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a b s t r a c t

In a wide range of modern applications, one observes a large number of time series
rather than only a single one. It is often natural to suppose that there is some
group structure in the observed time series. When each time series is modeled by a
nonparametric regression equation, one may in particular assume that the observed time
series can be partitioned into a small number of groups whose members share the same
nonparametric regression function. We develop a bandwidth-free clustering method
to estimate the unknown group structure from the data. More precisely speaking, we
construct multiscale estimators of the unknown groups and their unknown number
which are free of classical bandwidth or smoothing parameters. In the theoretical part of
the paper, we analyze the statistical properties of our estimators. Our theoretical results
are derived under general conditions which allow the data to be dependent both in time
series direction and across different time series. The technical analysis of the paper is
complemented by simulated and real-data examples.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we are concerned with the problem of clustering nonparametric regression curves. We consider the
following model setup. We observe a large number of time series Ti = {(Yit , Xit ) : 1 ≤ t ≤ T } for 1 ≤ i ≤ n. For simplicity,
we synonymously speak of the ith time series, the time series i and the time series Ti in what follows. Each time series
Ti satisfies the nonparametric regression equation

Yit = mi(Xit ) + uit (1.1)

for t = 1, . . . , T , where mi is an unknown smooth function, Xit are random or deterministic regressors and uit is the error
term. The n time series in our sample belong to K0 different groups. More specifically, the set of time series {1, . . . , n}
can be partitioned into K0 groups G1, . . . ,GK0 such that for each k = 1, . . . , K0,

mi = mj for all i, j ∈ Gk. (1.2)

According to (1.2), the time series of a given group Gk all have the same regression function. Model (1.1)–(1.2) provides a
parsimonious way to deal with a potentially very large number of time series n. It thus stands in the tradition of multiple
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time series analysis, an area which greatly benefited from the pioneering work of George Tiao. A detailed description of
model (1.1)–(1.2) can be found in Section 2.

In many applications, it is quite natural to suppose that there is a group structure of the form (1.2) in the data. We give
some examples to illustrate this. A first example comes from environmental statistics, a field to which George Tiao has
contributed immensely with numerous articles including Box et al. (1975), Reinsel et al. (1989) and Niu and Tiao (1995).
Suppose we observe time series Ti = {Yit : 1 ≤ t ≤ T } of temperature, precipitation or ozone measurements at various
spatial locations i. A simple model for the measurements at location i is given by Yit = mi(t/T ) + uit , where Xit = t/T is
(rescaled) time and mi is a nonparametric time trend function. It is natural to suppose that the locations i in the observed
sample can be grouped into geographical regions where the trend mi is the same (or at least very similar). We come
back to this example in Section 8. Another example which was analyzed in Vogt and Linton (2017) comes from finance.
A recent question of policy interest is how competition between trading venues affects market quality in stock markets;
cp. O’Hara and Ye (2009), Degryse et al. (2014) and Boneva et al. (2015, 2016) among others. To tackle this question, one
may consider the model Yit = mi(Xit )+ uit , where Yit is a measure of market quality for stock i at time t such as volatility
and Xit is a measure of trading-venue fragmentation which gives information on whether stock i is traded simultaneously
at many different venues at time t . The function mi captures the effect of trading-venue fragmentation on market quality
for stock i. It is quite plausible to suppose that there are groups of stocks for which this effect is the same (or at least
very similar). Hence, it makes sense to assume a group structure of the form (1.2) in this situation.

An interesting statistical problem is how to construct estimators of the unknown groups G1, . . . ,GK0 and their unknown
number K0 in model (1.1)–(1.2). For the case that the design points Xit = t/T represent (rescaled) time and the functions
mi are nonparametric time trends, this problem has been analyzed for example in Luan and Li (2003) and Degras et al.
(2012). For the case that Xit are general random design points which may differ across time series i, Vogt and Linton (2017)
have developed a thresholding method to estimate the unknown groups and their number. Notably, their approach can
also be adapted to the case of deterministic regressors Xit , in particular to the case that Xit = t/T . The model (1.1)–(1.2)
with the fixed design points Xit = t/T is closely related to models from functional data analysis. There, the aim is to cluster
smooth random curves that are functions of (rescaled) time and that are observed with or without noise. A number of
different clustering approaches have been proposed in the context of functional data models; see for example (Abraham
et al., 2003), Tarpey and Kinateder (2003) and Tarpey (2007) for procedures based on k-means clustering, James and Sugar
(2003) and Chiou and Li (2007) for model-based clustering approaches and Jacques and Preda (2014) for a recent survey.

Virtually all of the proposed procedures to cluster nonparametric curves in model (1.1)–(1.2) and in related functional
data settings depend on a number of bandwidth or smoothing parameters required to estimate the nonparametric
functions mi. In general, nonparametric curve estimators are strongly affected by the chosen bandwidth parameters.
A clustering algorithm which is based on such estimators can be expected to be strongly influenced by the choice of
bandwidths as well. In particular, the clusters produced by the algorithm can be expected to vary considerably with the
chosen bandwidths.

The main aim of this paper is to develop estimators of the unknown groups G1, . . . ,GK0 and of their unknown
number K0 in model (1.1)–(1.2) which are free of classical smoothing or bandwidth parameters that need to be selected.
To achieve this, we make use of multiscale techniques from statistical hypothesis testing. In recent years, a number
of multiscale methods have been developed in the context of different test problems. Early examples are the SiZer
approach of Chaudhuri and Marron (1999, 2000) and the multiscale tests of Horowitz and Spokoiny (2001) and Dümbgen
and Spokoiny (2001). More recent references include the tests in Schmidt-Hieber et al. (2013), Armstrong and Chan
(2016), Eckle et al. (2017) and Proksch et al. (2018) among others. In this paper, we develop multiscale techniques for
clustering rather than testing purposes.

Our strategy to construct estimators of the unknown groups G1, . . . ,GK0 and of their unknown number K0 in model
(1.1)–(1.2) can be outlined as follows: To start with, we construct statistics d̂ij which measure the distance between pairs
of functionsmi andmj. Building on multiscale techniques, we design the statistics d̂ij in such a way that they do not depend
on a specific bandwidth or smoothing parameter. To estimate the unknown classes G1, . . . ,GK0 , the multiscale distance
statistics d̂ij are combined with a hierarchical clustering algorithm. To estimate the unknown number of classes K0,
we develop a thresholding rule that is applied to the dendrogram produced by the clustering algorithm. Alternatively,
the multiscale statistics d̂ij may be combined with other distance-based clustering algorithms. In particular, they can be
used to turn the estimation strategy of Vogt and Linton (2017) into a bandwidth-free procedure. We comment on this in
more detail in Section S.2 of the Supplementary Material.

The problem of estimating the unknown groups and their unknown number in model (1.1)–(1.2) is closely related to a
developing literature in econometrics that aims to identify the unknown group structure in parametric panel regression
models. The clustering problem considered in this literature can be regarded as a parametric version of our problem. In
its simplest form, the panel regression model under consideration is given by the equation Yit = β⊤

i Xit +uit for 1 ≤ t ≤ T
and 1 ≤ i ≤ n, where the coefficient vectors βi are allowed to vary across individuals i. Similarly as in our nonparametric
model, the coefficients βi are assumed to belong to a number of groups: there are K0 groups G1, . . . ,GK0 such that βi = βj
for all i, j ∈ Gk and all 1 ≤ k ≤ K0. The problem of estimating the unknown groups and their unknown number has been
studied in different versions of this modeling framework in Bonhomme and Manresa (2015), Su et al. (2016), Wang et al.
(2018) and Su and Ju (2018) among others. Notably, our clustering methods can be adapted in a straightforward way to
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a number of semiparametric models which are middle ground between the fully parametric panel models just discussed
and our nonparametric framework. In Section S.2 of the Supplementary Material, we discuss in more detail how to achieve
this.

Our estimation methods are described in detail in Sections 3–5. In Section 3, we construct the multiscale statistics that
form the basis of our clustering methods. Section 4 introduces the hierarchical clustering algorithm to estimate the un-
known classes G1, . . . ,GK0 . In Section 5, we finally describe the procedure to estimate the unknown number of classes K0.
The main theoretical result of the paper is laid out in Section 6. This result characterizes the asymptotic convergence
behavior of the multiscale statistics and forms the basis to derive the theoretical properties of our clustering methods.
To investigate the finite sample properties of our approach and to illustrate its advantages over bandwidth-dependent
clustering algorithms, we conduct a simulation study in Section 7 and explore a real-data example from environmental
statistics in Section 8.

2. The model

We now introduce the model framework in detail which underlies our analysis. As already mentioned in the
Introduction, we observe n time series Ti = {(Yit , Xit ) : 1 ≤ t ≤ T } of length T for 1 ≤ i ≤ n. For our theoretical analysis,
we regard the number of time series n as a function of T , that is, n = n(T ). The time series length T is assumed to tend
to infinity, whereas the number of time series n may be either bounded or diverging. The exact technical conditions on
T and n are laid out in Section 6. Throughout the paper, asymptotic statements are to be understood in the sense that
T → ∞.

2.1. The model for time series Ti

Each time series Ti in our sample is modeled by the nonparametric regression equation

Yit = mi(Xit ) + uit (2.1)

for 1 ≤ t ≤ T , where mi is an unknown smooth function and uit denotes the error term. To keep the exposition as
simple as possible, we assume that the regressors Xit are real-valued. As discussed in Section S.2 of the Supplementary
Material, our methods and theory carry over to the multivariate case in a straightforward way. We further suppose that
the regressors Xit have compact support, which w.l.o.g. is equal to [0, 1] for each i.

We consider both a random and a fixed design version of model (2.1), which we denote by (RD) and (FD), respectively.
The regressors Xit are assumed to have the following properties in these two versions of the model:

(RD) For each i, the regressors Xit are real-valued random variables that are distributed according to some density fi.
(FD) For each i, the regressors Xit are deterministic points on the unit interval with 0 ≤ Xi1 < Xi2 < · · · < XiT ≤ 1. They

are generated by a design density in the sense of Sacks and Ylvisaker (1970): for each i, there exists a density fi such
that

∫ Xit
Xi,t−1

fi(w)dw = 1/T for 1 ≤ t ≤ T , where Xi0 = 0.

