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allowed to be mutually correlated). We propose a unified approach to estimation based
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1. Introduction

Nonparametric methods are widely used in various areas of economics and finance due to their flexibility and
generality. New methodology such as machine learning is in many cases building on the tools and devices developed
over the last half century by work on nonparametrics. See Hdrdle and Linton (1994), Chen (2007) and Li and Racine
(2007) for surveys on the theoretical tools and practical applications. For stationary weakly dependent time series the
theoretical properties of kernel and sieve methods are well understood. For nonstationary or strongly dependent time
series the theory is still incomplete, despite significant works in this direction. Nonstationarity leads to slower rates
of convergence, unlike the stationary case (Stone, 1980), although limiting distributions often remain normal or mixed
normal allowing standard inference techniques. What remains relatively unstudied is the multiple covariate case where
some of the variables may be strongly dependent or even nonstationary and others are stationary or are deterministic
trends. This paper aims to address this issue.

In many applications, the outcome variable may be affected by multiple types of variables. For example, consumers’
consumption may be determined by their income and the interest rate; a stock price may be affected by the prices
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of related stocks and the trading volumes for them; global sea level rise is primarily attributed to the rise of global
temperature caused by too much carbon dioxide (chemical formula CO,) and solar irradiance (we shall return to
this question in the empirical study section). Some of these variables are stationary while others are nonstationary.
Besides, all of them may contain deterministic components that change over time. These observations motivate us to
incorporate different types of variables into a single regression model. We also expect in many cases, for example climate
modeling, that the effects of interest are nonlinear, and that linear models are neither scientifically grounded nor adequate
approximations.

In this paper, we consider a class of nonparametric regression models that incorporate all kinds of variables aforemen-
tioned. Suppose that

Ve = mo(Te, Z¢, X ) + e, t=1,...,n, (1.1)

where mg is an unknown function, t; = t/n, z; a stationary process, x; an integrated process, while e; is an error term
that satisfies at least E[e;|z;, x;] = 0. Here, mg(-) is defined on [0, 1] x V, x R, where V, is the support of z;. The integrated
process x; definitely has an unbounded support due to the divergent nature of the I(1) process whereas the stationary
z, may reasonably be supposed to have either bounded or unbounded support depending on the application. Here, we
allow z; to assume values in (—oo, co) or (0, 0o). By contrast, researchers normally require the support of the regressor
to be compact when the sieve method is used. See, e.g. Assumption 8 of Newey (1997, p.156) and Assumption 3.1 of Ai
and Chen (2003, p.1803). This restriction excludes the frequently encountered and important normal random variable, as
well as prima facie unit root processes.

We propose a weighted least squares sieve method to deal with the issues of unbounded support of variables and
nonstationarity. The kernel methodology developed in Wang and Phillips (2009) faces some difficulty in this case, as
we discuss below. Our methodology is novel and simpler than earlier approaches. We make use of the density of the
Hilbert space that includes the regression function in a weighted least squares sieve method. By contrast, both Chen
and Christensen (2015) and Hansen (2015) consider weighted (least squares) estimators in stationary settings but their
weighting is more akin to trimming, i.e., restricting attention to expanding compact support sets.

Our weighting scheme facilitates the establishment of our asymptotic theory in the presence of globally nonstationary
variables that may have unbounded support. Additionally, as explained below Assumption B, the weighting scheme also
allows us to very much weaken the condition on the «-mixing coefficients for the stationary process compared with the
literature. As a result, the model can deal with a much broader range of stationary variables. Furthermore, we allow the
shocks of the stationary and integrated variables to be correlated. We establish pointwise self-normalized central limit
theorems for the estimated regression functions and various functionals thereof and provide feasible inference procedures.
The rates of convergence obtained are generally slower than in the purely stationary or deterministic case (Stone, 1980,
1985), and for the regression function itself the rates are determined by the slowest component, the nonstationary part.
However, certain marginal effects may converge at rates corresponding to the stationary case. In practice both z; and x;
might be vectors, so the setting of model (1.1) needs to be reformulated to deal with these situations. We give a brief
discussion on this issue in the conclusion section.

Our simulation evidence shows that our estimation procedures work satisfactorily in finite sample situations. There
is much recent work by econometrics on climate modeling, see Atak et al. (2011) for example and the special issue
of the Journal of Econometrics (No.1, Vol.214, 2020). We apply our methodology to an important question in climate
econometrics. Specifically, we study the effect of CO, and solar irradiance on global sea level rise (hereafter, SLR) using
annual data from 1880 to 2005. Visser et al. (2015) review the work on modeling of SLR; their Table 1 reveals that
a wide range of methods have been used for the trend, including: kernel methods, wavelets, MARS regression, neural
networks, and spline methods, but in most cases covariate effects have been treated linearly. We allow both trend and
covariates to affect SLR nonlinearly, which is more consistent with the type of nonlinear differential equation models
with possibly chaotic dynamic that are favored by meteorological offices concerned with numerical weather prediction,
see Lynch (2006). We find evidence of nonlinearity and indeed some interaction effects between the main variables.

Literature Review. The class of nonstationary processes is extremely broad, and different types of nonstationarity
can generate quite different behavior and require quite different analytical techniques. There are two main approaches
to depicting the structure of nonstationary data. One is the unit root theory for integrated time series (or similar
techniques for fractional integrated time series that covers unit root process as a special case). This theory and associated
techniques are studied and developed by Park and Phillips (1999, 2001), Marinucci and Robinson (2001), Wang and
Phillips (2009), Hualde and Robinson (2011), Wang (2015) and Dong et al. (2016), among others. A second setting
to describe nonstationarity is based on the class of null recurrent Markov processes, that was mainly developed by
Karlsen and Tjgstheim (2001), Karlsen et al. (2007), Mykelbust et al. (2012) and Li et al. (2016b). The theory of linear
models including all these types of variables is well understood, but the analysis of nonlinear models is at an earlier
stage and presents certain challenges. In an unpublished paper, Schienle (2008) considers an additive nonparametric
regression model with multiple nonstationary variables based on the kernel backfitting methodology. There are some
papers that consider diverse types of variables in one model. Although they have accommodated all the three types of
regressors, Chang et al. (2001) study a nonlinear parametric model where all functions are supposed to be known up
to a finite dimensional vector of parameters; Park and Hahn (1999) investigate linear regression with an I(1) regressor
and time varying coefficients depending on a fixed design; Xiao (2009) studies a functional-coefficient cointegration
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regression where the coefficients depend on a stationary variable and the regressor is an I(1) vector; Cai et al. (2009)
study a similar model with more flexibility; Wang (2015) considers the estimation of a nonparametric regression model
with both stationary and nonstationary variables via the kernelmethod; Li et al. (2016a) investigate the convergence
of sample covariances that have an I(1) process and a variable that can be a fixed design or a random design (but not
both); more recently, Dong and Linton (2018) consider an additive nonparametric model with the three types of variables
considered here and use standard least squares sieve estimation. Additivity is a strong assumption ruling out interaction
effects and can be violated by some datasets. In recent years some effort has been devoted to relax the compact support
assumption in nonparametric estimation. Chen and Christensen (2015) establish the uniform consistency with optimal
rate for sieve estimators with weakly dependent data. They propose a sequence of expanding compact sets to approximate
the unbounded support.

Throughout the paper, ||u| is Euclidean norm for any vector and ||A|| = /tr(A"A) is entry-wise norm for any matrix;
ff(x)dx is an integral on the entire R; A, =< B, means that A,/B, is bounded from below and above uniformly in n; C
can be different constant at each appearance.

The rest of the paper is organized as follows. Section 2 gives assumptions and the estimation procedure; Section 3
presents the asymptotic theory for the estimator proposed in the preceding section; Section 4 shows the results of
numerical experiments followed by the empirical study in Section 5; and Section 6 concludes. All technical lemmas are
given in Appendix A and the main results are proven in Appendix B. The proofs of lemmas, some secondary experiment
results and a discussion of heteroscedasticity setting are shown in the supplementary material file.

2. Assumptions and estimation procedure
2.1. Assumptions
We first give the structure of the integrated regressor x;.

Assumption A.

A.1 Let {¢j, —oo < j < oo} be a scalar sequence of independent and identically distributed random variables having
an absolutely continuous distribution with respect to the Lebesgue measure and satisfying E[¢;] = 0, E[ef] =
1, E|e1|" < oo for some q; > 4. The characteristic function of ¢; satisfies that f |A||E exp(iteq)|dr < oo.

A2 Let we = Y, Yjej, where » = j|¢j| < oo and ¢ := Y ¢ # 0.
A3 Fort > 1, x; = x;—1 + wy, and xo = Op(1).

The conditions of Assumption A are commonly used in the literature on nonstationary unit root time series (see,
e.g. Park and Phillips, 1999, 2001, Wang and Phillips, 2009, Dong et al., 2016). The innovation variables {¢;} are building
blocks for the linear process w; from which the regressor is integrated. All properties for x; given in Lemma A.1 that are
crucial for our theoretical development are derived from the I(1) structure and Condition A.1 postulated for the innovation.

From the structure of x;, we have df = IE(xf) = 1%t(140(1)) when t — oo simply by virtue of the Beveridge-Nelson
decomposition for w; (Phillips and Solo, 1992, p. 972). More importantly, because of x; = Op(+/t), the third argument of
mg(-, -, -) has to have R as its support.

Assumption B.

B.1 Suppose that z; = p(e;, ..., €—441; ¢) With fixed nonnegative integer d and measurable function p : R*! > R,
where the sequence {7;} is independent of {¢;}, and z; has finite second moment; moreover, suppose that {»;} is a
strictly stationary «-mixing process with mixing coefficients «(i) such that Z:’:ol a(i) < oo.

B.2 Suppose that f is a density function on V,, and if V; is a bounded interval it is continuous in the interior of V, and
satisfies additionally f(z) > ¢ > 0 for some constant c. Suppose also that there exists an orthonormal function
sequence {p;(-)} in the space [*(V;, f(z)) such that sup,y, sup;-o |pi(z)f /%(z)| < oco.

B.3 Suppose that e; and the filtration 7; , = 0(zj41,€j,j < £;X1,...,X,;) form a martingale difference sequence such
that almost surely E(e?|F;_1,,) = 02 and maxi<¢<; E(|e;|%|Fi_1.n) < C < oo for some g, > 4.

