gives the CvM test statistic

ÎCvM =

∫
Y

{̂
Ft1,h(y) − F̂t0,h(y)

}2
d̂FY (y) =

1
N

N∑
j=1

{̂
Ft1,h(Yj) − F̂t0,h(Yj)

}2
.

heorem 7. Assume Assumptions 1–8 hold and Nh5
→ 0. We show that, under H0,

√
Nh · ÎKS

d
−→ sup

y∈Y
|Gt1,t0 (y)| and Nh · ÎCvM

d
−→

∫
y∈Y

|Gt1,t0 (y)|
2dFY (y),

here Gt1,t0 (y) is a Gaussian process indexed by y ∈ Y with covariance function

VG(y1, y2) =
κ02

fT (t1)
· E
[
π0(Ti,X i)2

{
I(Yi ≤ y1) − FY |T ,X (y1|Ti,X i)

}
×
{
I(Yi ≤ y2) − FY |T ,X (y2|Ti,X i)

}
|Ti = t1

]
+

κ02

fT (t0)
· E
[
π0(Ti,X i)2

{
I(Yi ≤ y1) − FY |T ,X (y1|Ti,X i)

}
×
{
I(Yi ≤ y2) − FY |T ,X (y2|Ti,X i)

}
|Ti = t0

]
.

The limiting distributions of ÎKS and ÎCvM do not have an analytical form. The critical values can be computed by applying
the bootstrap procedure. For more details, see Li et al. (2003).

6.1.3. Mann–Whitney test
The third class of tests is based on the Mann–Whitney indicator θt1,t0 =

∫
Y Ft1 (y)dFt0 (y), where θt1,t0 = 1/2 under the

ull. θt1,t0 > 1/2 if Ft1 (y) > Ft0 (y) for all y and θt1,t0 < 1/2 if Ft1 (y) < Ft0 (y) for all y. One advantage of this indicator is
hat it reduces the comparison of two distributions to a single parameter. Another advantage is that the value of θt1,t0
ay reveal the stochastic dominance of potential outcomes. By plotting θt1,t0 against (t1, t0) we could infer the range of

reatments and associated stochastically dominant outcomes. The third advantage is that the asymptotic distribution of
he Mann–Whitney test statistic

θ̂t1,t0,h =

∫
Y
F̂t1,h(y)d̂Ft0,h(y)

s normal.

heorem 8. Assume that Assumptions 1–8 hold and Nh5
→ 0. We have

√ ˆ d

Nh{θt1,t0,h − θt1,t0} −→ N (0, Vt1,t0 ),

11
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Vt1,t0 =
κ02

fT (t1)
· E

[
π0(Ti,X i)2

{∫
Y
{I(Yi ≤ y) − FY |T ,X (y|Ti,X i)}dFt0 (y)

}2 ⏐⏐⏐⏐T = t1

]

+
κ02

fT (t0)
· E

[
π0(Ti,X i)2

{∫
Y
{I(Yi ≤ y) − FY |T ,X (y|Ti,X i)}dFt1 (y)

}2 ⏐⏐⏐⏐T = t0

]
.

The asymptotic variance in Theorem 8 is estimated as follows:

V̂t1,t0 =
κ02

f̂T (t1)
·

∑N
i=1 π̂K (Ti,X i)2

{∫
Y{I(Yi ≤ y) − F̂Y |T ,X (y|Ti,X i)}d̂Ft0,h(y)

}2
K
(

Ti−t1
hT

)
∑N

i=1 K
(

Ti−t1
hT

)
+

κ02

f̂T (t0)
·

∑N
i=1 π̂K (Ti,X i)2

{∫
Y{I(Yi ≤ y) − F̂Y |T ,X (y|Ti,X i)}d̂Ft1,h(y)

}2
K
(

Ti−t0
hT

)
∑N

i=1 K
(

Ti−t0
hT

) .

We reject the null hypothesis H0 if√
Nh
V̂t1,t0

⏐⏐̂θt1,t0,h − 1/2
⏐⏐ > z1−α/2.

6.2. Stochastic dominance test

The Mann–Whitney test is effective for detecting a distributional difference. However, we cannot be certain of
stochastic dominance if θt1,t0 = 1/2 is rejected. This is because θt1,t0 > 1/2 does not necessarily mean that Ft1 (y) dominates
Ft0 (y). To test stochastic dominance, we consider the following null and alternative hypotheses, which rank the distribution
functions:

H0 : Ft1 (y) ≤ Ft0 (y) for all y ∈ Y;

H1 : Ft1 (y) > Ft0 (y) for some y ∈ Y.