Note that by setting fi ≡ 1 in (FD), we obtain the important special case of equidistant design points Xit = t/T , which
represent (rescaled) time in many applications. The error terms uit are assumed to have an additive component structure
both in the random and the fixed design case:

(RD) It holds that uit = αi + γt + εit , where αi and γt are fixed effects that may be correlated with the regressors Xit in
an arbitrary way and εit are standard regression errors that satisfy E[εit |Xit ] = 0.

(FD) It holds that uit = αi + εit , where αi are fixed effects and εit are standard regression errors with E[εit ] = 0.

As discussed in more detail in Section 2.3, we do not include the time fixed effects γt in the (FD) case for identifiability
reasons: Whereas the functions mi can be identified in the presence of the time fixed effects γt in the (RD) model, this is
in general not possible in the (FD) model. Both in the (RD) and the (FD) case, the time series Ei = {εit : 1 ≤ t ≤ T } are
supposed to be weakly dependent stationary processes that are independent across i. The error terms εit are thus allowed
to be dependent across t but are assumed to be independent across i. The fixed effects αi, in contrast, may be correlated
across i in an arbitrary way. Hence, by including αi (and γt ) in the error structure, we allow for some restricted types of
cross-sectional dependence in the errors uit . As a result, we accommodate for both time series dependence and certain
forms of cross-sectional dependence in the error terms of our model. The exact conditions on the dependence structure
are stated in (C1) in Section 6.

2.2. The group structure

We impose the following group structure on the time series Ti in our sample: There are K0 groups of time series
G1, . . . ,GK0 with

⋃̇K0
k=1Gk = {1, . . . , n} such that for each 1 ≤ k ≤ K0,

mi = mj for all i, j ∈ Gk. (2.2)
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Put differently, for each 1 ≤ k ≤ K0,

mi = gk for all i ∈ Gk, (2.3)

where gk is the group-specific regression function associated with the class Gk. According to (2.3), the time series of a
given class Gk all have the same regression curve gk. To make sure that time series which belong to different classes
have different regression curves, we suppose that gk ̸= gk′ for k ̸= k′. The exact technical conditions on the functions
gk are summarized in (C6) in Section 6. For simplicity, we assume that the number of groups K0 is fixed. It is however
straightforward to allow K0 to grow with the number of time series n. We comment on this in more detail in Section S.2
of the Supplementary Material. The groups Gk = Gk,n depend on the cross-section dimension n in general. For ease of
notation, we however suppress this dependence on n throughout the paper.

2.3. Identification of the functions mi

We first discuss the (RD) case. If we drop the fixed effects αi and γt from the error terms uit , we obtain the standard
regression equation Yit = mi(Xit ) + εit . Obviously, mi is identified in this case since mi(·) = E[Yit |Xit = · ] almost surely.
In the full model Yit = mi(Xit ) + αi + γt + εit , by contrast, mi is not identified. Specifically, we can rewrite the model as
Yit = {mi(Xit ) + ai} + {αi − ai} + γt + εit , where ai is an arbitrary real constant. In order to get identification, we need to
impose certain constraints which pin down the expectation E[mi(Xit )] =

∫
mi(w)fi(w)dw for any i. A common choice is

the identification constraint∫
mi(w)fi(w)dw = 0 for 1 ≤ i ≤ n, (2.4)

which is implicitly assumed to be fulfilled throughout the paper. Given this constraint, it is straightforward to show that
the functions mi are identified under our regularity conditions from Section 6. A formal identification result is provided
in Section S.2 of the Supplementary Material for completeness.

The situation is somewhat different in the (FD) case. There, it is in general not possible to identify the functions mi in
the presence of the time fixed effects γt . To see the issue, consider the special case Xit = t/T and suppose for simplicity
that αi = 0 and γt = γ (t/T ) with some deterministic function γ . In this case, Yit = mi(t/T ) + γ (t/T ) + εit , where
τi(t/T ) = mi(t/T ) + γ (t/T ) is the trend function of time series i. Obviously, we cannot identify the trend components mi
and γ in this situation without imposing severe assumptions on their functional form. However, if we restrict attention
to the model Yit = mi(Xit ) + αi + εit without the time fixed effects γt , we can proceed analogously as in the (RD) case. In
particular, we get identification of the functions mi under the constraint (2.4).

It is important to note that the identification constraint (2.4) and thus the fixed effects error structure of our
model implicitly imposes certain restrictions on the design densities fi. The identification constraint (2.4) requires that∫
gk(w)fi(w)dw = 0 for all i ∈ Gk, where gk is the regression function associated with the group Gk. It is in general not

possible to satisfy the constraint
∫
gk(w)fi(w)dw = 0 simultaneously for all i when the densities fi are arbitrarily different

across i. However, if we suppose that for any 1 ≤ k ≤ K0,

fi = fj for all i, j ∈ Gk, (2.5)

then this constraint is satisfied quite naturally. In the remainder of the paper, we take for granted that the property (2.5)
is fulfilled, that is, we assume the design density fi to be the same for all time series i in a given group Gk.

3. The multiscale distance statistic

Let i and j be two time series from our sample. In what follows, we construct a test statistic d̂ij for the null hypothesis
H0 : mi(x) = mj(x) for all x ∈ [0, 1], that is, for the null hypothesis that i and j belong to the same group Gk for some
1 ≤ k ≤ K0. Using multiscale techniques, we design the statistic d̂ij in such a way that it is free of specific bandwidth
parameters. The statistic d̂ij will serve as a distance measure between the functions mi and mj in our clustering algorithm
later on.

3.1. Construction of the multiscale statistic

Step 1. As a first preliminary step, we define a nonparametric estimator m̂i,h of the function mi, where h denotes the
bandwidth. We work with the same local linear kernel smoother as in Vogt and Linton (2017). This estimator is given by

m̂i,h(x) =

∑T
t=1 Wit (x, h)̂Y ∗

it∑T
t=1 Wit (x, h)

,
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where Ŷ ∗

it = Yit − Y i − Y
(i)
t + Y

(i)
in the (RD) case and Ŷ ∗

it = Yit − Y i in the (FD) case with

Y i =
1
T

T∑
t=1

Yit , Y
(i)
t =

1
n − 1

n∑
j=1
j̸=i

Yjt and Y
(i)

=
1

(n − 1)T

n∑
j=1
j̸=i

T∑
t=1

Yjt . (3.1)

Moreover, Wit (x, h) are kernel weights of the form

Wit (x, h) = Kh(Xit − x)
{
Si,2(x, h) −

(Xit − x
h

)
Si,1(x, h)

}
,

where Si,ℓ(x, h) = T−1 ∑T
t=1 Kh(Xit − x)({Xit − x}/h)ℓ for ℓ = 0, 1, 2 and K is a kernel function with Kh(ϕ) = h−1K (ϕ/h).

Throughout the paper, we assume that the kernel K has compact support [−CK , CK ]. For ease of notation, we set CK = 1
and take the kernel K to be the same for each i.

Step 2. As an intermediate step, we construct a bandwidth-dependent test statistic of the hypothesis H0. Specifically, we
consider the statistic

d̂ij(h) = sup
x∈[0,1]

⏐⏐ψ̂ij(x, h)
⏐⏐,

where

ψ̂ij(x, h) =
√
Th

(
m̂i,h(x) − m̂j,h(x)

)√
ν̂ij(x, h)

is a rescaled version of the difference between the curve estimators m̂i,h(x) and m̂j,h(x) at location x with bandwidth h.
The term ν̂ij(x, h) is a scaling factor which normalizes the asymptotic variance of ψ̂ij(x, h). Importantly, our theory does
not require the statistics ψ̂ij(x, h) to have asymptotic variance exactly equal to 1. Nevertheless, for the multiscale methods
we are about to develop, it is desirable to normalize the statistics ψ̂ij(x, h) such that their variance is approximately equal
to 1 and thus comparable in size across locations x and bandwidths h. In order to achieve this, we set

ν̂ij(x, h) =

{
σ̂ 2
i,h

f̂i,h(x)
+

σ̂ 2
j,h

f̂j,h(x)

}
s(x, h), (3.2)

where s(x, h) = {
∫ (1−x)/h

−x/h K 2(u)[κ2(x, h) − κ1(x, h)u]2du}/{κ0(x, h)κ2(x, h) − κ1(x, h)2}2 is a kernel constant with κℓ(x, h) =∫ (1−x)/h
−x/h uℓK (u)du, f̂i,h(x) = {κ0(x, h)T }

−1 ∑T
t=1 Kh(Xit − x) is a boundary-corrected kernel density estimator of the design

density fi and σ̂ 2
i,h = T−1 ∑T

t=1{̂Y
∗

it − m̂i,h(Xit )}2 is an estimator of the error variance σ 2
i = E[ε2it ]. In the (RD) case, the

definition of σ̂ 2
i,h implicitly presupposes that the error terms εit are homoskedastic. When they are heteroskedastic, σ̂ 2

i,h
can be replaced by an estimator of the conditional error variance σ 2

i (x) = E[ε2it |Xit = x], in particular, by σ̂ 2
i,h(x) =

{
∑T

t=1 Kh(Xit −x)[̂Y ∗

it − m̂i,h(Xit )]2}/{
∑T

t=1 Kh(Xit −x)}. In the (FD) case, the term σ̂ 2
i,h must give a reasonable approximation

to the long-run error variance Γi =
∑

∞

ℓ=−∞
Cov(εi0, εiℓ) in order to produce a correct normalization of the statistic ψ̂ij(x, h).