Condition B.1 allows z; to be correlated with x; by sharing the same shocks ¢, ..., €;_4.1, but in the special case d = 0,
where p(e, ..., €—d+1; ne) = p(ne), they could be mutually independent. By construction, z; itself is strictly stationary
and «-mixing and its mixing coefficients satisfy the same property as {n.}. Here, the condition ) -, a(i) < oo is very

much weaker than the common requirement in the literature where researchers usually impose that Z;’; o¥/CH)(4) < 00
for some § > 0, which implies a much quicker decay rate of «(i) when i increases. See, for example, Assumption A6 in Cai
et al. (2009, p.103) and Assumption 1 in Dong et al. (2015, p.303). It will be made clear that this is due to the use of the
weighted least squares in our estimation procedure. Precisely, the use of the weight makes all variables bounded so that
Billingsley’s inequality, |cov(X, Y)| < 4||X||«||Y|lco, is applicable. See Bosq (1996, p.20). Hence, the summability of «(i)
is sufficient.
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The density f introduced in B.2 is not necessarily the actual Lebesgue density of z;, and the condition f(z) > ¢ > 0 is
satisfied by several orthonormal sequences when its support is compact. For example, f(z) = (1 —2z?)"2 > 10on [-1, 1]
for Chebyshev polynomials of the first kind; f(z) = 1 for the sequence {g;(r), j > 1} defined in the next subsection. It is a
user-chosen density defined on V (= V,, the subscript is suppressed henceforth), but which one is chosen depends on how
large the Hilbert space L?(V, f(z)) is required or expected. For example, if V = R, then L?(V, 1/(1 4 z?)) is much smaller
than L*(V, e’ ). Normally, the thinner the tail of the density, the larger the Hilbert space. Condition B.2 also stipulates an
orthogonal sequence {p;(z), i > 0} with respect to f(z). Most orthogonal sequences used in the literature are polynomial
sequences and very much depend on the specification of V. If V = R, the sequence may be Hermite polynomial sequence
orthogonal with density f(z) = e*ZZ; if V = [0, 00), the sequence may be Laguerre polynomials orthogonal with density
f(z) = e7%; if V. = [a, b] is bounded interval, one may use trigonometric functions or Chebyshev polynomials possibly
with a linear mapping such that they are orthogonal on [a, b].

Notice also that the uniform boundedness in Condition B.2 is fulfilled for all bases mentioned above after normalization
(such that they become orthonormal). In fact, (1) if p;(z),i > 0, are Laguerre polynomials with density f(z) = e~ and
V = [0, 00), then sup,.y sup;so Ipi(2)f V2(2)] < 1; (2) if pi(2),i > 0, are Hermite polynomials with density f(z) = e™*
and V = R, then sup, .y sup;o [pi(2)f *(z)| < 7=~ "/4; (3) orthogonal trigonometric function sequence satisfies the uniform
boundedness automatically when the support is a bounded interval. In this case f(z) = 1, and again {g;(r), j > 1} defined in
the next subsection is an example. See pages 205 and 208 of Erdelyi et al. (1953), Indritz (1961), Todd (1963) and Gautschi
(2004) for more details.

The martingale difference structure for the error term in Condition B.3 is extensively used in the literature such as Park
and Phillips (1999, 2001) and Wang and Phillips (2009) among others. However, the inclusion of {x;, t < n} is a bit strong.
In defence of this assumption, some papers impose the independence between the unit root process and the error term
(Wang and Phillips, 2009, Theorem 3.1), which is even more stringent than our assumption, and some papers use the
strong approximation for integrated process to Brownian motion (Kasparis et al., 2015, Assumption2.2(b)), which also
has a theoretical drawback pointed out by Wang (2014). To circumvent the drawback, Wang (2014, 2015) and Wang and
Phillips (2016) establish weak asymptotic theory for a kernel estimator that instead uses the information {x;, s < t+ 1} in
Fe.n. To do so, these papers take advantage of the form of the kernel estimator and establish the joint weak convergence
for the numerator and denominator.

It is worth noting that with the inclusion of {x;,t < n} in the information filtration, we establish self-normalized
normality for our sieve estimator; we point out in the next section that there are some situations where the inclusion
can be relaxed.

2.2. Estimation procedure

The sieve estimation method is used to estimate the unknown function in model (1.1). This gives rise to the questions
of: which function space does the unknown function belong to, and which basis should be used to represent it? The
function space should be sufficiently large to include a wide range of reasonable choices for the regression function and
to accommodate a broad class of processes for the regressors.

We assume that

mo(r, z, x) € [2([0, 1] x V X R, ¢(z, X)), (2.1)

that is, mo(r, z, x) satisfies fff[o,uxva mf)(r, z, X)p(z, x)drdzdx < oo, where ¢ is a density function defined on V x R. Here,
we take ¢(z, x) = f(z) exp(—x?), where f(z) is given by Assumption B. Henceforth, denote L2 = [*([0, 1] x V x R, ¢>(z X))
for convenience. For L2 we construct a basis as the tensor product of the bases chosen from [2[0, 1] = {u(r) : fo r)dr <
oo}, [2(V, f(2) )t [, P*(2)f(z)dz < oo} and L*(R, e) = {g(x) : J g%(x *dx < oo}, respectively. We stlpulate

these as follows

Firstly, let o(r) = 1, and for j > 1, ¢;(r) = ﬁcos(njr). Then, {g;(r)} is an orthonormal basis in the Hilbert space
1%[0, 1]. Here, the inner product is given by (u, uy) = fol uy(r)uy(r)dr for any uy(-), u(-) € L*[0, 1] with the induced
norm |u||> = (u, u) for any u(-) € L?[0, 1]. It follows that (¢;(r), @j(r)) = & the Kronecker delta. Note that {¢;(r)} can
be replaced by any other orthonormal basis in L?[0, 1], as shown in Chen and Shen (1998), Gao et al. (2001) and Phillips
(2005) among others. However, with this specific basis other than a general one, we do not need any assumption on it.
All quantities related to the basis are easily and directly calculated.

Secondly, the orthogonal function sequence {p;(z), i > 0} stipulated in Assumption B is chosen as an orthonormal basis
of [2(V, f(2)).

Thirdly, we choose from the space L*(R, e‘xz) the Hermite orthogonal polynomial sequence {H;(x)} as the basis where
the inner product is given by (f1,f,) = ffl(x)fz(x)e"‘zdx with the induced norm ||f||> = (f,f). Recall that Hermite
polynomials {H;(x)} are defined by

} d
Hi(x) = (—1Y exp(xz)a exp(—x*),  j=>0, (2.2)
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and satisfy | Hi(x)Hj(x) exp(—x*)dx = /7 2/j!8;;, meaning that they are orthogonal with respect to the density exp(—x x2).
It is well-known that {H;(x)} is a complete orthogonal polynomial sequence and hence h;j(x (V72 )"Y2Hj(x) is an
orthonormal polynomial basis in L*(R, e*"z). Unlike in the space 1[0, 1], it seems 1mp0551b1e to have an orthonormal
polynomial basis other than Hermite polynomials {H(x)} in L*(R, e ). This is because in general an orthogonal
polynomial sequence is uniquely determined by the support and the density up to a constant.

Finally, the tensor product {gi(r)} ® {pj(z)} ® {he(x)} is an orthonormal basis in Lé. For better exposition, denote
Bije(r, z, x) == ¢i(r)pj(z)he(x), which is used to represent the expansion of the unknown regression function mjy into an
orthogonal series, i.e.

o0
mo(r,z,x) = Z CijeBije(r, 2, X),
iJ,0=0 (2.3)

where ¢ = /// mo(r, z, X)Bije(7, z, X)¢(z, X)drdzdx.
[0,1]xV xR

Let k;, i = 1,2, 3, be positive integers and K = kikyks. Define the truncated series with truncation parameter
k = (kq, k2, k3),

k1—1ky—1k3—1

w(1r,2,X) Z Z ZCUZB,JZ r,z,X) = Z(r,z,x)'c (2.4)

i=0 j=0 ¢=0
where Zi(r,z,x) = (Bogo(r,z,X), ..., By, ~1,ky—1,k3—1(T, 2, X)) is the K-dimensional vector of the basis functions used
to approximate the regression function in which By (r, z, x) is organized in a certain ordering and ¢ = (Coo, .-,

Cky—1,ky—1,k3—1) is in the same ordering.
The residual after truncation, denoted by y4(r, z, x), is the series that consists of all terms for which (i,j,¢) € K =
{0,..., k1 —1} x{0,...,k; — 1} x {0, ..., ks — 1}. That is,

Y(r, z, X) Z Cije Bije(T, Z, X), (2.5)
(i.j,0)gK
and it can be spelt out as a sum of seven terms including the following three:
(o] (o]
yi(r.z.x) = Y bBp(r.z.x), yar.z.x) = Y cub(r.z.x),
i=ky,j=0,¢=0 i=0,j=ky,¢=0
o0
vau(r, z,x) = Z CijeBije(r, Z, X),
i=0,j=0,¢=k3

which constitute the leading terms in y(r, z, x) (they are slower in convergence than the other terms.!) In view of the
expansion (2.3), the truncation series (2.4) and the residual (2.5), model (1.1) can be written as

Ve = Zi(Te, Ze, Xe) € + YT, 26, Xe) + €, (2.6)
for t = 1,...,n. To write all equations in (2.6) into a matrix form, let: y = (y1,..., )", Zw = (Z(71,21,%1), ...,
Zi(Tn, Za, %)) an n x K matrix, y = (yi(t1, 21, X1), - - - » Yi(Tn, Zn, X2))', and e = (eq, ..., e;)'. Hence, we have

y=Zxc+y +e. (2.7)

We are now ready to define our estimator. Let W,, = diag(¢(z1, X1), ..., ¢(z,, X5)). The estimate of the coefficients is

derived from a weighted least squares (WLS)

= arg min(y — Zuc) Waly — Zuc), (2.8)

ceR!

which yields the closed form solution ¢ = (Z,T,KW,,ZHK) nK Why. Then, let for any r € [0, 1],z € V and x € R,
fin(r, z, %) = Zi(r, 2, X)'C, (2.9)

be an estimator of the unknown mg(r, z, x).
The WLS method facilitates the derivation of our large sample theory below and makes the estimation procedure
robust. This is because the density involved in the estimation would automatically “draw back” outlier observations.