We apply the stochastic dominance test, which was first introduced in econometrics by McFadden (1989) and further
studied by Anderson (1996), Davidson and Duclos (2000), Barrett and Donald (2003), Linton et al. (2005), Linton et al.
(2010), and Donald and Hsu (2014). The KS statistic in this case is

Ŝh =
√
Nh sup

y∈Y

(̂
Ft1,h(y) − F̂t0,h(y)

)
.

Clearly, this statistic should not take a large positive value if the null hypothesis is true. Thus, for a small positive value
c , the decision rule is

Reject H0 if Ŝh > c.

To find the critical value c , we need the asymptotic distribution of Ŝh, which, unfortunately, depends on the unknown true
distributions under the null hypothesis. One proposed solution is the least favorable configuration (LFC). The LFC finds
an upper bound that is equal to the KS statistic when the two distributions are the same. The asymptotic distribution of
the upper bound is known so that we can use it to find the critical value. Applying this idea, we find that under the null
hypothesis,

F̂t1,h(y) − F̂t0,h(y) =
{
(̂Ft1,h(y) − F̂t0,h(y)) − (Ft1 (y) − Ft0 (y))

}
+ (Ft1 (y) − Ft0 (y))

≤(̂Ft1,h(y) − F̂t0,h(y)) − (Ft1 (y) − Ft0 (y)).

ence,

Ŝh =
√
Nh sup

y∈Y

{̂
Ft1,h(y) − F̂t0,h(y)

}
≤

√
Nh sup

y∈Y

{
(̂Ft1,h(y) − F̂t0,h(y)) − (Ft1 (y) − Ft0 (y))

}
.

pplying Theorem 2, the upper bound
√
Nh supy∈Y

{
(̂Ft1,h(y) − F̂t0,h(y)) − (Ft1 (y) − Ft0 (y))

}
is asymptotically equal to

up
(
Ψ (y) − Ψ (y)

)
.
y∈Y t1 t0

12
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The distribution of supy∈Y
(
Ψt1 (y) − Ψt0 (y)

)
is complex. To approximate it, we apply the wild bootstrap approach

of Donald and Hsu (2014). By Theorem 2, for any fixed t ∈ T , we have

sup
y∈Y

⏐⏐⏐⏐⏐√Nh
{̂
Ft,h(y) − Ft (y)

}
−

√
h
N

·

N∑
i=1

ψt,h(Yi, Ti,X i; y)

⏐⏐⏐⏐⏐ = oP (1).

et {wi}
N
i=1 be i.i.d. random variables with mean zero and variance one, independent of the sample {Tj,X j, Yj}

N
j=1. We

ootstrap supy∈Y
(
Ψt1 (y) − Ψt0 (y)

)
by using

Sw = sup
y∈Y

(
Ψ w

t1,h(y) − Ψ w
t0,h(y)

)
, where Ψ w

t,h(y) =

√
h
N

·

N∑
j=1

wjψ̂t,h(Yj, Tj,X j; y).

mploying the same arguments as those in Donald and Hsu (2014), we show that Ψ w
t,h(·) ⇒ Ψt (·), conditional on the

ample {Ti,X i, Yi : i = 1, . . . ,N} with probability approaching to one. For a significance level α, the simulated critical
alue ĉ is the (1 − α)-th quantile of Su:

ĉ = sup{q : Pw
(
Sw ≤ q

)
≤ 1 − α}.

Evidently, the critical value determined by the upper bound is larger than necessary and so the KS test is conservative in
terms of Type I error.

Theorem 9. Assume that Assumptions 1–8 hold. Consider the decision rule ‘‘reject H0 when Ŝh > ĉ ’’. We show that

1. If H0 is true, lim sup P(reject H0) = lim sup P (̂Sh > ĉ) ≤ α0, where the equality holds when Ft0 (y) = Ft1 (y) for all y ∈ Y .
2. If H0 is false, limN P(reject H0) = 1.