As long as the time series dependence in the errors εit is not too strong, σ 2
i = Var(ε2i0) will be the dominant term in the

long-run variance Γi, implying that σ̂ 2
i,h should approximate Γi reasonably well. However, if the dependence in the errors

is expected to be strong, σ̂ 2
i,h should be replaced by an estimator of the long-run variance Γi, for example, by a HAC-type

estimator as discussed in Andrews (1991) or de Jong and Davidson (2000).
To motivate the following steps, it is instructive to examine the statistic d̂ij(h) in a simplified version of our model. We

in particular consider the setting

Yit = mi(Xit ) + εit , (3.3)

where (a) the design density f = fi is the same for all i, (b) the fixed effects αi and γt are dropped from the model and (c)
the errors εit are i.i.d. both across i and t . In this simplified setting, the statistic ψ̂ij(x, h) can be decomposed into a bias
part ψ̂B

ij (x, h) and a variance part ψ̂V
ij (x, h) according to

ψ̂ij(x, h) = ψ̂B
ij (x, h) + ψ̂V

ij (x, h) + lower order terms, (3.4)

where for any x ∈ [h, 1 − h],

ψ̂B
ij (x, h) =

√
Th

∫
{mi(x + hu) − mj(x + hu)}w(u, x, h)du√

ν̂ij(x, h)
(3.5)

ψ̂V
ij (x, h) =

√
Th

(
m̂V

i,h(x) − m̂V
j,h(x)

)√
ν̂ij(x, h)

(3.6)
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with m̂V
i,h(x) = {

∑T
t=1 Wit (x, h)εit}/{

∑T
t=1 Wit (x, h)} and w(u, x, h) = K (u)f (x + hu)/

∫
K (v)f (x + hv)dv. Under standard

conditions, ψ̂V
ij (x, h)

d
−→ N(0, 1). Moreover, the bias term ψ̂B

ij (x, h) vanishes for any pair of time series i and j that belong
to the same class Gk, that is, ψ̂B

ij (x, h) = 0 for any i, j ∈ Gk and 1 ≤ k ≤ K0.
The variance part ψ̂V

ij (x, h) captures the stochastic fluctuations of the statistic ψ̂ij(x, h). Inspecting (3.5) and recalling
that the kernel K has support [−1, 1], the bias part ψ̂B

ij (x, h) can be seen to be a weighted integrated difference between
mi and mj on the interval [x − h, x + h]. It can thus be regarded as a signal which indicates a deviation from H0 locally
around x. The strength of the signal ψ̂B

ij (x, h) depends on the choice of the bandwidth h. To see this more clearly, consider
two regression functions mi and mj from two different groups. The functions mi and mj may differ on different scales. In
particular, they may differ on a local/global scale, that is, they may have certain local/global features which distinguish
them from each other. To fix ideas, suppose that mi and mj differ on the interval I∗ = [x − h∗, x + h∗

] but are the same
outside I∗. The parameter h∗ can be regarded as the scale on which mi and mj differ: For small/large values of h∗, the
interval I∗ is small/large compared to the overall support [0, 1], which means that mi and mj differ on a local/global scale.
Usually, the signal ψ̂B

ij (x, h) is strong for bandwidths h close to h∗ and becomes weak for bandwidths h substantially smaller
or larger than h∗. Very roughly speaking, the reason for this is as follows: Depending on the choice of h, the integration
region in (3.5) changes. If h is much larger than h∗, we integrate over a much larger interval than I∗ in (3.5) and thus
smooth out the differences between mi and mj. If h is much smaller than h∗, in contrast, we only integrate over a small
part of the region I∗ where the two functions mi and mj differ and thus do not use all of the information available on the
differences between mi and mj.

According to these heuristic considerations, it strongly depends on the chosen bandwidth whether the test statistic
d̂ij(h) = supx∈[0,1] |ψ̂ij(x, h)| is able to detect a deviation from the null H0. In particular, if the bandwidth h is much
smaller/larger than the scale h∗ on which mi and mj mainly differ, the statistic d̂ij(h) is not able to pick up the differences
between mi and mj.

Step 3. We now construct a test statistic of H0 which does not depend on a specific bandwidth h but takes into account a
wide range of different bandwidths simultaneously. By construction, such a statistic should be able to detect differences
between the functions mi and mj on multiple scales simultaneously. To obtain such a statistic, we proceed as follows: We
compute the bandwidth-dependent statistic d̂ij(h) for all bandwidths h in a large set H = {h : hmin ≤ h ≤ hmax}, where
hmin and hmax denote some minimal and maximal bandwidth values that are specified later on. We then combine the
statistics d̂ij(h) for all h ∈ H to obtain a single test statistic.

A simple way of combining the statistics d̂ij(h) for all h ∈ H is to take their supremum, which leads to the definition

d̃ij := sup
h∈H

d̂ij(h) = sup
h∈H

sup
x∈[0,1]

⏐⏐ψ̂ij(x, h)
⏐⏐. (3.7)

On first sight, the statistic d̃ij seems to be a reasonable multiscale statistic which takes into account multiple bandwidths
simultaneously. However, inspecting it more closely, it turns out to have the following defect: It does not take into
account all bandwidths h ∈ H in an equal fashion. Its stochastic behavior is rather dominated by the statistics d̂ij(h)
that correspond to small bandwidths h. To see this, we examine the statistic d̃ij in the simplified model setting (3.3)
introduced in Step 2 under the null hypothesis H0, that is, in the case that i and j belong to the same group Gk. In this
case, ψ̂ij(x, h) = ψ̂V

ij (x, h) + lower order terms, since the bias term ψ̂B
ij (x, h) in (3.4) is equal to 0 for all x and h as already

noted in Step 2. Hence, the statistic ψ̂ij(x, h) is approximately equal to the variance term ψ̂V
ij (x, h), which captures its

stochastic fluctuations. Neglecting terms of lower order, we obtain that under H0, ψ̂ij(x, h) = ψ̂V
ij (x, h) and thus

d̃ij = sup
h∈H

d̂ij(h) with d̂ij(h) = sup
x∈[0,1]

|ψ̂V
ij (x, h)|.

For a given bandwidth h, the statistics ψ̂V
ij ((2ℓ−1)h, h) for ℓ = 1, . . . , ⌊1/2h⌋ can be shown to be (approximately) standard

normal and independent (for sufficiently large T ). Since the maximum over ⌊1/2h⌋ independent standard normal random
variables is λ(2h) + op(1) as h → 0 with λ(r) =

√
2 log(1/r), it holds that maxℓ ψ̂V

ij ((2ℓ − 1)h, h) is approximately
of size λ(2h) for small bandwidths h. Moreover, since the statistics ψ̂V

ij (x, h) with (2ℓ − 1)h < x < (2ℓ + 1)h are
correlated with ψ̂V

ij ((2ℓ−1)h, h) and ψ̂V
ij ((2ℓ+1)h, h), the supremum supx ψ̂

V
ij (x, h) approximately behaves as the maximum

maxℓ ψ̂V
ij ((2ℓ− 1)h, h). Taken together, these heuristic considerations suggest that

d̂ij(h) ≈ max
1≤ℓ≤⌊1/2h⌋

⏐⏐ψ̂V
ij ((2ℓ− 1)h, h)

⏐⏐ ≈ λ(2h) (3.8)

for small bandwidth values h. According to (3.8), the statistic d̂ij(h) tends to be much larger in size for small than for
large bandwidths h. As a consequence, the stochastic behavior of d̃ij tends to be dominated by the statistics d̂ij(h) which
correspond to small bandwidths h.
Step 4. To fix this bias issue, we follow Dümbgen and Spokoiny (2001) and replace the statistic d̃ij by the modified version

d̂ij := sup
h∈H

{̂
dij(h) − λ(2h)

}
= sup

h∈H
sup

x∈[0,1]

{
|ψ̂ij(x, h)| − λ(2h)

}
, (3.9)
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where λ(r) =
√
2 log(1/r). For each given bandwidth h, we thus subtract the additive correction term λ(2h) from the

statistic d̂ij(h). The idea behind this additive correction is as follows: When i and j belong to the same class, the statistic
d̂ij(h) is approximately of size λ(2h) for small values of h according to the heuristic considerations from above. Hence, we
correct d̂ij(h) by subtracting its approximate size under the null hypothesis H0. This calibrates the statistics d̂ij(h) in such
a way that their stochastic fluctuations are more comparable across bandwidths h. We thus put them on a more equal
footing and prevent small bandwidths from dominating the stochastic behavior of the multiscale statistic. As a result, d̂ij
should be a reliable test statistic of the null hypothesis H0 which is able to detect differences between the functions mi
and mj on multiple scales simultaneously.

To make the statistic d̂ij defined in (3.9) computable in practice, we replace the supremum over x ∈ [0, 1] and h ∈ H
by the maximum over all points (x, h) in a suitable grid GT . The final version of the multiscale statistic is thus defined as

d̂ij = max
(x,h)∈GT

{
|ψ̂ij(x, h)| − λ(2h)

}
. (3.10)

In this definition, GT may be any subset of G = {(x, h) | hmin ≤ h ≤ hmax and x ∈ [0, 1]} with the following properties:
(a) GT becomes dense in G as T → ∞, (b) |GT | ≤ CTβ for some arbitrarily large but fixed constants C, β > 0, where |GT |

denotes the cardinality of GT , and (c) hmin ≥ cT−(1−δ) and hmax ≤ CT−δ for some arbitrarily small but fixed δ > 0 and
some positive constants c and C . According to conditions (a) and (b), the number of points (x, h) in GT should grow to
infinity as T → ∞, however it should not grow faster than CTβ for some arbitrarily large constants C, β > 0. This is a
fairly weak restriction as it allows the set GT to be extremely large as compared to the sample size T . As an example, we
may use the Wavelet multiresolution grid GT = {(x, h) = (2−νr, 2−ν) | 1 ≤ r ≤ 2ν − 1 and hmin ≤ 2−ν

≤ hmax}. Condition
(c) is quite weak as well, allowing us to choose the bandwidth window [hmin, hmax] extremely large. In particular, we
can choose the minimal bandwidth hmin to converge to zero almost as quickly as the time series length T and thus to be
extremely small. Moreover, the maximal bandwidth hmax is allowed to converge to zero very slowly, in particular much
more slowly than the optimal bandwidths for estimating the functions mi, which are of the order T−1/5 for all i under our
technical conditions from Section 6. Hence, hmax can be chosen very large.