. . 1
1 To see this, take yy(r, z, ) as an example. Rewrite y(r, z, x) = Zikl ci(z, x)gi(r) where ci(z, x) = Z}’iwzo Cijepj(z)he(x) = fo mo(r, z, X)gi(r)dr
can be viewed as the coefficients in the expansion of my(r, z, x), for given (z, x), in terms of {g;(r)}. Thus the decay rate of y(r, z, x) is only related
to the series of univariate function expansion, and such rate can be found in Lemma A.5. Similar interpretation goes to y,(r, z, X) and ysk(r, z, X).
All other residual terms have at least two truncations so they converge quicker than these three.
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Moreover, without the WLS approach, we have to make stronger condition on the o¢-mixing coefficients in Assumption B
and higher moment condition on the orthogonal functions p;(-), or we have to truncate the support of the argument in
mp. In addition, although Wang (2015, p.209) considers a nonparametric model including stationary and nonstationary
variables using the kernel method, the methodology therein may not be usable for our model (1.1). This is because the
kernel estimator suffers from a degeneracy issue found in Phillips et al. (2017) when the deterministic trend is involved,
while as illustrated by Park and Hahn (1999) and our paper below, the weighted sieve estimator does not have such an
issue. Hence, dealing with model (1.1), the sieve method has certain advantages over the kernel method.

Nonetheless, there remains the question of how we should choose the density function. As we mentioned previously,
the choice of the density determines the function space where the regression function resides. If the support V of z is
bounded, one may simply use f(z) = 1 without any loss of generality. In the unbounded support case, there is a trade-off
to be made: a density f with very thin tails will allow a very large class of regression functions that can grow rapidly in
the tails, on the other hand, the larger the space allowed, the higher the asymptotic variance.

Before showing the asymptotic theory of the estimator, we briefly discuss the quantity of ||Z,(r, z, x)|| that is crucial
in our theory because it determines partially the convergence rate of our estimator. By definition,

k1—1 ky—1 k3—1

IZ(r, 2. )17 = Y @F(r) Y pi(2) Y hi(x)
i=0 Jj=0 =0

A straightforward calculation similar to Lemma A.4 in Dong and Linton (2018) yields

|l

Zw, (r)=1+0(k;"), (2.10)

when k; — oo forr € (0, 1). Moreover, in the mathematical literature the reciprocal of 2}251 pjz(z) is called the Christoffel

function for a general orthonormal polynomial sequence. See (3.3) of Nevai (1986, p.6), (33) and (38) of Maté et al. (1991,
p.445) and Levin and Lubinsky (2001, p.18). When V = [—1, 1] and for the density f(z) in Assumption B.2, Corollary 1.3
of Lubinsky (2009, p.917) gives

l<2 1

lim P Zp] = [nf(z)V/1 - 221", (2.11)

ky—o0

k212

for every z € (—1, 1); for any bounded interval [a, b] the diverging order of » .2/ pJ z) is the same as O(k,) for any

j=
orthonormal polynomial system on the interval with density satisfying Assumption B.2 and any z € (a, b), because the

linear mapping z = 2(u —a)/(b —a) — 1 transforms [a, b] into [—1, 1]. When the support is R and the density is exp(—x?),
as a special case, Theorem 1.1 of Levin and Lubinsky (1992) shows that

k3—1

12
hi(x) < ex max { k23,1 - L , 2.12
T Z p(x )( {3 o (2.12)

uniformly for k3 > Tand x € {u: |u| < +/2k3(1+ Lk_2/3)} where L > 0 is a constant. Here, the relationship a < b in the
above means that there exist posmve absolute constants ¢y, ¢; such that ¢; < a/b < c;. Thus, if 1 — |x|/+/2ks > ks 2/3,
we have Zk3 1h2 = +/ks. Notice that the constant exp(x?) in the equivalence relationship is also important at least
in practice, though 1t is innocuous in theory. This order is also applicable to {p;(z)} when V = R and f(z) = exp(—z2).
One may be curious about why the order is 4/k; other than ks. Corollary 1.4 in Levin and Lubinsky (1992) shows that
sup,eg [he(x)|e™*/2 < €=1/12 for £ — oo, which implies Z’f‘:}] h2(x) < ce¥ legl €716 = O(k3/®). This partially gives the
answer.

Accordingly, we may conclude for fixed r € [0,1],z € V,x € R, the order of ||Z(r, z, x)||? is O(kikz+/ks) when
V is bounded or O(ki+/k2k3) when V = R. Here we assume the condition on x and/or z is fulfilled automatically,
ie. 1 —|x|/v/2ks > k;z/ ? because we allow the truncation parameters to diverge. Notice also that the dependence of
1Z(r, z, x)||> on (r, z, x) asymptotically boils down to

®(z,x) = {I:ﬂf(Z)M]_1 exp(x?) ifV =[-1,1],
exp(z® +x%) ifV =R,

an explicit and fixed function. Moreover, from the above analysis one can easily find the lower and upper bounds for
1Z(r, z, X)||*> when min(ky, k, k3) — oo.
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3. Asymptotic theory
3.1. Main result

Notice that for any (r, z, x) in the domain of myg, the estimation error my(r, z, X) — mo(r, z, x) has leading stochastic
term

Zi(r, 2, X) (Zyk WaZuk )" Zy Whe

under Assumptions A, B, and C given below. From this, a self-normalized limit theory will be established. It follows from
Assumption B that the normalizer should be the square root of

Za(r,z, X i= 02 Zi(r, 2, X) (Zy WaZuk )~ Ze W2 Zuit (Zyye WeZai) )" Zi(r, 2, X), (3.1)

which includes all observations as well as the conditional variance of the error term. In Lemma A.4, we show approx-
imations for Z,:KWnZnK and Z;KanZnK, namely, there exist two matrices ¥, and Zy defined in Appendix A such that
||%”Z;KW,,ZHK — Wyl = op(1) and || %27 W2Z, — Ex|| = 0p(1). Denote the minimum and maximum eigenvalues of W

et n
and Zg by A¥.  A¥  AZ and AZ_, respectively. We now present Assumption C.

min’ “*max’ “*min max’

Assumption C.

C.1 Suppose that mg(r, z, x) € Lj, and my(r, z, x) is differentiable with respect to r, z and x, respectively, up to the orders
of s1, 55 and s3.
C.2 Suppose that ki, k, and ks are divergent as n — oo, and that A2, < K1, 22 =< K2, A% < K~S1 and A%

= K52
max
in probability uniformly in n, ¢; > 0 and ¢; > 0, i = 1, 2, such that:

(a) K+tutAatal; = o(n).
(b) K52 /nmax(k; > log?(ky), ky ™, k5 ™) = o(1).

(©) K252 /mmax(k; > log?(ky), k2, k1) = o(1).

Assumption C.1 summarizes the properties of the regression function where the differentiability guarantees the
convergence of the orthogonal series expansion of the function my with a certain rate. Assumption C.2 allows that the
smallest eigenvalues of ¥ and Zy decay to zero whereas the largest ones diverge to infinity with a certain rate. We
emphasize that assuming the dependence of such eigenvalues on sample size is not new in the literature. See, for example,
Assumption 5, Lemmas 2.1-2.4 and Theorem 3.2 in Chen and Christensen (2015) and Corollary 1 in Chang et al. (2015).
Certainly, when (; = 0 and ¢; = 0, i = 1, 2, the requirement implies that all eigenvalues are bounded below from zero
and above from infinity, a quite common assumption. See also Theorems 1-4 and Corollaries 2-3 in Chang et al. (2015),
and Condition A.2 in Belloni et al. (2015).

Moreover, the unit root process plays a different role from the other two variables in our analysis, which is reflected
in Assumption C.2(a) where an extra ks is involved. It can be seen from the proof of Lemma A.4 that, when ¢; = 0 and
¢i=0,i=1,2, and if my(r, z, x) = mg(z), the condition becomes k% = o(n), which coincides with the literature such
as Newey (1997) and Ai and Chen (2003), while if mq(r, z, x) = mg(x) the condition becomes kg = o(n), which is the same
as in Dong et al. (2016) and Dong and Gao (2018). Meanwhile, Assumptions C.2(b)—(c) are undersmoothing conditions
that guarantee the negligibility of the truncation error terms; note that the truncation parameters in different directions
play different roles depending on whether their supports are bounded (r) or unbounded (x and potentially z).

Theorem 3.1. For fixed r € [0, 1], z € V and x € R, under Assumptions A-C, we have
X, (r, 2, X)[(r, z, X) — mo(r, z, x)] —p N(0, 1) (32)

as n — oo where X, is given by (3.1).
Furthermore, let for (r,z,x) # (', 2/, X),

:
2 R A AN ) Zk(r» z, X)T Zk(ra z, X)T
An(r, Z,X,r,z,X ) — O‘e (Zk(r/7 Z/, X/)T QnK Zk(r/, Z/, X/)T )
a 2 x 2 matrix. Then, we have

- . (T, 2, X) — mo(r, Z, X)
An (r, Z, X; r/v Z/, X/) <A n/ ’ /) _ mo(r’, Z,, X/) —D N(O7 12)
as n — oo provided that A, is invertible, where I, is the identity matrix of order 2.
The proof is given in Appendix B. The result in (3.2) is a self-normalized version of normality. Note that %"K”‘ZQ
I1Zk(r, z. x)II> < Z2(r,z,x) < ©K2+2|Z(r, z, x)|? in probability under Assumption C. Hence, the convergence rate of
the estimator i, (r, z, x) depends on both ||Z(r, z, x)||> and the related eigenvalues. As explained in the preceding section,
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when V is bounded, the order of ||Z(r, z, x)||? is O(kiky+/k3) provided that the point z is an interior point of V; when
V = R, the order of ||Z(r, z, x)||? is O(ki+/kzks). While the quantity ®(z, x) induced by (2.11) and (2.12) affects the
efficiency, it does not affect the convergence rate of the estimator under our assumptions.