.3. Quantile treatment effect

While the two types of hypotheses considered above compare the distribution functions, the third type of hypothesis
ompares the quantiles of different treatments. Specifically, for some fixed t0, the null and alternative hypotheses are:

H0 : qt (τ ) = qt0 (τ ) for all t ∈ T ;

H1 : qt (τ ) ̸= qt0 (τ ) for some t ∈ T .

ssume that Ft (y) is strictly monotone in y for all t ∈ T . Then, qt (τ ) = qt0 (τ ) for all t ∈ T is equivalent to Ft (qt0 (τ )) =

t (qt (τ )) = τ for all t ∈ T . The test statistic is

Ît0 =

∫
T

{̂
Ft,h (̂qt0,h(τ )) − τ

}2
w(t)dt,

here the weighting function w(t) is given by

w(t) =

{
1
N

N∑
i=1

π̂K (Ti,X i)Kh (Ti − t)

}2

.

After some manipulation, we have

Ît0 =

∫
T

{∑N
i=1 π̂K (Ti,X i)I(Yi ≤ q̂t0,h(τ ))Kh (Ti − t)∑N

i=1 π̂K (Ti,X i)Kh (Ti − t)
− τ

}2

w(t)dt

=

∫
T

{
1
N

N∑
i=1

π̂K (Ti,X i)
{
I(Yi ≤ q̂t0,h(τ )) − τ

}
Kh (Ti − t)

}2

dt

=
1
N2

N∑
j=1

N∑
i=1

π̂K (Ti,X i)
{
I(Yi ≤ q̂t0,h(τ )) − τ

}
π̂K (Tj,X j)

{
I(Yj ≤ q̂t0,h(τ )) − τ

}
K h(Ti, Tj),

here K h(Ti, Tj) = h−1
· K ({Ti − Tj}/h) and K (v) =

∫
K (u)K (v − u)du is the convolution kernel derived from K (·).

heorem 10. Assume that Ft (y) is strictly monotone in y, Assumptions 1–8 hold, ζ 2(K )
√
K 2/N → 0, and Nh5

→ 0. Under
the null hypothesis, we have

Nh
{̂
It0 − b̂t0

}
d

−→ χ2
1 ,
σ̂t0

13
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here χ2
1 denotes the chi-square distribution with one degree of freedom, and

b̂t0 =
K (0)
N2h

N∑
i=1

π̂K (Ti,X i)2
{
I(Yi ≤ q̂t0,h(τ )) − τ

}2
,

σ̂t0 =

{
1

N(N − 1)

N∑
j=1

N∑
i=1,i̸=j

K h(Ti, Tj) × π̂K (Ti,X i )̂fY (t) (̂qt0,h(τ ))
⏐⏐⏐⏐
t=Ti

× π̂K (Tj,X j )̂fY (t) (̂qt0,h(τ ))
⏐⏐⏐⏐
t=Tj

}
× Γ̂t0 (τ , τ ) ,

f̂Y (t)(y) =

∑N
i=1 π̂K (Ti,X i )̂fY |T ,X (y|Ti,X i)K

(
Ti−t
h

)
∑N

i=1 π̂K (Ti,X i)K
(

Ti−t
h

) ,

where f̂Y |T ,X is a kernel estimator for the conditional density fY |T ,X .

We use a heuristic argument to derive the result above. Under the null hypothesis, τ = Ft (qt0 (τ )) = Ft (̂qt0,h(τ )) −

Y (t) (̃qt0,h(τ )) · {̂qt0,h(τ ) − qt0 (τ )} for all t ∈ T , where q̃t0,h(τ ) is between q̂t0,h(τ ) and qt0,h(τ ). We can write

Ît0 − b̂t0 =
1
N2

∑
j̸=i

π̂K (Ti,X i)
{
I(Yi ≤ q̂t0,h(τ )) − Ft (̂qt0,h(τ ))|t=Ti

}
(6.2)

× π̂K (Tj,X j)
{
I(Yj ≤ q̂t0,h(τ )) − Ft (̂qt0,h(τ ))|t=Tj

}
K h(Ti, Tj)

+
2
N2

∑
j̸=i

π̂K (Ti,X i)
{
I(Yi ≤ q̂t0,h(τ )) − Ft (̂qt0,h(τ ))|t=Ti

}
(6.3)

× π̂K (Tj,X j)fY (t) (̃qt0,h(τ ))
⏐⏐⏐⏐
t=Tj

K h(Ti, Tj)
{̂
qt0,h(τ ) − qt0 (τ )

}
+

1
N2

∑
j̸=i

π̂K (Ti,X i)fY (t) (̃qt0,h(τ ))
⏐⏐⏐⏐
t=Ti

(6.4)