Remark 3.1. Alternatively to (3.10), one may define

d̂ωij = max
(x,h)∈GT

ω(2h)
{
|ψ̂ij(x, h)| − λ(2h)

}
,

where the multiplicative constant ω(r) =
√
log(e/r)/log log(ee/r) is motivated by Theorem 2.1 in Dümbgen and Spokoiny

(2001). In simple special cases, the limit distribution of d̂ij can be shown to be degenerate for i, j ∈ Gk as the largest
bandwidth hmax converges to zero. For this reason, one may prefer the statistic d̂ωij over d̂ij in the context of statistical
testing. For our clustering purposes, however, both statistics are appropriate. In particular, it does not matter whether
d̂ij has a degenerate limit. The main theoretical results on our clustering methods hold true no matter whether we work
with d̂ij or d̂ωij . Moreover, from a practical point of view, the performance of d̂ωij appears to be very similar to that of d̂ij. In
particular, the simulation results of Section 7 are almost identical when d̂ij is replaced by d̂ωij . For these reasons, we stick
to the somewhat simpler statistic d̂ij throughout the paper.

3.2. Tuning parameter choice

The multiscale statistic d̂ij does not depend on a specific bandwidth h that needs to be selected. It is thus free
of a classical bandwidth or smoothing parameter. However, it is of course not completely free of tuning parameters.
It obviously depends on the minimal and maximal bandwidths hmin and hmax. Importantly, hmin and hmax are much
more harmless tuning parameters than a classical bandwidth h. In particular, (a) they are much simpler to choose and
(b) the multiscale methods are much less sensitive to their exact choice than conventional methods are to the choice of
bandwidth. In what follows, we discuss the reasons for (a) and (b) in detail and give some guidelines how to choose hmin
and hmax in practice. These guidelines are in particular used to implement our methods in the simulated and real-data
examples of Sections 7 and 8.

Ideally, we would like to make the interval [hmin, hmax] as large as possible, thus taking into account as many
bandwidths h as possible. From a technical perspective, we can pick any bandwidths hmin and hmax with hmin ≥ cT−(1−δ)

and hmax ≤ CT−δ for some small δ > 0. Hence, our theory allows us to choose hmin and hmax extremely small and large,
respectively. Heuristically speaking, the bandwidth hmin can be considered very small if the effective sample size Thmin
for estimating the functions mi is very small, say Thmin ≤ 10. Likewise, hmax can be regarded as extremely large if the
effective sample size Thmax is very large compared to the full sample size T , say Thmax ≈ T/4 or Thmax ≈ T/3. Hence, in
practice, we have a pretty good idea of what it means for hmin and hmax to be very small and large, respectively. It is thus
clear in which range we need to pick the bandwidths hmin and hmax in practice.

As long as the bandwidth window [hmin, hmax] is chosen reasonably large, the exact choice of hmin and hmax can
be expected to have little effect on the overall behavior of the multiscale statistic d̂ij. To see why, write ψ̂ij(x, h) =

ψ̂B
ij (x, h)+ ψ̂

V
ij (x, h)+ lower order terms as in (3.4), where the variance term ψ̂V

ij (x, h) captures the stochastic fluctuations
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of ψ̂ij(x, h) and the bias term ψ̂B
ij (x, h) is a signal which picks up differences between the functions mi and mj locally

around x. Neglecting terms of lower order, the multiscale statistic d̂ij from (3.9) can be written as

d̂ij = sup
h∈[hmin,hmax]

sup
x∈[0,1]

{
|ψ̂B

ij (x, h) + ψ̂V
ij (x, h)| − λ(2h)

}
.

If the bandwidth window [hmin, hmax] is chosen sufficiently large, it will contain all the scales h∗ on which the two func-
tions mi and mj mainly differ. As discussed in Section 3.1, the signals ψ̂B

ij (x, h) should be strongest for bandwidths h which
are close to the scales h∗. Hence, as long as the window [hmin, hmax] is chosen large enough to contain all the scales h∗,
the size of the overall signal of the multiscale statistic d̂ij should be hardly affected by the exact choice of hmin and hmax.
Moreover, the size of the stochastic fluctuations of d̂ij should not be strongly influenced either: The stochastic part of d̂ij
can be expressed as

sup
h∈[hmin,hmax]

V̂ij(h) with V̂ij(h) = sup
x∈[0,1]

{
|ψ̂V

ij (x, h)| − λ(2h)
}
,

where V̂ij(h) captures the stochastic fluctuations corresponding to bandwidth h. According to our heuristic considerations
from Section 3.1, the variables V̂ij(h) are roughly comparable in size across bandwidths h. Moreover, for h and h′ close to
each other, V̂ij(h) and V̂ij(h′) are strongly correlated. For these reasons, the size of the stochastic part suph∈[hmin,hmax] V̂ij(h)
should not change much when we make the very large bandwidth window [hmin, hmax] somewhat larger or smaller.

In view of these heuristic considerations, we suggest to choose hmin in practice such that the effective sample size
Thmin is small, say ≤ 10, and hmax such that the effective sample size Thmax is large compared to T , say Thmax ≥ T/4.

3.3. Properties of the multiscale statistic

We now discuss some theoretical properties of the multiscale statistic d̂ij which are needed to derive the formal
properties of the clustering methods developed in the following sections. Specifically, we compare the maximal multiscale
distance between two time series i and j from the same class,

max
1≤k≤K0

max
i,j∈Gk

d̂ij,

with the minimal distance between two time series i and j from two different classes,

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij.

In Section 6, we formally prove that under appropriate regularity conditions,

max
1≤k≤K0

max
i,j∈Gk

d̂ij = Op
(√

log n + log T
)

(3.11)

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij ≥ c0
√
Thmax + op

(√
Thmax

)
, (3.12)

where c0 is a sufficiently small positive constant. These two statements imply that

max
1≤k≤K0

max
i,j∈Gk

d̂ij
/√

Thmax = op(1) (3.13)

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij
/√

Thmax ≥ c0 + op(1). (3.14)

According to (3.13) and (3.14), the maximal distance between time series of the same class converges to zero when
normalized by

√
Thmax, whereas the minimal distance between time series of two different classes remains bounded away

from zero. Asymptotically, the distance measures d̂ij thus contain enough information to detect which time series belong
to the same class. Technically speaking, we can make the following statement for any fixed positive constant c < c0: with
probability tending to 1, any time series i and j with d̂ij ≤ c belong to the same class, whereas those with d̂ij > c belong
to two different classes. The hierarchical clustering algorithm introduced in the next section exploits this information in
the distances d̂ij.

4. Estimation of the unknown groups

Let S ⊆ {1, . . . , n} and S ′
⊆ {1, . . . , n} be two sets of time series from our sample. We define a dissimilarity measure

between S and S ′ by setting

∆̂(S, S ′) = max
i∈S,
j∈S′

d̂ij. (4.1)
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This is commonly called a complete linkage measure of dissimilarity. Alternatively, we may work with an average or a
single linkage measure. To partition the set of time series {1, . . . , n} into groups, we combine the multiscale dissimilarity
measure ∆̂ with a hierarchical agglomerative clustering (HAC) algorithm which proceeds as follows:

Algorithm 4.1 (HAC Algorithm).
Step 0 (Initialization): Let Ĝ[0]

i = {i} denote the ith singleton cluster for 1 ≤ i ≤ n and define {̂G[0]
1 , . . . , Ĝ

[0]
n } to be the

initial partition of time series into clusters.
Step r (Iteration): Let Ĝ[r−1]

1 , . . . , Ĝ[r−1]
n−(r−1) be the n− (r −1) clusters from the previous step. Determine the pair of clusters

Ĝ[r−1]
k and Ĝ[r−1]

k′ for which

∆̂(̂G[r−1]
k , Ĝ[r−1]

k′ ) = min
1≤ℓ<ℓ′≤n−(r−1)

∆̂(̂G[r−1]
ℓ , Ĝ[r−1]

ℓ′
)

and merge them into a new cluster.

Iterating this procedure for r = 1, . . . , n − 1 yields a tree of nested partitions {̂G[r]
1 , . . . , Ĝ

[r]
n−r} , which can be graphically

represented by a dendrogram. Roughly speaking, the HAC algorithm merges the n singleton clusters Ĝ[0]
i = {i} step by

step until we end up with the cluster {1, . . . , n}. In each step of the algorithm, the closest two clusters are merged, where
the distance between clusters is measured in terms of the dissimilarity ∆̂. We refer the reader to Ward (1963) for an
early reference on HAC clustering and to Section 14.3.12 in Hastie et al. (2009) for an overview of hierarchical clustering
methods.

We now examine the properties of our HAC algorithm. In particular, we investigate how the partitions {̂G[r]
1 , . . . , Ĝ

[r]
n−r}

for r = 1, . . . , n − 1 are related to the true class structure {G1, . . . ,GK0}. From (3.13) and (3.14), it immediately follows
that the multiscale statistics d̂ij have the following property:

P
(

max
1≤k≤K0

max
i,j∈Gk

d̂ij < min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij
)

→ 1. (4.2)

To formulate the results on the HAC algorithm, we do not restrict attention to the multiscale statistics d̂ij from (3.10)
but let d̂ij denote any statistics with the high-level property (4.2). We further make use of the following notation: Let
A = {A1, . . . , Ar} and B = {B1, . . . , Br ′} be two partitions of the set {1, . . . , n}, that is, ∪̇

r
ℓ=1Aℓ = {1, . . . , n} and

∪̇
r ′

ℓ=1Bℓ = {1, . . . , n}. We say that A is a refinement of B if each Aℓ ∈ A is a subset of some Bℓ′ ∈ B. With this notation at
hand, the properties of the HAC algorithm can be summarized as follows:

Theorem 4.1. Suppose that the statistics d̂ij satisfy condition (4.2). Then

(a) P
({̂

G[n−K0]

1 , . . . , Ĝ[n−K0]

K0

}
=

{
G1, . . . ,GK0

})
→ 1,

(b) P
({̂

G[n−K ]

1 , . . . , Ĝ[n−K ]

K

}
is a refinement of

{
G1, . . . ,GK0

})
→ 1 for any K > K0,

(c) P
({

G1, . . . ,GK0

}
is a refinement of

{̂
G[n−K ]

1 , . . . , Ĝ[n−K ]

K

})
→ 1 for any K < K0.