If mo(r, z, x) reduces to mp(x) and ; = 0 and ¢; = 0, i = 1, 2, the rate becomes /ks/n. This is comparable with
Theorem 3.1 of Wang and Phillips (2009) where the unknown function in a cointegrating regression is estimated by the
kernel method and the estimator has convergence rate 1/4/+/nh in which h is bandwidth. See Remark 3.3 of Wang and
Phillips (2009, p. 722).

Note that [|fa(r, z, ) —mo(r, 2, X)|%, = [[E—cl*+Ilyl>
¢

2 by the orthogonality of the basis functions. This can give some

clue about the choice of k = (kq, k», k3). Basically, the optimal k should balance the variance E[[¢ — c||? and the squared

bias ||yk||fz. In the simulation study we investigate a cross-validation method for selection of the tuning parameters that
¢

is adapted to our framework, but we have no theoretical result on the choice of k.?

Notice further that the 2 x 2 matrix Aﬁ has elements on the diagonal proportional to ||Z(r, z, x)||? and ||Z(r’, Z/, X')
and elements off-diagonal Z(r, z, x)' Z\(r’, z/, X'), apart from a factor d,/n and the impact of related matrices. Hence, the
convergence rate in the second assertion is the same as the first result of Theorem 3.1. Normally, mi,(r, z, x) — mo(r, z, X)
and mu(r', z', x') — mo(r’, z/, X') do not have independent limits as they share the same I(1) process that has a random
limit. However, they are asymptotically conditionally independent, and this is significant because it allows averaging
over (r, z, X), as occurs inside semiparametric or partial mean functionals (see the next section), to improve the rates of
convergence.

To make statistical inference, the nuisance parameter o, in X, should be replaced by a consistent estimator. Note that
the estimator of o, is different from the usual one, due to the use of WLS and the involvement of the unit root process.
Here, 52 is defined from €, with weight depending on the observations rather than the usual equal weighting.

&

Corollary 3.1. Lete; =y, — Mn(t;, 2¢, %) for t = 1, ..., n. Define

n -1 n
= (Z d(z¢, X¢ )) Z?f o(z¢, x¢).
t=1 t=1

Then, under Assumptions A-C, 0, —p 0, as n — 00.

The proof is given in Appendix B. This result facilitates the construction of consistent pointwise confidence intervals.

We conclude with a discussion regarding the inclusion of {x;,t < n} in 7, stipulated in Assumption B. We would
like to point out that such an inclusion is not necessary in the following two situations. First, if we are only interested in
the order of M, — mg in either norm or point-wise sense, we can use a usual filtration J—‘;fn = 0(€j, Zj+1, Xj+1,j < t) in the
martingale structure in Assumption B. Indeed, for any (r, z, x) in the domain of mg, we have

- dy .
[my(r, z, x) — mo(r, z, x)| < —IIZk(r 2, )| (i)~ N Zae Wale -+ )1l + (T, 2, %)].

Hence, one only needs 7}, to calculate the conditional variance of ||Z;K Wiy (e + y)||. Second, the inclusion can be relaxed
if a heteroscedasticity structure is imposed such as e; = o(t, z, X;)er where ¢; is independent of {z;, x;} with some
condition on o(-). Then, the result of Theorem 3.1 still holds if F; , is replaced by 7, and X(r, z, x)? is substituted by

E:(n z, X)2 = Zk(r» z, X)T (Z;K WnZnK )_IZ;KWn-QanZnK(Z,:KWnZnK)_1Zk(r, z, X)7 (33)

where 2, = diag(o(t1,21,X1), . . ., 0(Tn, Zn, Xn)). Moreover, if we denote 2, = diag(é?, ..., &%), and let £*(r,z,x)? be
obtained from X¥(r, z, x)* with replacement of §2,, by §2,,, under certain conditions we may show X*(r, z, x)?/ Zi(r, z, x)?
—p 1as n — oo. See Section E in the supplementary material of the paper.

3.2. Marginal effects

We next consider certain linear functionals of mg(r, z, x), which are often of interest in applications where they may
represent average marginal effects. Here, we discuss the estimates of

1 1
ome(r,z, x ome(r, z, x
81 :f f de(r, z, x)7 82 — / / de(r, Z, X),
VxR VxR

9
53_/ / m"r”)d (r. 2. %), 512_/ / Pmolr 2. %)y .
VxR VxR aroz

2 Our central limit theorems reflect the undersmoothing condition that downplays the bias terms, which leads to “suboptimal” convergence rates
albeit the convergence rates we achieve are arbitrarily close to these “optimal rates”, where it should be acknowledged that we know of no formal
theory of optimal estimation in the current context. It is widespread practice to employ undersmoothing to facilitate simple inference methods,
although there is some recent work that tries to take account of bias terms in inference. We shall leave this for future research.
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813 —/ / mO(r Z X)d (r Z, X 523 —/ / mO Lz X)d (r7Z’X)7
VxR rox VxR 0Z0X

where dw(r, z,x) = ¢(z, x)drdzdx. We take this specific weighting for simplicity and because it reflects our choice of
parameter space. One could choose other weighting schemes, especially regarding the r, z coordinates, but our theory
requires downweighting of the x coordinate comparable to e and so any weighting scheme should satisfy c¢(z, x) <
w(r, z, x) < C¢p(z, x) for positive finite constants ¢, C. Many papers consider density weighted (which is comparable with
our weighting scheme) average derivatives for the same technical reasons, see for example Powell et al. (1989).

Because of the orthogonality of the basis, all these quantities can be expressed by the coefficients in the orthogonal
expansion of my. We can naturally define the estimators of the §’s simply by replacing mg with i, e.g.

~ ! 3Mn(r, z,
81 ::/ / de(r,z,x).
VxR ax

Note that the partial derivative will eventually be taken on the basis functions for mu(r, z, x) = Z(r, z, x)'C, which is of
linear form. In the next result we state the asymptotic properties of the s,

Theorem 3.2. Under the same conditions as Theorem 3.1, we have

2181 — 81) —p N(0, 8/7), B,'(85 — 82) —p N(0, 8),
B3n (85 — 83) —p N(0, 8/7), B, (812 — 812) —p N(0, 64/7),
B;,'(813 — 813) —p N(0, 64/7), B, (823 — 823) —p N(0, 647),

as n — oo, where denoting 2u = (ZyWnZnk ) Z 3 W2Zuk (Z3 e WaZnk )1,

n
B, =02 032 l3, Bl =02 L12wl1, B3, =022l
Bin Z:Uez L;.QnKLz, Bén = Uez L;.in(lg, Bén = O'e2 Z;lﬂnﬂn,
and €3 = (0,0,1,0,...,0), ¢, =(0,1,0,...,0), £1; =(0,...,0,1,0,...,0)" where in the last vector 1 is located at the
same place as coq1 in the c, Ly is defined to be a sparse column vector (viz. most elements are zero) where 1’s conformably are
in the same place as cijoo (odd i only and i < ky — 1) in c, L, is defined similarly but 1’s conformably are in the same place as

Ci1o (odd i only and i < ky — 1) in ¢, and sparse L3 with 1 at the same place as cjp; (odd i only and i < ky — 1) in c; all of
them are of dimension K.

All the quantities 1n the theorem have a faster convergence rate than the function estimator in Theorem 3.1. To see

this, note that £2,x = lI/ 1_,,< ~1(1+0p(1)) by Lemma A.4. To make the comparison simpler, we temporarily suppose
that all eigenvalues of ll/K and Ex are bounded away from zero and above from infinity, i.e. ; = 0 and ¢; = 0 fori = 1, 2
in Assumption C. Therefore, B d . Hence, 61 has Tate n~14 whereas M, has rate || Z(r, z, x)||n~"/4. The comparison of

convergence rates between any one of all the other &'s and i, is clear because B, and B2, are all proportional to & and
B2 , B2 and B, are all proportional to ¢ “&J/k1. One thing we have to mention is that in the derivations for 43, 512 and 823

we specify the sequence {p;(z)} to be Hermite polynomials, otherwise we have to make a great number of assumptions
on {pj(z)}, which we eschew for space limitation reasons.
3.3. Additive and multiplicative separability

The above result is valid without any further functional form restrictions. We next consider the case where we
are willing to impose a separability assumption on the regressions surface, either additive separability mq(r, z, x) =

Bo(r) + go(z) + qo(x) or multiplicative separability mg(r, z, x) = B1(r)g1(z)q:(x). Similar to Linton and Nielsen (1995),
we shall consider the following contrasts

1
xo= [ [ molr.z. 0@z )= [ otz pwodzas
VxR VxR
o= [ mlrzxuodras, o= [ motr.z, i,
[0,1]xR [0,1]xV
where w(x) = 7~12¢=% and f(z) is given in Assumption B. Notice that actually xo = cogo the first coefficient in the

expansion (2.3).
In the additive case, we have:

1
Yo = / Bo(r)dr + f go(2)f(2)dz + f do(0w(x)dx,
0 1

Sa(F) =Bo(r) + 01, 0y = f go(2)f (2)dz + / do(w(X)dx,
1%
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1
) =2+ 00, 0= [ patrkir+ [ aolonwlod,
0

1
() =qo(x) + 65, 63 = / Bo(r)dr + / gl2) (2)iz.
0 \%4

and accordingly x1(r) + x2(z) + x3(x) — 2x0 = mo(r, z, x). In the multiplicative situation, we have:

1
Yo = / By(r)dr / (2 (2)z / G (Ow(x)dx,
0 1%

(r) =miBa(r), = f () (2)dz f G (w(x)dx
1%
1

10(2) =magi(2). 2 = / Bu(r)dr f B (wx)dx,
0

1
() =T (x), 3 = f Bu(r)dr / (2 (2)z
0 14

and consequently X1(r)X2(z)x3(x)/xg = my(r, z, x) provided that xo # 0.
Naturally, we estimate x;(-) by

Xo =Cooo, xi(r) :/ mn(r, z, X)f (2)w(x)dzdx,
VxR

B = [z outodde, B0 = [ 2oz
[0.1]xR [0.1]xV
Define four K-dimensional vectors:
€ :=(1,0,...,0), Py,(2) :=(0,...,0,po(2),...,Pr,1(2),0,...,0),
D, (1) =(@o(r). ... 91y -1(r). 0,.... 0), Upy(x)" = (0. ..., 0, ho(x). ... hiy_1(x)).
and define four quantities related to conditional variances below:
A(Z)n 1=<7925;9n1<e1, A%n(r) = Uezq)h(r)T-QnK‘ph(r),
A3(2) =07Piy(2) RukPiy(2), A5,(X) == 07 Upy (%) Ruic Ui (%),

where $2,¢ is defined in Theorem 3.2.