× π̂K (Tj,X j)fY (t) (̃qt0,h(τ ))
⏐⏐⏐⏐
t=Tj

K h(Ti, Tj)
{̂
qt0,h(τ ) − qt0 (τ )

}2
.

mploying arguments similar to those used to prove Lemma 3.3 (a) and 3.3(b) in Zheng (1996), we show that the right
and side of (6.2) and the term (6.3) are OP (1/Nh1/2). By Corollary 5, the term (6.4) multiplied by Nh/σ̂t0 is asymptotically
2
1 distributed.
For the dose response function m(t), we consider the following null and alternative hypotheses:

H0 : m(t) = m(t0) for all t ∈ T ;

H1 : m(t) ̸= m(t0) for some t ∈ T .

he test statistic is

Îm =
1
N2

N∑
j=1

N∑
i=1

π̂K (Ti,X i) {Yi − m̂h(t0)} π̂K (Tj,X j)
{
Yj − m̂h(t0)

}
K h(Ti, Tj).

orollary 11. Assume that Assumptions 1–8 hold, ζ 2(K )
√
K 2/N → 0, and Nh5

→ 0. Under the null hypothesis, we have

Nh
{̂
Im − b̂m

}
σ̂m

d
−→ χ2

1 ,

where

b̂m =
K (0)
N2h

N∑
i=1

π̂K (Ti,X i)2 {Yi − m̂h(t0)}2 ,

σ̂m =

{
1

N(N − 1)

N∑
j=1

N∑
i=1,i̸=j

π̂K (Ti,X i)π̂K (Tj,X j)K h(Ti, Tj)
}

· V̂t0 .
14
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. Monte Carlo simulation

To assess the finite sample performance of the proposed tests, we conduct a small-scale simulation study. We consider
hree scenarios. In all scenarios, we assume there is one covariate X = 0.3 + 0.4Ux with Ux drawn from the uniform
istribution over [0, 1]. We generate the continuous treatment variable as T = X + ε, with ε drawn from the standard

normal distribution with mean zero and variance one. We specify the potential outcome Y (t) as

• Scenario I: Y (t) = I(t ≤ 0.5)
(
I(Uy ≤ X)

U2
y
X + I(Uy > X)Uy

)
+ I(t > 0.5) × (I(Uy ≤ 1 − X)

U2
y

1−X + I(Uy > 1 − X)Uy)

• Scenario II: Y (t) = −t + X + Uy

• Scenario III: Y (t) = |t − 0.25| + X + Uy

where Uy is drawn from the uniform distribution over [0, 1], and Ux, Uy, and ε are independent. The observed outcome
s Y = Y (T ). For simplicity, we set t0 = 0 and let t1 vary over the interval (0, 1]. Specifically, we set t1 equal to the grid
oints {0.1, 0.2, . . . , 0.9, 1}.
In Scenario I, by design, Ft1 (·) = Ft0 (·), for all t1. This scenario examines the size properties of the tests. In Scenario

I, Ft1 (·) > Ft0 (·), and Ft1 (y) − Ft0 (y) is increasing in t1. Therefore, the Mann–Whitney indicator θt1,0 exceeds 1/2 and is
ncreasing in t1. This scenario examines the power properties of the tests. In Scenario III, the relation between Ft1 (·) and
t0 (·) varies with the treatment t1 ∈ (0, 1]. For t1 ∈ (0, 0.25], Ft1 (·) > Ft0 (·) and Ft1 (y) − Ft0 (y) is increasing in t1 so
t1,0 exceeds 1/2 and is increasing in t1. For t1 ∈ (0.25, 0.5), Ft1 (·) > Ft0 (·) and Ft1 (y) − Ft0 (y) is decreasing in t1 so θt1,0
xceeds 1/2 and is decreasing in t1. For t1 = 0.5, Ft1 (y) = Ft0 (y) and θt1,0 = 1/2. For t1 ∈ (0.5, 1], Ft1 (·) < Ft0 (·) and
t1 (y) − Ft0 (y) is decreasing in t1 so θt1,0 is less than 1/2 and is decreasing in t1. This scenario examines the performance
f the Mann–Whitney statistic.
In all scenarios, we set the sample size to N = 100, 200, and 400. We apply the data-driven approach to choose

he smoothing parameters (K1, K2, h). For the stochastic dominance test, we use a standard normal random variable as
erturbation to compute the critical value. We use 1000 perturbations. The significance level is α = 5% and in all designs,
he number of Monte Carlo simulations is 500.