The proof of Theorem 4.1 is trivial and thus omitted, the statements (a)–(c) being immediate consequences of
condition (4.2). By (a), the partition {̂G1, . . . , ĜK0} with Ĝk = Ĝ[n−K0]

k for 1 ≤ k ≤ K0 is a consistent estimator of the true
class structure {G1, . . . ,GK0} in the following sense: {̂G1, . . . , ĜK0} coincides with {G1, . . . ,GK0} with probability tending to
1. Hence, if the number of classes K0 were known, we could consistently estimate the true class structure by {̂G1, . . . , ĜK0}.
The partitions {̂G[n−K ]

1 , . . . , Ĝ[n−K ]

K } with K ̸= K0 can of course not serve as consistent estimators of the true class structure.
According to (b) and (c), there is nevertheless a close link between these partitions and the unknown class structure. In
particular, by (b), for any K > K0, the estimated clusters Ĝ[n−K ]

1 , . . . , Ĝ[n−K ]

K are subsets of the unknown classes with
probability tending to 1. Conversely, by (c), for any K < K0, the unknown classes are subsets of the estimated clusters
with probability tending to 1.

5. Estimation of the unknown number of groups

5.1. The estimation method

Let ∆̂(S, S ′) be the dissimilarity measure from (4.1) and define the shorthand ∆̂(S) = ∆̂(S, S). Moreover, let {πn,T } be
any sequence with the property that√

log n + log T ≪ πn,T ≪

√
Thmax, (5.1)

where the notation an,T ≪ bn,T means that an,T = o(bn,T ). Combining properties (3.11) and (3.12) of the multiscale
distance statistics d̂ij with the statements of Theorem 4.1, we immediately obtain the following: For any K < K0,

P
(
max
1≤k≤K

∆̂
(̂
G[n−K ]

k

)
≤ πn,T

)
→ 0, (5.2)
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Fig. 1. Example of a dendrogram produced by the HAC algorithm. The dashed horizontal line indicates the dissimilarity level πn,T . The estimator K̂0
can be computed by counting the vertical lines that intersect the dashed horizontal threshold. In the above example, K̂0 is equal to 3.

whereas for K = K0,

P
(

max
1≤k≤K0

∆̂
(̂
G[n−K0]

k

)
≤ πn,T

)
→ 1. (5.3)

Taken together, (5.2) and (5.3) motivate to estimate the unknown number of classes K0 by the smallest number K for
which the criterion

max
1≤k≤K

∆̂
(̂
G[n−K ]

k

)
≤ πn,T

is satisfied. Formally speaking, we estimate K0 by

K̂0 = min
{
K = 1, 2, . . .

⏐⏐⏐ max
1≤k≤K

∆̂
(̂
G[n−K ]

k

)
≤ πn,T

}
.

The estimator K̂0 depends on the threshold parameter πn,T whose choice is discussed in detail below. Note that the
clustering algorithm of Vogt and Linton (2017) also depends on a threshold parameter, which however plays a quite
different role than πn,T . We comment on the relationship between our clustering approach and the method in Vogt and
Linton (2017) in more detail in Section S.2 of the Supplement.

Provided that πn,T satisfies (5.1), K̂0 can be shown to be a consistent estimator of K0 in the sense that P(̂K0 = K0) → 1.
More precisely speaking, we can prove the following result.

Theorem 5.1. Suppose that the multiscale statistics d̂ij defined in (3.10) have the properties (3.11) and (3.12). Moreover, let
{πn,T } be any threshold sequence with the property (5.1). Then it holds that P(̂K0 = K0) → 1.

The proof of Theorem 5.1 is straightforward: As already noted, the properties (3.11) and (3.12) of the multiscale distance
statistics and the statements of Theorem 4.1 immediately imply (5.2) and (5.3). From (5.2), it further follows that
P(̂K0 < K0) = o(1), whereas (5.3) yields that P(̂K0 > K0) = o(1). As a consequence, we obtain that P(̂K0 = K0) → 1.

The estimator K̂0 can be interpreted in terms of the dendrogram produced by the HAC algorithm. It specifies a simple
cutoff rule for the dendrogram: The value

max
1≤k≤K

∆̂
(̂
G[n−K ]

k

)
= min

1≤k<k′≤K+1
∆̂

(̂
G[n−(K+1)]
k , Ĝ[n−(K+1)]

k′
)

is the dissimilarity level at which two clusters are merged to obtain a partition with K clusters. In the dendrogram, the
clusters are usually indicated by vertical lines and the dissimilarity level at which two clusters are merged is marked by
a horizontal line which connects the two vertical lines representing the clusters. To compute the estimator K̂0, we simply
have to cut the dendrogram at the dissimilarity level πn,T and count the vertical lines that intersect the horizontal cut at
the level πn,T . See Fig. 1 for an illustration.

5.2. Choice of the threshold level πn,T

As shown in Theorem 5.1, K̂0 is a consistent estimator of K0 for any threshold sequence {πn,T } with the property that
√
log n + log T ≪ πn,T ≪

√
Thmax. From an asymptotic perspective, we thus have a lot of freedom to choose the threshold

πn,T . In finite samples, a totally different picture arises. There, different choices of πn,T may result in markedly different
estimates of K0. Selecting the threshold level πn,T in a suitable way is thus a crucial issue in finite samples.
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In what follows, we describe a data-driven procedure to choose the threshold level πn,T . We first introduce the
algorithm and then give a heuristic explanation why it should yield a suitable choice of πn,T in practice. To formulate
the algorithm, we make use of the following notation: We write the set GT of location-bandwidth points (x, h) as

GT =
{
zν,ℓ = (xν,ℓ, hν) : 1 ≤ ν ≤ p, 1 ≤ ℓ ≤ Nν

}
,

where xν,ℓ (1 ≤ ℓ ≤ Nν) are the locations corresponding to the bandwidth hν and p different bandwidths hν (1 ≤ ν ≤ p)
are considered. Moreover, we let ζi = (ζi,ν,ℓ : 1 ≤ ν ≤ p, 1 ≤ ℓ ≤ Nν) = (ζi,1,1, . . . , ζi,1,N1 , . . . , ζi,p,1, . . . , ζi,p,Np )

⊤

be independent Gaussian random vectors of length
∑p

ν=1 Nν for 1 ≤ i ≤ n. Each random vector ζi has the covariance
structure

Cov
(
ζi,ν,ℓ, ζi,ν′,ℓ′

)
=

{
4ρν,ℓ ρν′,ℓ′

}−1/2

√
hν
hν′

{∫ (1−xν,ℓ)/hν

−xν,ℓ/hν
K (u)

[
κ2,ν,ℓ − κ1,ν,ℓ u

]
× K

(hνu + xν,ℓ − xν′,ℓ′
hν′

)[
κ2,ν′,ℓ′ − κ1,ν′,ℓ′

(hνu + xν,ℓ − xν′,ℓ′
hν′

)]
du

}
, (5.4)

where we use the shorthands κj,ν,ℓ = κj(xν,ℓ, hν) with κj(x, h) =
∫ (1−x)/h

−x/h ujK (u)du and ρν,ℓ = ρ(xν,ℓ, hν) with ρ(x, h) =∫ (1−x)/h
−x/h K 2(u)[κ2(x, h) − κ1(x, h)u]2du. We further define the random variable

Bn = max
1≤i,j≤n

(
|ζi − ζj| − λ

)
∞
,

where we employ the notation |z| = (|z1|, . . . , |zq|)⊤ and (z)∞ = max1≤ℓ≤q zℓ for vectors z ∈ Rq and λ = (λ1, . . . ,λp)⊤
with λν = (λ(2hν), . . . , λ(2hν)) ∈ RNν for each ν. With this notation at hand, we compute πn,T as follows.

Algorithm 5.1 (Choice of the Threshold Level πn,T ). For some pre-specified α ∈ (0, 1), compute the empirical (1−α)-quantile
q̂n(α) of Bn by simulation. In particular, simulate a large number of realizations of (ζ1, . . . , ζn), compute the corresponding
realizations of Bn and calculate the empirical (1 − α)-quantile q̂n(α) from these. Set πn,T = q̂n(α), where we suggest to
pick α ∈ {0.01, 0.05, 0.1}, thus mimicking the usual significance levels of a statistical test in practice.