Theorem 3.3. Under the same conditions as Theorem 3.1, we have

Aoy (Xo — x0) =p N(0, 1), Ay(r)™'(Xa(r) — x1(r)) —p N(0, 1),
Aon(2) ' (X2(2) — x2(2)) = N(O, 1), Asn(%)”(F3(x) — x3(x)) —p N(O, 1),

asn— oo forany r,z and x.

Similar to the comment for Theorem 3.2, apart from the affect of the eigenvalues of ¥ and Zy, AOn is proportional
to du/n, while A2, < (du/n) 315" @2(r), A3, = (dn/m) 1% P3(2) and A3, = (da/n) Y 3%o" h2(x), and these three
sums involved can be spelt out from the analysis of ||Z(r, z, x)|| in Section 2. As a result, the convergence rates in
Theorem 3.3 are all faster than that in Theorem 3.1. This is because the integrations shorten the vector of basis functions
by orthogonality. We provide a simulation study in the supplement of the paper that illustrates how the results of this
section can allow one to discriminate between additive and multiplicative structures.

4. Monte Carlo simulations

We conduct Monte Carlo simulations in order to validate the relevance of our theoretical results for finite sample
situations. Consider model (1.1) with the following data generation procedure: z; = |&| with & ~ 1ii.d. N(0, 1); the
unit root regressor x; is integrated by an AR(1) process wy, i.e., Xy = x;_1 + w;, where w; = py,w;_1 + €, py = 0.2,
€ ~ 1i.d. N(0,0.22), wo ~ N(0, 1/(1 — p2)) and xo ~ N(0, 0.22); finally, e; ~ i.i.d. N(0, 1). Note that both z; and x, have
unbounded support.
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Table 1
Estimation results for M and G2.
n 400 600 800
Case 1 RMSEz 0.104 0.088 0.077
RMSE;, 0.265 0.247 0.215
Case 2 RMSE7 0.088 0.074 0.065
RMSE;, 0.083 0.059 0.059
Case 3 RMSEz 0.068 0.055 0.048
RMSEgez 0.207 0.183 0.169

For the regression function mg in (1.1), we consider the following three cases:
Case 1. my(t, z, x) = exp(t + x/6) + z;
Case 2. my(t,z) = t(z +2%) + 2;
Case 3. my(t, x) = exp((t + x)/6).

Notice that mg in Cases 2 and 3 are bivariate functions, hence they are special cases of the general model. They are
used to plot 3-dimensional graphs for the estimated functions.

In view of the data process, we adopt {¢i(r)} and {h,(x)} for time series {t;} and {x;} respectively as defined in the
beginning of Section 2.2, while for {z:}, we let {p;(z)} be the Laguerre polynomials. This means that the basis used to
expand my is the tensor product {¢;(r)} ® {pj(z)} ® {h(x)} in Case 1, the tensor product {¢;(r)} ® {p;(z)} in Case 2 and the
tensor product {¢;(r)} ® {h,(x)} in Case 3. More possible choices of basis functions under different scenarios can be found
in Chen (2007).

For the choice of truncation parameters, we follow Gao et al. (2002) to consider the minimization of a generalized
cross validation (GCV) function. Take Case 1 as an example. The GCV function is defined as

(’121,7(\2,’123) = argmin v = Zw)’ V}!ﬂ;{(}}’ — Z"Ka. (4.1)
ik k3 n(1— 222y
For the other cases, we drop k; or k3 in the above definition according to the data generating process.
According to our estimation procedure in Section 2, we construct the weight matrix W, in each case as follows:
Case 1. W, = diag (exp(—x? — z1), ..., exp(—x2 — z,));
Case 2. W, = diag (exp(—z1), ..., exp(—z,));
Case 3. W, = diag (exp(—x?), ..., exp(—x2)).
For each generated dataset, with the proposed estimation procedure we compute two values
w1 = %(T — Zu€) Wy(Y — ZiC) and @y =352,
where C is defined in (2.8), ¥ = (mo(t1, 21, X1), - . ., Mo(Tn, Za, X,))T (this is simplified in Case 2 and Case 3 according to

the function forms), and 2 is defined in Corollary 3.1. Note that = is essentially equivalent to the mean squared errors
under parametric setting. After M replications of the Monte Carlo simulation, we calculate three quantities by

M

) 1 .

), and RMSEj = M;[afz(])—ag]z,
J=

where @(j) and @ (j) respectively stand for the values of @; and @ in the jth replication, and oez = 1 by our DGP.
Moreover, we expect that both RMSEz and RMSEaez to be sufficiently small.
We summarize the results in Table 1. It is obvious that the values of RMSEz and RMSE;ez decrease to 0 as n goes up.

It seems that the convergence of the RMSE for 83 is slower than that of m, in particular in the first and the third cases
where the unit root process is involved. This is because the later is weighted RMSE. Note that these simulations verify our
theoretical results in Theorem 3.1 and Corollary 3.1. (Due to space limitations, some extra simulation results regarding
our discussion associated to additive and multiplicative forms of regression are provided in the supplementary material
of this paper).

In order to visualize our simulation results, we plot ¢'/2f (with n = 800) and ¢'/2m, of Cases 2 and 3 in Fig. 1, where
¢ is the density of the function space as defined in the beginning of Section 2.2. Fig. 1 includes the true ¢'/?my and the
90% confidence interval of ¢'/?fi for each given point based on 1000 replications. As can be seen, the three layers in each
subplot are close to each other though the interval for Case 3 is a bit wider than Case 2 that we understand is due to
the involvement of the unit root process. This further confirms our proposed estimation procedure and the theoretical
development via finite sample simulation.
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Fig. 2. Three detrended time series.

5. Empirical study

It is well understood that global sea level rise is primarily a problem of the rise of global temperature caused by too
much carbon dioxide (chemical formula CO,) and solar irradiance (referred to as SI hereafter). This section studies how
CO, and SI affect SLR using the proposed nonparametric model.

Annual data for SLR, CO, and SI from 1880 to 2005 are used in our study. The data are collected from the websites: SLR
(in mm) from CSIRO,> CO, (in parts per million) from NASA* and SI (in W/m?) from University of Colorado Boulder.” Note
that the range of original data of CO, is from 291.2 to 379.2 parts per million. As we shall show below, this series is an I(1)
process. Therefore, due to the numerical limitation of our computer, if we stick to the current unit, the weight exp(—w?)
will wipe out almost all information when implementing the estimation procedure. To deal with this computational issue,
we change the units of CO, from parts per million to parts per one hundred thousand in this study (i.e., dividing all original
data of CO, by 10). After this, we firstly remove a linear time trend from the three time series in order to get rid of strong
time effects; we plot detrended time series in Fig. 2. All the following calculations are implemented based on the three
detrended series.

3 http://www.cmar.csiro.au/sealevel/index.html.
4 https://climate.nasa.gov/vital-signs/carbon-dioxide.
5 http://lasp.colorado.edu/home/sorce/data/tsi-data.
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Fig. 3. Estimation residuals.

Table 2

Forecasting errors.
n 1 2 3 4 5
FError 1.7333 1.4400 2.5567 2.5532 2.3137

In order to ensure our model (1.1) fits this study well, we implement the Augmented Dickey-Fuller (ADF) test to
examine the stationarity of CO, and SI, and report the relevant p-values 0.9990 and 0.0131, respectively. It is clear that, at
the 5% significant level, we fail to reject the null for CO; (i.e., having a unit root), and reject the null for SI (i.e., no unit root).
Therefore, {z; |t = 1, ..., n} take the data of SI and {x; |t = 1, ..., n} take the data of CO, in model (1.1), respectively.
Moreover, since SI moves between —1 and 1, we adopt the cosine sequence after a linear transformation from [—1, 1]
to [0,1]. Same as the simulation study, the truncation parameters (ki, ko, k3) = (4, 2, 4) are chosen by minimizing the
GCV function. For the sake of space limitation, the detailed results associated to the GCV function are reported in the
supplementary file of this paper.

For the purpose of comparison, we also consider a linear parametric model as follows:

= Po + Bitt + B2zt + B3xc + e (5.1)

The RMSE (i.e., \/ %(y —3) W,(y —¥), where ¥ stands for the estimate of y) for each model is calculated. Here, to put
the two models on an equal footing, the same W, is used when estimating the parametric linear model (5.1). The RMSE
for the nonparametric model (1.1) is 3.6587, while for the parametric linear model (5.1) it is 5.5823, indicating that
nonparametric model is favorable to the parametric model. Furthermore, we plot the scaled version of the estimation
residuals (i.e., Wn] / 2(y —7)) of the two models in Fig. 3. Clearly, the estimated residuals of both models fluctuate around
zero, but the nonparametric model (NP) yields a better fit in general than the parametric model (OLS). The full estimation
results of linear model are provided in the online supplementary file.

In the following, we focus on reporting the results associated with the nonparametric model. Firstly, we take a look
at the forecasting ability of our nonparametric model (1.1). Specifically, the forecasting errors are calculated as follows:

D exp(—x2)- (s — 5P,

s=n—7+1

SU =

FError =

where ¥; = Z(1, z;, X,)'C; and G is calculated by using the sample {(g, Z,%) | 1 <t < s — 1}. One can also consider
the above expression as a rolling out-of-sample weighted mean squared error. The results are summarized in Table 2. As
can be seen, the forecasting errors are quite stable in terms of the choice of 7 and even smaller than the RMSE reported
above.

Second, we plot the marginal effects of the weak time trend , SI and CO, respectively. Specifically, they are calculated

by
3 o
ME(‘L’)—// (T, 2,X) ) e ME( // m" EL X)d dx
VxR ot [0,1]xR

// an(T z, x) &z
[0,1]xV ax .
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Fig. 4. Marginal effects.