We report the simulation results in Tables 1 and 2 and Figs. 1 and 2. Fig. 1 graphs the confidence bands for Ft1 − Ft0 .
ue to space limitations, we only report the graphs for the case with N = 400 and t1 ∈ {0.25, 0.75}. Table 1 reports the
ejection rates of the Mann–Whitney test under Scenarios I, II, and III. Fig. 2 plots the average Mann–Whitney statistic
t1,0,h against t1 under Scenarios I, II, and III. Table 2 reports the rejection rates of the stochastic dominance test under
he three scenarios.

Given these Figures and Tables, we make the following observations:

1. In Scenario I, we expect all three tests to accept the null hypothesis and the Mann–Whitney indicator to be a
constant. Fig. 1 shows that zero is inside the confidence band and the difference test accepts the null hypothesis at
the 95% confidence level. Table 1 reveals that, except in a few cases, the rejection rates of the Mann–Whitney test
are close to 0.05, and are closer to 0.05 in larger samples, implying that the Mann–Whitney test accepts the null
hypothesis at a level close to 0.05. The average Mann–Whitney statistic θ̂t1,0,h is roughly constant at 0.5 for all t1,
consistent with the model used. Table 2 reveals that the rejection rates of the KS test are higher than 0.05 in small
samples. In larger samples, although the rejection rates are still higher than 0.05, they are closer to 0.05, implying
that the KS test rejects a true null hypothesis at a higher frequency than what we would like.

2. In Scenario II, we expect all three tests to reject the null hypothesis and the Mann–Whitney indicator to be a
monotone curve above 0.5. Fig. 1 shows that zero is outside the confidence bands and the difference test rejects
the null hypothesis with the expected frequency. Both Tables 1 and 2 show that, except for lower levels of treatment,
both the Mann–Whitney test and the KS test reject the null at a proportion close to one. Moreover, θ̂t1,0,h is always
above 0.5 and continuously increases with t1. These results are consistent with our expectations.

3. In Scenario III, we expect the difference test and the Mann–Whitney test to reject the null hypothesis for all t1 and
the KS test to reject the null hypothesis if t1 < 0.5. We expect the Mann–Whitney indicator to decline and cross the
horizontal line at 0.5. Fig. 1 shows that zero is outside the confidence band, implying the difference test rejects the
null hypothesis. Table 1 reveals that the rejection rates of the Mann–Whitney test vary and seem to increase with
the treatment level. Nevertheless, the rejection rates converge to one as the sample size increases. Fig. 2 shows that
the values of θ̂t1,0,h are consistent with our expectations. Table 2 shows that the rejection rates of the KS test are
closer to one when t1 < 0.5 and closer to or smaller than 0.05 when t1 ≥ 0.5. These results are consistent with
our predictions.

. Empirical study

Economic theory suggests that labor supply decreases with non-labor income and the rate of decrease depends on the
otal non-labor income. The higher the non-labor income, the larger the decrease in labor supply. To test this theory, one

ould need an experiment that gives money to people randomly. The lottery is such an experiment as those participating
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ejection rates of Mann–Whitney test.
N = 100

t1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario I 0.012 0.044 0.086 0.106 0.082 0.080 0.068 0.058 0.076 0.120
Scenario II 0.152 0.568 0.788 0.922 0.988 0.994 1.000 1.000 1.000 1.000
Scenario III 0.104 0.262 0.260 0.140 0.102 0.234 0.522 0.802 0.914 0.962

N = 200

t1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario I 0.000 0.030 0.070 0.082 0.078 0.066 0.072 0.078 0.084 0.082
Scenario II 0.206 0.738 0.942 0.988 0.998 1.000 1.000 1.000 1.000 1.000
Scenario III 0.158 0.528 0.490 0.220 0.116 0.302 0.650 0.940 0.984 1.000

N = 400

t1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario I 0.000 0.020 0.048 0.060 0.064 0.066 0.086 0.080 0.058 0.054
Scenario II 0.364 0.942 0.998 0.998 1.000 1.000 1.000 1.000 1.000 1.000
Scenario III 0.276 0.768 0.710 0.304 0.098 0.422 0.908 1.000 1.000 1.000

Table 2
Rejection rates of KS test.
N = 100

t1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario I 0.124 0.130 0.104 0.100 0.118 0.106 0.100 0.068 0.080 0.088
Scenario II 0.656 0.712 0.834 0.930 0.988 0.996 1.000 1.000 1.000 1.000
Scenario III 0.586 0.522 0.422 0.210 0.078 0.026 0.004 0.000 0.000 0.000