We now give some heuristic arguments why Algorithm 5.1 should yield an appropriate choice of πn,T . To do so, we
suppose that the technical conditions from Section 6 are fulfilled. In addition, we make the simplifying assumption that
αi = γt = 0 for all i and t , that is, we drop the fixed effects from the model. Moreover, we suppose that the errors εit are
homoskedastic in the (RD) case and that the error variances σ 2

i = E[ε2it ] are the same within groups. As already discussed
in Section 2.3, the design densities fi are supposed to be the same within groups as well. Slightly abusing notation, we
write σ 2

k and fk to denote the group-specific error variance and design density in the kth class Gk. We can now make the
following heuristic observations, where we use the notation introduced above:

(a) Consider any pair of time series i and j that belong to the same class Gk. As in (3.4), we can decompose ψ̂ij(x, h) into
a bias and a variance part according to ψ̂ij(x, h) = ψ̂B

ij (x, h) + ψ̂V
ij (x, h) + lower order terms, where ψ̂B

ij (x, h) = 0 for
i, j ∈ Gk and thus

ψ̂ij(x, h) ≈ ψ̂V
ij (x, h) =

√
Th

{
m̂V

i,h(x) − m̂V
j,h(x)

}/
{̂νij(x, h)}1/2 (5.5)

with m̂V
i,h(x) = {

∑T
t=1 Wit (x, h)εit}/{

∑T
t=1 Wit (x, h)}. Standard arguments for kernel smoothers suggest that

m̂V
i,h(x) ≈

{
fk(x)

[
κ0(x, h)κ2(x, h) − κ1(x, h)2

]}−1

×
1
T

T∑
t=1

Kh(Xit − x)
[
κ2(x, h) − κ1(x, h)

(Xit − x
h

)]
εit . (5.6)

Since by construction, ν̂ij(x, h) is an estimator of νij(x, h) = 2{σ 2
k /fk(x)}s(x, h) with s(x, h) introduced in (3.2), we can

combine (5.5) and (5.6) to obtain the approximation ψ̂ij(x, h) ≈ ψ̂i(x, h) − ψ̂j(x, h) with

ψ̂i(x, h) =
{
2ρ(x, h)σ 2

k fk(x)
}−1/2

×
1

√
Th

T∑
t=1

K
(Xit − x

h

)[
κ2(x, h) − κ1(x, h)

(Xit − x
h

)]
εit .
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For each i, we stack the random variables ψ̂i(x, h) with (x, h) ∈ GT in the vector ψ̂i = (ψ̂i(xν,ℓ, hν) : 1 ≤ ν ≤ p, 1 ≤

ℓ ≤ Nν) = (ψ̂i(x1,1, h1), . . . , ψ̂i(x1,N1 , h1), . . . , ψ̂i(xp,1, hp), . . . , ψ̂i(xp,Np , hp))⊤ . With this notation at hand, we obtain
that

d̂ij ≈
(
|ψ̂i − ψ̂j| − λ

)
∞

for any pair of time series i and j that belong to the same class.
(b) For any fixed number of points z1, . . . , zq ∈ (0, 1) and related bandwidths hzℓ with hmin ≤ hzℓ ≤ hmax for

1 ≤ ℓ ≤ q, the random vector [ ψ̂i(z1, hz1 ), . . . , ψ̂i(zq, hzq ) ]
⊤ is asymptotically normal. Hence, the random

vector ψ̂i can be treated as approximately Gaussian for sufficiently large sample sizes. More specifically, since
Cov(ψ̂i(xν,ℓ, hν), ψ̂i(xν′,ℓ′ , hν′ )) ≈ Cov(ζi,ν,ℓ, ζi,ν′,ℓ′ ), we can approximate the random vector ψ̂i by the Gaussian
vector ζi. Moreover, since the vectors ψ̂i are independent across i under our assumptions, we can approximate
the distribution of

max
i,j∈S

(
|ψ̂i − ψ̂j| − λ

)
∞

by that of

max
i,j∈S

(
|ζi − ζj| − λ

)
∞

for any S ⊆ {1, . . . , n}.

Ideally, we would like to tune the threshold level πn,T such that K̂0 = K0 with high probability. Put differently, we would
like to choose πn,T such that it is slightly larger than max1≤k≤K0 ∆̂(̂G[n−K0]

k ) with high probability. With the help of the
observations (a) and (b) as well as some further heuristic arguments, this can be achieved as follows: Since the partition
{̂G[n−K0]

1 , . . . , Ĝ[n−K0]

K0
} consistently estimates the class structure {G1, . . . ,GK0}, we have that

max
1≤k≤K0

∆̂(̂G[n−K0]

k ) ≈ max
1≤k≤K0

∆̂(Gk). (5.7)

By observation (a), we further obtain that

max
1≤k≤K0

∆̂(Gk) = max
1≤k≤K0

{
max
i,j∈Gk

d̂ij
}

≈ max
1≤k≤K0

{
max
i,j∈Gk

(
|ψ̂i − ψ̂j| − λ

)
∞

}
, (5.8)

and by (b),

max
1≤k≤K0

{
max
i,j∈Gk

(
|ψ̂i − ψ̂j| − λ

)
∞

} d
≈ max

1≤k≤K0

{
max
i,j∈Gk

(
|ζi − ζj| − λ

)
∞

}
, (5.9)

where Z
d
≈ Z ′ means that Z is approximately distributed as Z ′. Since the right-hand side of (5.9) depends on the unknown

groups G1, . . . ,GK0 , we apply the trivial bound

max
1≤k≤K0

{
max
i,j∈Gk

(
|ζi − ζj| − λ

)
∞

}
≤ Bn = max

1≤i,j≤n

(
|ζi − ζj| − λ

)
∞

(5.10)

and define qn(α) to be the (1 − α)-quantile of Bn. Taken together, (5.7)–(5.10) suggest that

max
1≤k≤K0

∆̂(̂G[n−K0]

k ) ≤ qn(α)

holds with high probability if we pick α close to 0. In particular, if the random variable max1≤k≤K0 ∆̂(̂G[n−K0]

k ) is not only
approximately but exactly distributed as max1≤k≤K0 maxi,j∈Gk ( |ζi − ζj| − λ )∞, then

P
(

max
1≤k≤K0

∆̂(̂G[n−K0]

k ) ≤ qn(α)
)

≥ 1 − α.

According to these considerations, πn,T = q̂n(α) with α close to 0 (in particular with α ∈ {0.01, 0.05, 0.1}) should be an
appropriate threshold level.

6. Theoretical results

In this section, we derive the statements (3.11) and (3.12) under appropriate regularity conditions. These statements
characterize the convergence behavior of the multiscale statistics d̂ij and underlie Theorems 4.1 and 5.1 which describe
the theoretical properties of our clustering methods. To prove (3.11) and (3.12), we impose the following conditions.

(C1) Define Pi = {(Xit , εit ) : t = 1, 2, . . .} in the (RD) case and Pi = {εit : t = 1, 2, . . .} in the (FD) case. The time series
processes Pi are independent across i. Moreover, they are strictly stationary and strongly mixing for each i. Let
αi(ℓ) for ℓ = 1, 2, . . . be the mixing coefficients corresponding to the ith time series Pi. It holds that αi(ℓ) ≤ α(ℓ)
for all i, where the coefficients α(ℓ) decay exponentially fast to zero as ℓ → ∞.
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(C2) For each 1 ≤ i ≤ n, the design density fi has the following properties: (a) fi has bounded support, which
w.l.o.g. equals [0, 1] for all i, (b) fi is bounded away from zero and infinity on [0, 1] uniformly over i, that is,
0 < c ≤ fi(x) ≤ C < ∞ for all x ∈ [0, 1] with some constants c and C that neither depend on x nor on i, and (c) fi
is twice continuously differentiable on [0, 1] with first and second derivatives that are bounded away from infinity
in absolute value uniformly over i. Moreover, in the (RD) case, the variables (Xit , Xit+ℓ) have a joint density fi,ℓ
which is bounded away from infinity uniformly over i, that is, fi,ℓ(x, x′) ≤ C < ∞ for all i, x, x′ and ℓ, where the
constant C neither depends on i, x, x′ nor on ℓ.

(C3) The error variances σ 2
i = E[ε2it ] are uniformly bounded away from zero and infinity, that is, 0 < c ≤ σ 2

i ≤ C < ∞

for all i, where the constants c and C do not depend on i. In the (RD) case, the error terms εit are homoskedastic,
that is, σ 2

i = E[ε2it ] = E[ε2it |Xit = x] for all x ∈ [0, 1].
(C4) The densities fi and the error variances σ 2

i are the same within groups. That is, for any k with 1 ≤ k ≤ K0, it holds
that fi = fj and σ 2

i = σ 2
j for all i, j ∈ Gk.

(C5) There exist a real number θ > 4, a natural number ℓ∗ and a positive constant C such that the following holds: In
the (RD) case,

max
1≤i≤n

sup
x∈[0,1]

E
[
|εit |

θ
⏐⏐Xit = x

]
≤ C < ∞

max
1≤i≤n

sup
x,x′∈[0,1]

E
[
|εitεit+ℓ|

⏐⏐Xit = x, Xit+ℓ = x′
]

≤ C < ∞

for any ℓ ∈ Z with |ℓ| ≥ ℓ∗, and in the (FD) case,

max
1≤i≤n

E
[
|εit |

θ
]

≤ C < ∞.

(C6) The group-specific regression functions gk are twice continuously differentiable on [0, 1] for 1 ≤ k ≤ K0 with
Lipschitz continuous second derivatives g ′′

k , that is, |g ′′

k (v) − g ′′

k (w)| ≤ L|v − w| for any v,w ∈ [0, 1] and some
constant L. Moreover, for any pair of indices (k, k′) with 1 ≤ k < k′

≤ K0, the functions gk and gk′ are different in
the sense that gk(x) ̸= gk′ (x) for some point x ∈ [0, 1].

(C7) It holds that

n = n(T ) ≤ C
(T 1/2

∧ Thmin)
θ−δ
2

T 1+δ (6.1)

for some small δ > 0 and a sufficiently large constant C > 0, where we use the notation a ∧ b = min{a, b} and θ
is defined in (C5).

(C8) The minimal and maximal bandwidths have the form hmin = aT−B and hmax = AT−b with some positive constants
a, A, b and B, where 0 < b ≤ B < 1.

(C9) The kernel K is non-negative, bounded and integrates to one. Moreover, it is symmetric about zero, has compact
support [−1, 1] and fulfills the Lipschitz condition that |K (v) − K (w)| ≤ L|v − w| for some L and all v,w ∈ R.

Remark 6.1. We briefly comment on the above assumptions.

(i) (C1) imposes some weak dependence conditions on the time series Pi in the form of mixing assumptions. Note that
we do not necessarily require exponentially decaying mixing rates as assumed in (C1). These could alternatively
be replaced by sufficiently high polynomial rates. We nevertheless make the stronger assumption of exponential
mixing to keep the proofs as clear as possible.