It is not surprising that the marginal effects of SI is a horizontal line, given that the truncation parameter k, = 2. While
the quantity of CO, increases, the marginal effects of CO, tend to increase, which quantifies the well known concern
regarding the “Greenhouse Effect”.

To further examine the interactions of different variables, we also plot the following three quantities in Fig. 5.

9°My(t, z, 9°Mn(7, z,
ME(T, Z) — / de’ ME(T, X) — / Mdl
R dt0z v aTax

02my(t, z, X
[0,1] 0z0x

Although Fig. 4 shows that the marginal effects of CO, increase as CO, increases, the second sub-figure of Fig. 5 shows
that the impacts of CO, become weak as time flies. It seems to suggest that the ecosystem can heal itself eventually. Of
course, it depends on how we protect this ecosystem in the future.

Finally, we take a look at the interaction between CO, and SI in some selected time periods, so that we plot (0.25, -, -),
m(0.5, -, -), m(0.75, -, -) and m(1, -, -) in Fig. 6. These 3-dimensional plots in different periods show the change of the
relationship among the dependent and independent variables. More interesting results can be drawn by looking at other
plots at additional time periods.

6. Conclusion

The methodology we have proposed is relatively simple and works well in theory and practice. It may be adapted to
allow for and exploit parametric short run weak dependence in error terms by adapting the objective function along the
lines of Linton and Xiao (2019). We have not addressed uniform convergence issues as considered by Chen and Christensen
(2015), and this remains an open problem for this model setting; we expect that weighted uniform convergence can be
obtained with suitable rates. Some other extensions of the paper are possible. The scalar variable z; might be replaced by a
vector but, if the dimension is large, semiparametric models like single-index model or additive model are recommended.
On the other hand, unit root vector can be involved in single-index structure like Dong et al. (2016). We may take these
issues up in future studies. In terms of the application, we have found some evidence of nonlinearity and interaction effects
in the relationship between time, CO,, SI, and the output variable SLR. We will not overclaim the statistical significance of
our findings, as Amreheim et al. (2019), but the marginal effect curves seem broadly consistent with evidence presented
elsewhere. Other areas of application where our methods may prove useful are predictive regression for stock returns,
where it is common to consider very persistent possibly nonstationary predictors as well as less persistent possible
stationary predictors (Phillips and Lee, 2013; Andersen and Varneskov, 2018; Cheng et al., 2019).
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Appendix A. Lemmas

Without loss of generality, in what follows let x, = 0 almost surely. It follows that

t

t t L t
= sz = Z Z Yo_i€ = Z Z Yooi | & = Z by i€i. (A1)
=1

=1 i=—o0 i=—oo \ ¢{=max(1,i) i=—o00
Additionally, letting 1 < s < t, x; also has the following decomposition:
Xe = X; + Xis, (A2)

where x} = x; + x; with X, = Zf:sﬂ Y« Vi—a€q containing all information available up to s and x; = 21 1 Dei€i
which captures all information containing in x; on the time periods (s, t]. Let di = (IE[)(?S])‘/2 for later use. Moreover,
Xs = Op(1) by virtue of Assumption A.

Lemma A.1. Suppose that Assumption A holds. For t — oo ort —s — oo,

(1) dﬂxt have uniformly bounded densities fi(x) over all t and x satisfying a uniform Lipschitz condition sup,
lfilx+y) — fi(x)| < Cly| for any y and some constant C > 0. In addition, sup, |f;(x) — ¢(x)] — 0 as t — oo where
¢(x) is the standard normal density function.

(2) Let 1 <s < t. dglxm have uniformly bounded densities fs(x) over all (t, s) and x satisfying the above uniform Lipschitz
condition as well.

This lemma is exactly Lemma A.2 in Dong and Gao (2018) whose proof is omitted here.

Taking into account that in Assumption B.1, z; maybe contains ¢, ..., €411, we decompose, for t > d,
¢ t—d
t—d)
Z be i€i + Z by i€i == Xt +x(t . (A3)
i=t—d+1 i=—o00
Thus, x[ ) and x(t D are mutually independent, and x([d) is stationary since it is a combination of ¢, ..., €;_4,1 with fixed

coefficients vy, ..., Z‘Z;g Y, (i.e., a MA(d) process), while x(f_d)

with t. More importantly, X'~ is independent of z.
Additionally, since z; and z; maybe share the same €’s, we decompose

is still nonstationary since obviously its variance varies

xe =X D 4 ) gyl (A4)
t—d
where xt = Z b i€i, x(tf)z Z by i€
i=t—d+1 i=s+1

x(d*) — X(d) +)_<£d), ng—d*) — xgs—d) _I_}—{(gs—d),
(s—

recalling that xS ) and x(d) are the sums of the first d terms of x; and X, respectively, whereas x;° 9 and Xs
of them in x; and X, respectively. Obviously, all four components in (A.4) are mutually independent.

%579 are the rests

Lemma A.2. Suppose that Assumption A holds.

(1) Let af = E[(x(f*d))z]. When t — o0, Ez;lxi“d) have uniformly bounded densities f;,q(x) over all t and x satisfying
a uniform Lipschitz condition supy |f;/a(x +y) — ftja(x)] < Cly| for any y and some constant C > 0. In addition,
supy lfr/a(x) — ¢(x)] — 0 as t — oo where ¢(x) is the standard normal density function.

(2) For1 <s<tandt—s > d, let dfs = ]E[(xg -4 ) ]. Whent —s — oo, dtS er =9 have uniformly bounded densities fis/a(x)

over all (t, s) and x satisfying the above uniform Lipschitz condition as well.

It is noteworthy that d; = 0(+/t), the same order as d;, and dis = 0O(+/t — s), the same order as d;, noting by that d is
fixed. This fact will be used frequently in the following derivation which, for simplicity, will not be mentioned repeatedly.
The proof of the lemma is much similar to Lemma A.1 so that it is omitted too.

Lemma A.3. Suppose that Assumptions A and B.1(b) hold.

(1) Le~t p(-) be a function such tha{ E|p(z:)| < oo, h(-) be such that f |h(x)|dx < oo. Then, for t — oo, |E[p(z:)h(x;)]| <
Cd; 'Elp(z:)| [ 1h(x)ldx(1+ 0(d; ).
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(2) Let p1(-) and p,(-) satisfy the above condition for p(-); and h¢(-) is integrable and hy(-) is such that f |xhy(x)|dx < oo.
Fori1<s<tandt—s>d,

IELp1(z0)pa(zs ) (xe o) <C a5 "Epi (2 ) Elpa(zs)] | / (0] / Iha(x)ldx

+ CE Elpa(z)Elpa(z) / I (x)ldx / ixha(0ldx,
and if [ hy(x)dx =0,

P20 )22 (3 a1 < G123 Elpa(z0) | Elpalzs) / Iy (x)ldx f ixha()]dx.

The proof is relegated to the supplementary material of the paper. Next, we shall consider the matrices Z;K Wy Znx and
Z;KWHZZHK in the normalizer X,(r, z, x) defined in Section 3. We establish a one-step approximation for the matrices that
facilitates the proof of our main result. Specifically, denote #(z) = pj(z)fl/z(z) and 7 (x) = hy(x) exp(—x?/2) and further
denote @;y(-) = ¢i(- )i (), Py () = Z5(-)2;(-) and Hep(-) = H#4(- )y (-) for brevity. Then, the K x K matrix Z;KWnZnK has
elements Z?:l Dy (t /)Py (z: YHeo (X)) with all (i, j, £), (', j, £') € K. At element level, the one-step approximation is

dn dn
— > Pt /)Py (@ Her (%) = EIPy (@)1 D irlt/m)Her(x:) + 0p(1)
t=1 t=1
umformly over all indices under Assumptions A and B. Let ¥y be a square matrix with dimension K and elements
E[Pj (2 ] “n Z[ 1 @ir(t/n)Hee(x,) in concert with the same ordering as the elements in ZnKW Znk. Thus, || 227 W Z,k

n “nk

Y|l = op( ) under Assumption C when n — o0, as shown rigorously in Lemma A.4. Similarly, || dr;'ZnKWZZnK— gl = op(l)
where Zx has elements E[Pjy(z;)f (z:)] 14 Z[ 1 @i (t/n)Hee (xc) exp( xt) As a result, all functions of z, are replaced by
their expectation while all x; are remained in both Yy and Zg. Hence, the one-step approximation mitigates the condition
on z; to establish the limit theory for the estimator, but no further approximation can be made in the original probability
space without using the strong convergence for the I(1) process x, in an expanded space. This is why the F; , includes
all x;, s < n, but only z; up to t + 1 in Assumption B. By contrast, for kernel estimator Wang (2014) takes advantage of
the ratio form to establish a joint weak convergence for the numerator and denominator that implies the normality of
the estimator. In this regard, the condition on the integrated variable for the kernel estimator is a bit weaker than for the
sieve estimator.

Lemma A4. Under Assumptions A-C, as n — oo, we have |22, WyZy — W || = op(1) and |22, W2Zy — Ex || = 0p(1).

The proof of Lemma A.4 is relegated to the supplementary material of the paper.

Now, let [a, b] be a bounded interval and assume g(x) € Cla, b], all continuous functions on [a, b]. Let P, be the
set of all polynomials with order no higher than k and define Ei(g) = infy,ep, maXye(q,) [8(X) — pi(x)]. For each k, as
shown in page 26 of Chapter 3 and proven in page 79 of Chapter 8 of Todd (1963), there exists a p;; € P such that
Ex(g) = maXyejq p 18(x) — pi(x)|. In the literature p; is called the best approximation polynomial.

On the other hand, let {¢;(x),j > 0} be an orthonormal polynomial sequence in L?([a, b], p(x)) where w1thout loss of

generality, f p(x)dx = 1. Denote by ||-||;2 the norm in the space. Then, g(x) = ZJ —o Gipj(x) where ¢; = f g(u (u)du.
Let Si(g;x) = ZFO Cjp;(x), which can be viewed as a project operator from any function of [?([a, b], p( )) to a kth
polynomial. For better exposition, denote ®(x) = (@o(x), ..., @r(x))", ¢ = (co, ..., )" and y(g; x) = ZﬁkH Cjpi(x).

Thence, g(x) = Sk(g; X) + y(g; x) and Si(g; X) = Pr(x)7c.