N = 200

t1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario I 0.082 0.086 0.094 0.094 0.100 0.078 0.070 0.084 0.092 0.100
Scenario II 0.710 0.822 0.944 0.986 0.998 1.000 1.000 1.000 1.000 1.000
Scenario III 0.668 0.672 0.550 0.258 0.084 0.018 0.002 0.002 0.000 0.000

N = 400

t1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario I 0.074 0.084 0.086 0.078 0.086 0.088 0.086 0.078 0.062 0.054
Scenario II 0.892 0.968 0.996 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Scenario III 0.858 0.856 0.740 0.338 0.072 0.002 0.000 0.000 0.000 0.000

in it have an equal chance of winning regardless of their backgrounds. Moreover, the winning prizes vary across winners,
providing variations to detect the impact on labor supply. It is well documented that participation in the lottery is not
random. People with a low income are more likely to take part in it than those with a high income. Unfortunately, non-
labor income is usually unobservable to researchers but it is highly correlated with personal background. This is a setting
where the treatment (i.e., winning prize money) is continuous and the potential outcomes (i.e., post lottery earnings)
are independent of the treatment given the proxies for non-labor income (i.e., personal characteristics). To study this
setting, Imbens et al. (2001) obtained a dataset from a survey of Massachusetts lottery winners and labor earnings (a
proxy for labor supply) from US Social Security records. We apply our procedure to this dataset to estimate and test the
treatment effect of prize money on labor supply.

There are 237 lottery winners in the dataset. For each winner, we have data on the winning prize, age, gender, years
f high school, years of college, winning year, number of tickets bought, work status after winning, and social security
arnings s ∈ {1, 2, . . . , 6} years before winning the lottery and six years after. We denote the earnings six years after
inning the lottery by Y , the logarithm of lottery prize by T , and the variables representing the other characteristics by

X . The value of Y is available only for 202 of the 237 winners. Fifty-two percent of the 202 winners exhibit no earnings, that
is, Y = 0. Forty-seven percent of those with no earnings are male. Detailed descriptive statistics can be found in Imbens
et al. (2001) and Hirano and Imbens (2004).

As a treatment variable, we take the logarithm of lottery prize instead of the lottery prize itself because the distribution
of the latter is severely right-skewed (see Fig. 3(a)) while that of the logarithm of lottery prize is similar to a normal
distribution (see Fig. 3(b)). Since the range of the treatment levels is between 0.76 and 6.1, we set the benchmark
treatment level at t0 = 0.7. To detect the evidence of the distributional treatment effect, we apply the proposed Mann–
Whitney test for the null hypothesis H0 : Ft0 (·) = Ft1 (·) for t1 ∈ {1, 2, . . . , 6}. We use the leave-one-out cross-validation to
choose smoothing parameters. Fig. 4 reports the estimated Mann–Whitney statistic θ̂t1,t0,h, the 95% point-wise confidence
bands, and the corresponding P-values. From Fig. 4, we find that: (i) θ̂t1,t0,h > 0.5 for all t1 ∈ [1, 6]; (ii) θ̂t1,t0,h increases
as t increases; and (iii) the null hypothesis is rejected for t > 1.5.
1 1
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Fig. 1. 95% Confidence Bands for Ft1 − Ft0 (N = 400).
The horizontal axis denotes the value of the outcome, and the vertical axis denotes the distributional effect. The black line represents the true curve
of Ft1 − Ft0 . The red dotted lines represent the 95% confidence bands.

We also apply our method to estimate the average treatment effect m(t) − m(t0) and the quantile treatment effect
q (τ )− q (τ ) : τ ∈ [0, 1]} for t ∈ {0.7, 0.8, 0.9, . . . , 7.0}. We compute the 95% point-wise confidence bands through the
t t0
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Fig. 2. The Mann–Whitney Statistic.
The horizontal axis denotes the treatment level and the vertical axis denotes the outcome of Mann–Whitney statistic. The black line is the average
of the estimated Mann–Whitney statistic θ̂t1,0,h based on 500 Monte Carlo, the red dotted lines are the confidence bands of θ̂t1,0,h , the blue line
denotes θ = 0.5. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

quantile-based non-parametric bootstrap method, with 500 samples generated by empirical bootstrap. For comparison,
we also apply the naïve method, which sets π0(T ,X) ≡ 1.