(ii) (C1) restricts the error components εit to be independent across i. Nevertheless, some restricted types of
cross-sectional dependence in the error terms uit are possible via the fixed effects αi and γt .

(iii) The homoskedasticity assumption in (C3) as well as the condition in (C4) that the error variances σ 2
i are the same

within groups are not necessarily needed but are made for simplicity. The restriction in (C4) that the densities fi
are the same within groups, in contrast, is required for identification purposes as already discussed in Section 2.3.

(iv) (C2), (C5) and (C6) are standard moment, boundedness and smoothness conditions to derive uniform convergence
results for the kernel estimators on which the multiscale statistics d̂ij are based; see Hansen (2008) for similar
assumptions.

(v) (C6) requires the functions gk to be different across groups. However, it does not impose any quantitative
restrictions on the size of their differences. From an asymptotic perspective, such statements are not needed.
Asymptotically, the clustering algorithm developed in Sections 3–5 is able to detect the true group structure, no
matter how small the differences between the functions gk are in comparison to the noise level in the data, that
is, in comparison to the error variances σ 2

i . The situation in practice is of course very different: In finite samples,
the algorithm is only able to distinguish between two groups Gk and Gk′ if the difference between the functions
gk and gk′ is sufficiently large compared to the noise level in the data. Otherwise, the multiscale statistics d̂ij will
not pick up this difference, implying that the algorithm treats Gk ∪ Gk′ as one group.
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(vi) (C7) imposes restrictions on the growth of the number of time series n. Loosely speaking, it says that n is not
allowed to grow too quickly in comparison to T . More specifically, let hmin = aT−B with some B ≤ 1/2 and
hmax = AT−b with some b > 0. In this case, (6.1) simplifies to n ≤ CT (θ−4−5δ)/4 with some small δ > 0. This shows
that the growth restriction (6.1) on n is closely related to the moment conditions on the error terms εit in (C5).
In particular, the larger the value of θ , that is, the stronger the moment conditions on εit , the faster n may grow
in comparison to T . If θ = 8, for example, then n may grow (almost) as quickly as T . If θ can be picked arbitrarily
large, that is, if all moments of εit exist, then n may grow as quickly as any polynomial of T , that is, n ≤ CT ρ with
ρ > 0 as large as desired.

(vii) (C8) imposes some conditions on the minimal and maximal bandwidths hmin and hmax. Specifically, it requires that
hmin ≥ cT−(1−δ) and hmax ≤ CT−δ for some small δ > 0 and positive constants c and C . These conditions are fairly
weak as already discussed in Section 3: According to them, we can choose hmin to converge to zero extremely
fast, in particular much faster than the optimal bandwidths for estimating the functions mi, which are of the order
T−1/5 for any i under the smoothness conditions (C2) and (C6). Similarly, we can let hmax converge to zero much
more slowly than the optimal bandwidths. Hence, we can choose the interval [hmin, hmax] to be very large, allowing
for both substantial under- and oversmoothing.

(viii) Finally, it is worth noting that our assumptions do not impose any restrictions on the class sizes |Gk|. The sizes
|Gk| may thus be very different across the classes Gk. In particular, they may be fixed for some classes and grow
to infinity at different rates for others.

Under the regularity conditions just discussed, we can derive the following result whose proof is provided in the
Supplementary Material.

Theorem 6.1. Under (C1)–(C9), it holds that

max
1≤k≤K0

max
i,j∈Gk

d̂ij = Op
(√

log n + log T
)

(6.2)

min
1≤k<k′≤K0

min
i∈Gk,
j∈Gk′

d̂ij ≥ c0
√
Thmax + op

(√
Thmax

)
, (6.3)

where c0 is a fixed positive constant that does not depend on T (nor on n = n(T )).

7. Simulation study

The simulation study splits up into two main parts. In the first, we carry out some simulations to illustrate the
advantages of our multiscale approach over clustering methods that depend on a specific bandwidth. In the second, we
compare our estimator K̂0 of the number of groups with alternative methods. Due to space constraints, the second part
of the simulation study is presented in Section S.1 of the Supplement.

7.1. Comparison with bandwidth-dependent alternatives

When the grid GT of location-bandwidth points (x, h) comprises only one bandwidth value h, our multiscale approach
reduces to a bandwidth-dependent procedure. Specifically, the resulting procedure consists in applying a hierarchical
clustering algorithm to the supremum distances d̂ij(h) = maxx∈X |ψ̂ij(x, h)|, where X is the set of locations and h the
bandwidth under consideration.4 In what follows, we compare our multiscale approach with this bandwidth-dependent
procedure.

We consider the following simulation setup: The data are drawn from the model

Yit = mi(Xit ) + εit (1 ≤ t ≤ T , 1 ≤ i ≤ n), (7.1)

where T = 1000 and n = 100. The time series i ∈ {1, . . . , n} belong to K0 = 5 different groups G1, . . . ,GK0 of the same
size. In particular, we set Gk = {(k − 1)n/5 + 1, . . . , kn/5} for 1 ≤ k ≤ K0 = 5. The group-specific regression functions
gk : [0, 1] → R are given by g1(x) = 0 and

g2(x) = 0.35 b
(
x, 1

4 ,
1
4

)
g4(x) = 2 b

(
x, 1

4 ,
1
40

)
g3(x) = 0.35 b

(
x, 3

4 ,
1
4

)
g5(x) = 2 b

(
x, 3

4 ,
1
40

)
,

where b(x, x0, h) = 1(|x − x0|/h ≤ 1) {1 − ((x − x0)/h)2}2. Fig. 2 provides a graphical illustration of the functions gk. The
error process Ei = {εit : 1 ≤ t ≤ T } has an autoregressive (AR) structure for each i, in particular εit = aεit−1 + ηit for
1 ≤ t ≤ T , where a is the AR parameter and the innovations ηit are i.i.d. normal with E[ηit ] = 0 and E[η2it ] = ν2. We
consider two different values for the AR parameter a, in particular a = −0.25 and a = 0.25. The innovation variance ν2

4 Note that the additive correction term λ(2h) can be dropped from the distance statistic as it is a fixed constant when only one bandwidth value
h is considered.
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Fig. 2. Plot of the functions gk for 1 ≤ k ≤ 5.

is chosen as ν2 = 1 − a2, which implies that Var(εit ) = 1. The regressors Xit are drawn independently from a uniform
distribution on [0, 1] for each i. As can be seen, there is no time series dependence in the regressors, and we do not
include fixed effects αi and γt in the model. We do not take into account these complications because the main aim of
the simulations is to display the advantages of our multiscale approach over bandwidth-dependent procedures. These
advantages can be seen most clearly in a simple stylized simulation setup as the one under consideration.

To implement our multiscale approach, we use the location-bandwidth grid GT = {(x, h) : x ∈ X and h ∈ H}, where
X = {x : x = r/100 for r = 5, . . . , 95} is the set of locations and H = {h : 0.025 ≤ h ≤ 0.25 with h = 0.025k for k =

1, 2, . . .} is the set of bandwidths. The bandwidth-dependent algorithm is implemented with the same set of locations X
and five different bandwidths h ∈ {0.025, 0.05, 0.1, 0.2, 0.25}. The local linear smoothers m̂i,h which underlie the
clustering algorithms are computed with an Epanechnikov kernel K . The number of classes K0 = 5 is estimated as
described in Section 5 both when the multiscale and the bandwidth-dependent algorithm is used. The threshold parameter
πn,T is set to πn,T = q̂n(α) with α = 0.05. To produce our simulation results, we draw S = 1000 samples from model (7.1)
and compute the estimates of the classes G1, . . . ,GK0 and their number K0 for each simulated sample both for the
multiscale and the bandwidth-dependent algorithm.

The simulation results for the scenario with the negative AR parameter a = −0.25 are reported in Fig. 3 and those
for the scenario with the positive parameter a = 0.25 in Fig. 4. We first have a closer look at Fig. 3. To produce Fig. 3(a),
we treat K0 as known and compute the number of classification errors #F , that is, the number of wrongly classified
indices i for each of the S = 1000 simulated samples.5 The upper left panel of Fig. 3(a) shows the histogram of these
S = 1000 values for our multiscale approach. The other panels of Fig. 3(a) present the corresponding histograms for
the bandwidth-dependent algorithm with the five different bandwidth values h under consideration. As can be seen
very clearly, our multiscale approach performs much better than the bandwidth-dependent competitor for any of the
considered bandwidths. Fig. 3(b) shows the simulation results for the estimated number of classes K̂0. The upper left panel
depicts the histogram of the S = 1000 values of K̂0 produced by the multiscale approach. As one can see, the estimate K̂0
equals the true number of classes K0 = 5 in about 95% of the cases (that is, in about 950 out of S = 1000 simulations).
The performance of the bandwidth-dependent algorithm is considerably worse, which becomes apparent upon inspecting
the other panels of Fig. 3(b). The results in Fig. 4 for the scenario with the positive AR parameter a = 0.25 give a very
similar picture. In particular, our multiscale approach shows a much better performance than the bandwidth-dependent
competitor for any of the considered bandwidths. Comparing Figures 3 and 4, one can further see that the estimation
precision is a bit better for the negative than the positive AR parameter (both for the multiscale and the bandwidth-
dependent approach). This is not very surprising but simply reflects the fact that it is more difficult for the procedures to
handle positive rather than negative correlation in the error terms.