Lemma A.5. (1). For g(x) € Cla, b], we have (a) [|yi(g; X)ll ;2 < Ex(g); (b) For any x € [a, b], [yi(g; X)| < (1 + 1Pl X)II)Ek(g);
(c) In particular, for the first kind of Chebyshev polynomial sequence on [—1, 1], maxxe[ 1.1] |yk(g x)| < (14 VKkE(g)

(2) If g is continuously differentiable on [a, b] up to sth order, then Ex(g) < Ck—*w®(k™1) for k > s, where o®)(- ) is the
modulus of continuity for gt

(3)Ifh(r) € L?[0, 1] and the orthogonal sequence, @o(r) = 1 and @i(r) = V2 cos(zjr), j > 1, is used to expand the function.
Define similarly yi(h; r). If h is continuously differentiable on [0, 1] up to sth order, then maXx,e[o,17 |yk(h; )| < Ck™° log(k).

(4) Suppose that ¥~‘g)(x) € I[2(R, e ) for £ = 0,...,s for some integer s > 0. When s = 1, g(x) = Y2 cihi(x)
converges absolutely at any point on R, where h;j(x) are Hermite polynomials defined in Section 2; when s > 1, |y(x)| =
lg(x) — Y170 cihi(x)| = o(k~¢=1/2=1/12) at any point on R, and [ Iv()|2e ™ dx = o(k=) when k — o0.

The proof is given in the supplementary material of the paper. The lemma mainly gives the point convergence rate
of orthogonal series expansion in two situations, that is, on bounded interval and unbounded interval, respectively.
In particular, the assertions of (1) and (3) connect the uniform rate on the finite interval with the error of the best
polynomial approximation in line with Belloni et al. (2015). See Jackson (1930) and Schultz (1969) for the best polynomial
approximation. We notice that the upper bound in (1b) may not be sharp, but it is sufficient for the paper. In this regard,
see Belloni et al. (2015) for detailed discussion.
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Appendix B. Proofs of the main results

Proof of Theorem 3.1. (1) By Lemma A4, for any (r, z, x), we define by A2(r,z,x) the one-step approximation to
X2(r, z,x), that is, Z2(r, z, x) = A%(r, z, x)(1 + 0p(1)) where X2(r, z, x) is given by Eq. (3.1) and
A2(r,z,x) = af%zk(r, z, %) U B W ' Z(r, 2, X).
Observe further that,
2Ur, z, X)[Ma(r, z, x) — m(r, z, X)]
N, 2, )2 (r, 2, X) (€ — ¢) — . \(r, z, )T, 2, X)
2N, 2, X)Z(r, 2, X) (Zog WaZuk )™ Zoy Wy + €) — Z71(r, z, )(r, z, X)

d T T -
:;nA;l(r» Zv X)Zk(r, Z, X) 'IIK ]ZnKWn(y + e)(] + OP(1)) - En 1(rs z» X)Vk(r» Zv x)v

where the leading term is

d
AN, 2, X)Z(r, 2, X) W 2 Whe
n

dy
=—ANr,z, )Z(r, 2,%) 122,( Te, Ze, X )P(2Ze, Xe )er
n t=1

from which the normality will be derived.

Let & = %"An(r, Z, %) Zu(r, z, x)' lI/K’IZk(rt, Ze, Xt )P(z¢, Xt )er, o that the leading term is written as &, := Z';:] Ent.
Moreover, noting by the elements of ¥ and &k and Assumption B, (&, F¢) form a martingale difference sequence and
hence &, is a martingale. Its conditional covariance is

d, o dy & _
02 AP 2,02 2, ) W (Y 2 2 x)Z( T 20 %) Sz x| W 2T 2, %)
n n

t=1
d
=07 A (. 2. X)Zr. 2, X) W B 2 2 601+ 0p(1) = 1+ 0p(1),

in view of the expression of A%(r, z, x).
Moreover, for any n > 0,

ZIE[SMI |Encl > MIFne-1] < —ZE[smvm 1]
t=1 77

1 —4 d;l LI 4
< ey r 2 D IZ{r, 2, X)W Tl e, 2o, %)z x)I
t=1

where (14 = max;<<; E(e}|F;_1) < oo stipulated in Assumption B.
Notice that
[Z(r. 2, X)W 2T, 22, %0 )20, %) < (M) 2K N1Zi(r, 2, X))

min

where ||Z(t;, z¢, X )(z;, %)||> < K because all elements of Z(t;, z;, X;)¢(z;, x;) are uniformly bounded. Meanwhile,
AXr,z,x) > I S (A ) 211Zik(r, z, X)||* where the constant o is ignored that does not affect the following derivation.

It follows that

n

> EIELI(I|> 0)|Fac]

t=1

3 & .
<COnmin)™ O/ M VK 8,21, 2, X) 3 > (2, 2,0 W e, 20, %)z, )P
t=1
g \— -2 d% u dn 2 -1

C(Amln) T max/)»mm) KA, (r,z,x)—ZZk(r,z,x) v ( ZHKW ZnK) W Zi(r,z, X)

2
=COE )T A PR AT, 2, x) LZi(r. 2, X) "W B Zu(r, z, x)(1 4 0p(1))

dy
C()";;qm)_ ( max/)“mm) I<F(1 + Op(l)) - OP(])
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by the definition of A,(r, z, x) and Assumption C. This verifies the Lindeberg condition for &,. Hence, we have shown that
&, —p N(0, 1) as n — oo by Corollary 3.1 in Hall and Heyde (1980).
To finish the proof, we need to show the negligibility of the remained terms, A, and A,,, say, that is,
_ d _
A =811, 2, 0 Zdr, 2,0 U 2y Way = 0p(1), (B.1)
Aon =4, (r, 2, X)n(r, 2, X) = 0p(1). (B.2)
To show (B.1), note that

B d? _
|An|> =4,°(r, z, X) G122, X)W 2y Wy 2

B d? _
<AX(r,z, )2 2, X) U 2y W2 W2y |12

-2 dn T 1 dn T -1 T
=4, (r,z,X);Zk(r,z,X) 2 ;ZnKWnZnK Y Z(r,z,x) x y Wpy

d
=;”A;2(r,z,x)2k(r,z,x)T U Zu(r, z, x)(1 4 0p(1)) x ¥ Wyy

()“;11n 1)"rl{’mx Z d) Zt, Xt)yk (Tt, Zt» Xt)

t=1

where we use A%(r,z,x) > A2 (AL

n n

1
E Eqb(ztaxt)yk(ttvztsxt)z = E a*E/¢(217X)7/l<("5t»217x)2dx
t=1 t=1 "t

<./n max E/¢Z],X)Vk r,zy, x)dx,

rel0,1

) “’;“Zk(r, z,x)' w,;lzk(r, z, x). It follows from Lemma A.3 that

where d; ~ +/t. Moreover, Vi 2(r, z, x) has leading terms ym(r z,X), ka(r z,x) and y3k(r z, X) as explained in Section 2,
and they relate with the truncation residues of the three orthogonal expansions of mo(r z, x) in terms of {¢;(r)}, {p;(z)}
and {h,(x)}, respectively. Thus, in the sequel we mainly consider ]Ef¢ z1, X)Vie(Te, 1, X)?dx fori = 1,2, 3.

Now that yq(r,z, x) is the residue for mg(r,z,x) about r, max,ep, 1 |yi(r.z,x)| = o(k;s1 log(ky)) and hence
]Efq&(z], )y, z1, x)dx - = o(ky 1 log?(k1)). See Lemma A.5 for this uniform convergence rate. Notice that
E f (21, X)vi(Ts, 21, X)?dx are square norms of yu(r,z,x) for i = 2,3, so they have decay rates o(k;si ), respectively,
i =2, 3, by Lemma A.5 again, where innocuously we suppose V is unbounded. Consequently, we have

n
> B, )y, 20, %) = Cy/mmax(k; " log*(ke), ky 2, ky ).

t=1
Thus, A1, = 0p(1) by Assumption C.
To show (B.2), note that
lAzn| = AL (r 2, X)|yilr, 2, %)
<Az, X)(|ydr 2, %] + yar, 2, X)| + lyslr. 2, X)|)

=Orrin)” A 126, 2, 0l 0 o(max(k; ™ og(ky ), k2772, kg7 1%) = 0p(1)

min max

min
i = 1,2, 3, can be found in Lemma A.5. Definitely, the rates are in point-wise sense as the convergence relates to the

point (z, x). The first result holds.
(2) Observe that

in view of Assumption C and A%(r, z,x) > A2, (A% )~ 2%" 1Z«(r, z, x)||%, where again the convergence rate for |y(r, z, x)|,

Ma(r, z, x) — mo(r, 2, X) =Zi(r, 2, X) (Zyy WnZnk )~ Zpe Whe
+ Zi(r, 2, %) (ZyWaZuk )~ ZygWay — (1, 2, %),
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and thus
(T, 2, %) —
Ma(r', 2/, X') —

mo(r, Z, X)
mo(r', z', x')
" ( Zr,z,x)
= (Zk’(‘r/ 2 w) (ZaWaZa )" Zule, 20, %) 22, X e
- ,Z,
Zi(r,z, x)" T 17 (r,z,x)
+ (Zk(r/,z’,x’)T (ZHKWnZnK) ZnKWnV - yk(r/,z/,x/) .
While the last two terms are negligible similar to the proof of the first part, the normality is derived from the first term for

which we call the leading term. Indeed, by the one-step approximation in Lemma A.4, the normalizer Aﬁ(r, z,x;1',7,x) =
A(r,z,x; 1", 2, X' )(1 + 0p(1)) where

~
Il

:
dn ( Zi(r,z,x) Zu(r, z, x)

)LZ T, Z,X; T/,Z/,X/ =027 k\T5 £, lp—lr; l]I_l ks £, .

nl V=0 a2y ) B Bz 2wy

Thence, after normalization the leading term is

n T
/ Z(r,z, x _
A (rzxr'z X/);_ (ZI(’E'(,/’Z/7X)/)T>(Z;KWnZnK) 'Zi(e, ze, X )P(2e, XeJee