We report the estimated average treatment effect curve m̂h(t) − m̂h(t0) and its 95% point-wise confidence bands in
ig. 5(a). We notice that for low quantiles, that is, τ < 0.5, q̂t,h(τ ) = 0 for all t . Hence, we only plot the quantile treatment
ffect curve q̂t,h(τ ) − q̂t0,h(τ ) and the 95% confidence bands for τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} in Figs. 5(b)–5(f).
Based on figs. 5(a)–5(f), we observe the following: In Fig. 5(a), we see that the average treatment effect estimated

by both the proposed and the naïve method declines as the lottery prize increases. The proposed estimate declines
faster than the naïve estimate. We conclude that there is a negative lottery effect on labor earnings, which is consistent
with the finding in Hirano and Imbens (2004). In figs. 5(b)–5(f), we see that in most cases, the estimated quantile
18
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Fig. 3. Histograms for Lottery Prize and log(Lottery Prize).

Fig. 4. The Result of Mann–Whitney Test.
Fig. 4(a) is the plot of θ̂t1,t0,h for t1 ∈ [1, 6]. The horizontal axis denotes the treatment level, and the vertical axis denotes the outcome of Mann–
Whitney statistic. The black line is the estimated Mann–Whitney statistic θ̂t1,t0,h , the red dotted lines are the confidence bands of θ̂t1,t0,h , and the
blue line denotes θ = 0.5. Fig. 4(b) reports the P-values of the Mann–Whitney tests for the hypothesizes H0 : Ft0 (·) = Ft1 (·) for t1 ∈ {1, 2, . . . , 6}.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

reatment effect declines as the lottery prize increases, and the declining rate decreases as the quantile level increases.
or τ ∈ {0.5, 0.6, 0.7}, the estimated quantile treatment effect curve q̂t,h(τ )− q̂t0,h(τ ) decreases up to a certain treatment
evel and then remains constant after that. This implies that there is a prize threshold value that makes people with low
arnings stop working. For τ = 0.8, the estimated quantile treatment effect q̂t,h(τ ) − q̂t0,h(τ ) decreases slightly, for large
nough t . For τ = 0.9, q̂t,h(τ ) − q̂t0,h(τ ) exhibits no significant decrease across all treatment levels. The 95% point-wise
onfidence bands contain zero for all treatment levels. This implies that the lottery prize has no significant effect for
eople with high earnings.

. Conclusions

Counterfactual analysis is the primary focus of the program evaluation literature. This study extends the existing
iterature on discrete treatment (e.g., binary treatment) models to continuous treatment models. Specifically, we propose
stimating the weighting function from a finite and expanding number of equations by maximizing a globally concave
unction and estimating the counterfactual distribution by plugging the estimated weighting function in a kernel

egression. The estimated counterfactual distribution is then inverted to estimate quantiles. To test the distributional

19
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Fig. 5. Average Treatment Effect and Quantile Treatment Effect Curves.
(a): Estimated average treatment effect curve; (b)–(f): Estimated quantile treatment effect curves. The horizontal axis is treatment level, and the
vertical axis is the treatment effect. The black solid line represents the proposed estimator. The red dashed lines are the 95% point-wise confidence
bands obtained by empirical bootstrap with 500 repetitions. The blue dotted line is the naive estimator. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

and quantile effects, we consider three types of null hypotheses: A. No distributional difference between two levels of
treatment, B. Negative distributional difference between two levels of treatment, and C. No quantile difference for any
levels of treatment. We propose three classes of tests for hypothesis A, a stochastic dominance test for hypothesis B, and
20
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n L2− distance test for hypothesis C. Each of these tests has its own merits and weaknesses. In applications, one may
se them all to obtain more precise inference on the distributional effect.
Under some sufficient conditions, we show that the estimated counterfactual Distributions and quantiles, and all

he test statistics are
√
Nh consistent. Compared with estimation methods in the literature, our estimation and testing

rocedure have several advantages. First, our weighting function has an empirical likelihood interpretation but it is much
asier to compute than the standard EL estimator. Second, our estimated weighting function improves the efficiency of the
stimated counterfactual distributions and the quantile functions, and thereby the power of the tests. Third, we estimate
he weighting function as a whole (as opposed to the ratio of two separately estimated densities), avoiding large extreme
eights and unstable distribution estimates.
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ppendix A. Proof of (2.1)

Using the tower property of conditional probability, we obtain:

Ft (y) = P(Y (t) ≤ y)

=

∫
X
P(Y (t) ≤ y|X = x)fX (x)dx

=

∫
X
P(Y (t) ≤ y|T = t,X = x)fX (x)dx (by Assumption 1)

=

∫
X
P(Y ≤ y|T = t,X = x)fX (x)dx

=

∫
X
P(Y ≤ y|T = t,X = x)

fX (x)
fX |T (x|t)

fX |T (x|t)dx

=

∫
X
P(Y ≤ y|T = t,X = x)

fT (t)
fT |X (t|x)

fX |T (x|t)dx

=E [π0(T ,X)I(Y ≤ y)|T = t] .

ppendix B. Proof of Theorem 1

The sufficiency part is obvious. We prove the necessity part. Let u(T ) = exp(a · T ) and v(X) = exp(b⊤X) be the test
functions, where a ∈ R and b ∈ Rr . Then, we have

E
[
{π (T ,X) − π0(T ,X)} exp

{
a · T + b⊤X

}]
+ E

[
π0(T ,X) exp

{
a · T + b⊤X

}]
=E [exp(a · T )] · E

[
exp(b⊤X)

]
,

hich, in turn, implies E
[
{π (T ,X) − π0(T ,X)} exp

{
a · T + b⊤X

}]
= 0 for all a ∈ R and b ∈ Rr . By the uniqueness of the

aplace transform, we obtain π (T ,X) = π0(T ,X) a.s.

ppendix C. Duality of primal problem (3.4)

We first introduce some notations.

• Let mK (T ,X) = vec
(
uK1 (T )v

⊤

K2
(X)
)
denote the K -dimensional column vector formed by the elements of the matrix

uK1 (T )v
⊤

K2
(X) and let MK×N = (mK (T1,X1), . . . ,mK (TN ,XN )) be the K × N matrix.

• Let uK1,k(T ) (resp. vK2,k′ (X)) denote the kth (resp. k′th) component of uK1 (T ) (resp. vK2 (X)), and let

ūK1,k =
1
N

N∑
j=1

uK1,k(Tj) , v̄K2,k′ =
1
N

N∑
j=1

vK2,k′ (X j).

Let b be the K -dimensional vector whose elements are formed by {ū v̄ ′; k = 1, . . . , K , k′
= 1, . . . , K }.
K K1,k K2,k 1 2
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• Let π = (π1, . . . , πN ) and F (π) =
∑N

i=1 πi logπi.

The primal optimization problem (3.4) can be written as{
minπ F (π)

subject to MK×N · π = N · bK
(C.1)

Based on Tseng and Bertsekas (1991), the conjugate convex function of F (·) is

F∗(z) = sup
π

N∑
i=1

{ziπi − πi logπi} =

N∑
i=1

{
ziπ∗

i − π∗

i logπ∗

i

}
,

where π∗

j satisfies the first order condition

zj = logπ∗

j + 1 ⇒ π∗

j = ezj−1
= ρ ′(zi),

where ρ
(
zj
)

= −e−zj−1. The conjugate convex function is simplified as follows:

F∗(z) =

N∑
i=1

{
ziezi−1

− ezi−1(zi − 1)
}

=

N∑
i=1

ezi−1
=

N∑
i=1

−ρ(−zi).

Based on Tseng and Bertsekas (1991), the dual problem (C.1) is

max
λ∈RK

{
λ⊤ (N · bK )− F∗

(
λ⊤MK×N

)}
= max
Λ∈RK1×RK2

N∑
j=1

{
ū⊤

K1Λv̄K2 + ρ
(
−uK1 (Tj)

⊤ΛvK2 (X j)
)}

= max
Λ∈RK1×RK2

N∑
j=1

{
ρ
(
uK1 (Tj)

⊤ΛvK (X j)
)
− ū⊤

K1Λv̄K2
}

= max
Λ∈RK1×RK2

ĜK1×K2 (Λ),

where

ĜK1×K2 (Λ) =
1
N

N∑
j=1

ρ(uK1 (Tj)
⊤ΛvK (X j)) − ū⊤

K1Λv̄K2 .

Hence, the dual solution of (3.4) is

π̂K (Ti,X i) = ρ ′

(
uK1 (Ti)

⊤Λ̂K1×K2vK2 (X i)
)
,

where Λ̂K1×K2 is the maximizer of the strictly concave objective function ĜK1×K2 .

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.12.009.
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