Overall, our multiscale approach clearly outperforms the bandwidth-dependent algorithm in the simulation setup
under consideration. Heuristically, this can be explained as follows: The setup comprises two very different types of
signals. The signals g4 and g5 are very local in nature; they differ from a flat line only by a sharp, very local spike. The
signals g2 and g3, in contrast, are much more global in nature; they differ from a flat line on a large part of the support
[0, 1], but they are much smaller in magnitude than g4 and g5. A bandwidth-dependent clustering algorithm is hardly able
to distinguish these signals reliably from each other. When a small bandwidth value is used, local features of the functions
(the spikes in g4 and g5) can be detected reliably, but more global features (the slight curvature in g2 and g3) are hard to
see. Hence, when implemented with a small bandwidth, the algorithm is barely able to detect differences between the
functions on a global scale. When implemented with a large bandwidth, in contrast, it is hardly able to capture differences
on a local scale. Our multiscale approach, in contrast, is able to produce appropriate estimates since it analyzes the data
on various scales simultaneously.

5 Formally, #F is defined as follows: Let π be some permutation of the class labels {1, . . . , K0} and denote the set of all possible permutations
by Π . Moreover, denote the group membership of i by ρ(i), i.e. set ρ(i) = k if i ∈ Gk . Similarly, let ρ̂π (i) be the estimated group membership of
i, where the estimated classes are labeled according to the permutation π . Specifically, set ρ̂π (i) = π (k) if i ∈ Ĝk = Ĝ[n−K0]

k . With this notation at
hand, we define #F = minπ∈Π

∑n
i=1 1(ρ(i) ̸= ρ̂π (i)).



320 M. Vogt and O. Linton / Journal of Econometrics 216 (2020) 305–325

Fig. 3. Simulation results for the design with the negative AR parameter a = −0.25. In both subfigures (a) and (b), the upper left panel shows the
results for the multiscale approach and the other panels those for the bandwidth-dependent competitor with different bandwidths h.
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Fig. 4. Simulation results for the design with the positive AR parameter a = 0.25. In both subfigures (a) and (b), the upper left panel shows the
results for the multiscale approach and the other panels those for the bandwidth-dependent competitor with different bandwidths h.
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Fig. 5. Time series of total monthly rainfall (in mm) at Lerwick weather station.

Even though we have considered a quite stylized setup in our simulations, the advantages of our multiscale approach
that become visible in this setup can be expected to persist in real-data applications. In practice, it is usually not known
whether the group-specific regression functions gk (1 ≤ k ≤ K0) differ on a local or global scale. Hence, it is usually
not clear at all which bandwidth is appropriate for implementing a bandwidth-dependent clustering algorithm. If the
bandwidth is not picked suitably, the clustering results may not be very accurate. Moreover, when the functions gk differ
on multiple scales, a clustering approach which is based on a single bandwidth h can be expected to perform not very well,
regardless of the specific value of h. Our multiscale approach, in contrast, can be expected to produce reliable clustering
results, no matter whether the functions gk differ on a local, global or multiple scales.

8. Application

We now illustrate the advantages of our multiscale clustering method by a real-data example. To do so, we compare it
with the bandwidth-dependent algorithm introduced in Section 7.1. Unlike in simulations, the true groups are not known
in real-data applications. Hence, we cannot simply evaluate the performance of the clustering algorithms by comparing the
estimated groups with the true ones. Nevertheless, some clusterings may be more plausible than others in the light of the
application context. In what follows, we use plausibility arguments to obtain a meaningful comparison of our multiscale
method with the bandwidth-dependent alternative.

Our application example comes from environmental statistics. We examine a sample of monthly rainfall data from
34 UK weather stations. The data are publicly available on the webpage of the UK Met Office. We use a subset of 27 stations
for which data are available over the time span from 1986 to 2018. We thus observe a time series Yi = {Yit : 1 ≤ t ≤ T }

of length T = 385 for each station i ∈ {1, . . . , 27}, where Yit denotes total monthly rainfall (in mm) at station i at time t .
Each of the n = 27 rainfall time series Yi in our sample is assumed to follow the model

Yit = mi

( t
T

)
+ αi + εit , (8.1)

where mi is an unknown nonparametric time trend function which satisfies the normalization constraint
∫ 1
0 mi(u)du = 0,

αi is a fixed effect error term and εit is an idiosyncratic error with E[εit ] = 0. As usual in nonparametric regression, we let
mi depend on rescaled time t/T rather than on real time t; see e.g. Robinson (1989), Dahlhaus (1997) and Vogt and Linton
(2014) for the use and some discussion of the rescaled time argument. The trend function mi describes the rainfall pattern
at station i corrupted by noise αi+εit . Due to the normalization

∫ 1
0 mi(u)du = 0, it holds that T−1 ∑T

t=1 Yit = αi+Op(T−1/2),
that is, the average rainfall level T−1 ∑T

t=1 Yit at station i is absorbed into the term αi. As in the theoretical part of the
paper, we assume that the stations i can be partitioned into K0 groups G1, . . . ,GK0 such that for each 1 ≤ k ≤ K0, mi = mj
for all i, j ∈ Gk. We thus suppose that the time trends mi are the same (or at least very similar) at all stations i in a given
group Gk.

To estimate the unknown group structure in the data, we implement our multiscale method as follows: We use an
Epanechnikov kernel K to compute the local linear smoothers m̂i,h and consider the location-bandwidth grid GT = {(x, h) :

x ∈ X and h ∈ H}, where X = {t/T : 1 ≤ t ≤ T } is the set of locations and H = {h : h = 3ℓ/T with 1 ≤ ℓ ≤ 20} is
the set of bandwidths. The bandwidths h = 3/T , 6/T , 9/T , . . . correspond to effective sample sizes of 3, 6, 9, . . . months
of data. To implement the bandwidth-dependent algorithm, we use the same grid of locations X and consider different
bandwidths h.

An example of the n = 27 rainfall time series in our sample is shown in Fig. 5. The plot depicts the time series of total
monthly rainfall at Lerwick weather station. As can be clearly seen, the time series exhibits strong seasonal fluctuations.
The underlying trend function mi can thus be expected to strongly vary on local scales, in particular, over short time
periods of only a few months. There may of course be variation in the function mi on more global scales as well. However,
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Fig. 6. Clusters produced by the bandwidth-dependent algorithm. The curve estimates m̂i,h are plotted with the bandwidth h = 3/T in both subfigures
for reasons of comparability. Their colors correspond to the clusters in subfigure (a).

the variation on local scales due to seasonal fluctuations in rainfall appears to be quite dominant. Hence, it seems crucial
to take into account differences between the functions mi on local scales when clustering the rainfall time series. As a
consequence, a bandwidth-dependent algorithm can be expected to produce an appropriate clustering when implemented
with a small bandwidth. When implemented with a large bandwidth, in contrast, it will presumably neglect important
local differences between the functions mi and thus produce inappropriate results.

This is illustrated in Fig. 6. Fig. 6(a) shows the clustering results produced by the bandwidth-dependent algorithm
with the very small bandwidth h = 3/T , which corresponds to an effective sample size of 3 months of data. In order to
estimate the number of clusters, we apply the procedure from Section 5 with α = 0.05, which yields the estimate K̂0 = 3.
For reasons of comparability, we do not re-estimate the number of clusters when running the multiscale algorithm and
the bandwidth-dependent method with other bandwidths h. The number of clusters is thus set to K̂0 = 3 throughout the
empirical analysis. Each panel of Fig. 6(a) represents one of the three estimated clusters and shows the curve estimates m̂i,h
with h = 3/T which belong to the respective cluster. The clusters appear to capture the local differences between the
curves reasonably well. Curves with similar shape are sorted into the same group. In particular, the overall pattern of
oscillations, their amplitudes and peaks are similar within each group.

Fig. 6(b) depicts the clusters produced by the bandwidth-dependent algorithm with the quite large bandwidth
h = 48/T , which corresponds to an effective sample size of 4 years of data. As before, each panel shows the curve estimates
m̂i,h of one cluster. For comparability reasons, the estimates m̂i,h are computed with the same bandwidth h = 3/T as in
Fig. 6(a) and their colors correspond to the clusters in Fig. 6(a). Fig. 6 illustrates two important points: First, the bandwidth-
dependent algorithm yields quite different clusters depending on which bandwidth is used. Second, the algorithm with
h = 48/T is not able to detect the local differences between the curves appropriately. Cluster 2, for example, contains
curves of quite different shapes, some having a strong oscillatory pattern whereas others have fluctuations with a much
smaller amplitude.

Our multiscale approach produces exactly the same clusters as the bandwidth-dependent algorithm with the small
bandwidth h = 3/T , which are depicted in Fig. 6(a). As argued above, it is quite plausible to suppose that the functions
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Fig. 7. Map of the UK with the locations of the n = 27 weather stations in our sample. The different symbols that indicate the stations correspond
to the clusters produced by our multiscale approach.

mi differ predominantly on local scales. Importantly, we do not feed this information into the multiscale algorithm. The
method is rather designed to automatically select the important scales on which the functions mi mainly differ. In the
data example at hand, this appears to work quite well: The multiscale algorithm picks out very local scales, which are
quite plausibly the most important ones. As a consequence, it produces clusters which reflect the seasonal fluctuations in
the data quite well. The performance of the bandwidth-dependent algorithm, in contrast, strongly depends on the chosen
bandwidth.

Fig. 7 presents a map of Great Britain which shows the locations of the n = 27 weather stations in our sample. The
symbols that indicate the stations reflect the clustering produced by our multiscale approach. In particular, the stations
that belong to a specific cluster are depicted by the same symbol. As can be seen, most stations of Cluster 1 are located in
the eastern part of the UK, whereas those of Cluster 2 are mainly situated in the western part. The clusters thus show a
clear division between the west and east of the UK. This makes sense as the UK weather is strongly influenced by winds
from the Atlantic ocean that move from west to east across the UK, implying that the precipitation patterns in the west
are different from those in the east.

Before we close this section, we should note that the real-data example we have considered here is of course not
meant to be a full-blown empirical application. In serious environmental applications, data are collected on huge spatial
grids, with rainfall, temperature or ozone measurements being available at hundreds or thousands of different locations.
Our application example, in contrast, has a purely illustrative purpose. We have deliberately kept the example simple and
the number of locations i small such that the main advantages of our multiscale method can be demonstrated in a clear
and easy way.
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