TZX

d
=\ (r, 2, x; r/Z’x/)<Z" r.z,x) > E < Ze(Te, 2, X ) (2t Xe e,
n

which by Assumption B is a two-dimensional martingale sequence and clearly has conditional variance I,. Hence, using
Cramér-Wold device and similar to the first part, it follows that

Iy n(r, 2, X) —mo(r, z, X)
ANz, x; rzx)(mn(r/ 7 %) — mo(r’,z/,x/)> —p N(0, 1)

as n — oco. We omit the details for the similarity and the proof then is complete. O

Proof of Corollary 3.1. Note that

n “1 q
:2 = <Z d)(zt, Xt )) Z/e\?(b(zt» xt)
t=1 t=1

n -1 n
= (Z o(z, Xr)) Z[et +m(te, z¢, X)) — ﬁn(ftv Zt, Xt)]2¢(ztv Xt)
t=1

t=1

n -1 n
= (Z Pz x )) > ez x)
t=1 t=1
n -1 n
+ (Z (2, Xt)) Z[m(‘[ta Ze, X¢) — (e, Ze, X1 P(2¢, X¢)
t=1 t=1
n -1 n
+ 2 (Z o(z, Xt)) Z ec[m(ze, z¢, X)) — ﬁn(ttv Ze, X )1P(2¢, X).
t=1 t=1

It suffices to show that

n -1 n
(Z ¢(zt,xt)> > e2(ze. 1) —p 02, (B.3)
t=1 t=1

and

n -1 n
(Z &(ze, Xt)) Z[m(fm Ze, X¢) — Ma(e, 2, X[)]2¢(Zt, X¢) = op(1) (B.4)
t=1 t=1

as n — oo, since the last term is implied to be op(1) by Cauchy-Schwarz and the convergence of the first two.
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Note that

1
<Z¢ ZtJ‘t) Zetfﬁ(znxr — 0O, _(

and similarly to Lemma A.4 we may show that d?” Z?Z] d(ze, %) = E[f(zt)]%” ZL] w(x¢)(140p(1)) = Op(1) by Lemma A.1
and ‘%“ Z';l(ef - 082)4)(2[, x;) = op(1) by virtue of the martingale difference structure. Thus, the assertion (B.3) holds.
To show (B.4), observe that

n -1 n
(Z é(z, Xr)) Z[m(fh Ze, X)) — (1, 2, Xt)]2¢(zts Xt)
t=1 t=1

dn\ + .
=0p (*) E [Zi(Te, ze, %) (¢ = ©) + wi(Te, 22 X[)]zd’(zt, Xt)
n

t=1

dn . T dn .
<Op <F> Z[Zk(ft, Ze, X) (€ —?)]2¢(Zf, x:)+ Op (;) Z sz(fta Ze, X )p(2¢, Xt)
t=1 t=1

(o - dn
=0p(1)(c —7) (;ZnKWnZnK> (c—=0)+ OFU); Z V(T ze, X )Pz, X¢)

:\Q

-1 n
dy
Z zt,xf) D (e — o)z, x),

t=1

=0p(1)(c —A) W (c — )+ Op(1 Z)/k Tey Ze, X0 )P(2¢, X¢)

d? 7
=0p(1)- 5 WalZue Wy ' Zyy Woe + opm;" Z V(T 2o, X)P(z1, %)
t=1

d n
(Arin) ™"+ 0p(1) ; VE(Te, 26, X )(ze, X¢) = 0p(1),

dy
<0p(1)-* TKAE

max

where the first term is op(1) derived from ¢ — ¢ = (Z,;KWnZnK)*]Z;KWne and the martingale difference structure, while

in the second term %” 2?21 y,f(rt, Z¢, Xt )P(z¢, X:) = op(1) as shown in the proof of Theorem 3.1. Therefore the corollary is
complete. O

Proof of Theorem 3.2. Given Assumption C, the function mg is sufficiently smooth such that its series expansion,
combined with the density in the integrals in the definition of §’s, is uniformly convergent. Hence, its derivatives can
be calculated term by term and again due to the presence of the density the integrals can be computed termwise in what
follows. Without loss of generality, assume po(z) = 1.

(a) Notice that H/(x) = 2iH;_1(x). By (2.3) we have

omg(r, z, x 0Bije(r, z, X
81 = // 0 w(r, z, X) Zc,ﬂ// UZ )d (r,z,x)
VxR VxR

ij,¢=0
oh
-y Clﬂ/ o) drfp, 2)f(2)dz / (0o g
i,j,£=0
:Z(\/?MC?%,/(ZZ)H[ 1(x)e” X—Com (Vr2) 24ym = 272 mcon.
=1

ThUS,/(S\l — 81 = 2«/5%(?)\001 — Coo]).
Let £3=1(0,0,1,0,...,0) of dimension K. Then,

Coo1 — Coo1 = £3(C — €) = £3(ZuWnZuk) "' Zye Waly + )

which is similar to the first two terms of m(r, z, x) — m(r, z, x) in Theorem 3.1 but with Z(r, z, x) being replaced by ¢3.
Therefore, under the conditions of Theorem 3.1 and defining B2, = 02¢32,x¢3, we may show in the same fashion as
Theorem 3.1 that

B} (Coo1 — Coo1) —>p N(O, 1),

as n — oo and hence the assertion holds.
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(b) Observe that

ome(r, z, X) dB;ie(r,z, x
Szsz amo(r, 2, X) (T, 2, X) chzf/ ”Z )d(rzx)
VxR VxR

i,j,£=0

Z i / doilr / i(2)f (2)dz f he(x)e ™ dx
R

zjl 0

=Zc,~oo[¢,~(1) — @0 = V2 ciool(—1) — 11,
i=1

i=1

by the orthogonality of {p;(z)} and {h,(x)}. Thus, 82 le 1 Tiool(=1) — 1]. We then have

k1—1 00
8 =8 =V2 Z[(—l)i — 11(Cioo — Cioo) — \52 Ciool(—1) — 1]
i=1 i—ky

= — 2V2L,(C = ¢) + 1y

where L is defined to be a sparse column vector with dimension K where 1 conformably is in the place of cjy (0odd i) in
c. Thus, there are about [k;/2] places that equal 1 and elsewhere 0; the definition of yy, is clear, i.e. the residue of the
series. Observe further that

Sy — 8y =— ZﬁL;(?— )+ Yy
= — 2V2LY(Zp WaZuk )" Za Wiy + €) + ik,

d -
=— zﬁ;”Lz W ZWaly + €)1+ 0p(1)) + 71k »

which has similar structure as m,(r, z, x) — m(r, z, x) in Theorem 3.1 but with Z(r, z, x) being replaced by L1
Thus, define B2 = ozL 1920k L1. Following the same derivation as Theorem 3.1, we may show that B}, (82 —68) —p
N(0, 8).

(c) Here, in order to implement the following calculation, we need to specify the orthogonal sequence {p;(z)}, otherwise
we have to make a great deal of assumptions on it. Let {p;(z)} be Hermite orthogonal polynomial sequence, i.e. the support
of z is the entire real line. Similar to (a), we have 85 = 2+/2.%7 co10 and then 85 — 85 = 2+/2.¥7 (Co10 — Coro)- Following
exactly the same fashion as (a), we can have the assertion.

(d) Observe that

82m0rzx aB,ﬂrzx
8_ '~
R - [ 52

i,j,£=0

d dp;
— Z c,ﬂ/ oilr / %iz)e’zzdzfmhz(x)e’xzdx

zjl 0

=3l — g0 [

ij=1

=4ym ) col(—1) — 1],

i=1

similar to (a) and (b). Thus, we define 81, = 447 Zkl 1 Gi0l(=1)—1] and hence 31— 81, = 4{‘/7?221_1@10—6“0)[(—1)"—
11 —-4ym Z, k cito[(—1)! — 1]. Therefore, the assertion follows in the same fashion as (b).

(e) Slmllarly, after the same calculation we define 813 = 4T Zk‘ 'Coil(=1) — 1] and 813 — 813 = 4Ym Zf;f(am —
Co)[(—1) — 1] —4¥7w Zl Ky cio1[(—1)! — 1]. Once again, the assertion follows in the same fashion as (b).

) By the similar calculation, 83 = 84/ co11 and then define 823 = 8,/mCo11. Then, the assertion follows similarly as
(a). This finishes the proof. O

Proof of Theorem 3.3. The assertion about xo follows exactly the same as that for §; in Theorem 3.2, so we omit the
proof.
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Observe that

i) = xa(r) =/ [Ma(r, 2, x) — mo(r, z, X)If (2)w(x)dzdx
VxR

:/ Zk(r,z,x)Tf(z)w(x)dzdx(?—c)—/ (T, z, X)f (2)w(x)dzdx.
VxR

VxR
Note that Z(r, z, x) has elements Bj(r, z, x) = ¢;(r)pj(z)he(x) withi < k; —1,j < k; —1 and £ < k3 — 1, and moreover,
fv pj(z)f(z)dz = 0 unless j = 0 and f he(x)w(x)dx = 0 unless £ = 0. Thus, the vector foR Zi(r, z, x)' f(z2)w(x)dzdx reduces
to (¢o(r), ..., @i, -1(r), 0, ..., 0). Meanwhile, fo]R (1, z, X)f (2)w(x)dzdx = Zfi,q Cioowi(r). This situation is the same as
Theorem 3.2 since @, (r)" == (@o(r), ..., ¢,—1(r), 0, ..., 0) plays the same role as ¢,. Let A2 (1) = 2Py, (1) Q2nx P, ().
Then, similar to Theorem 3.2, we have

1
m(xl(r) — xa(r)) =p N(0, 1)
as n — oQ.

Using the orthogonality of the sequence and the similar argument, we may have the normality for %»(z) — x2(z) and
X3(x)— x3(x), respectively. Precisely, let Py, (z)" := (0, ..., 0, po(2), ..., Px,—1(2), 0+ - -, 0) and A3 (2) := 02Px,(2)" 2k Pk, (2);
Uy (%) := (0, ..., 0, ho(x), - - -, hig—1(x))T and A3 (X) := 6 2Up, ()7 2k Uk, (x). Then,

/#(Z)@(z) — %(2)) = N0, 1),
v
m(m(x) — x3(x)) =pN(0, 1),

asn—oo. O
Appendix C. Supplementary data
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.03.024.
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