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a b s t r a c t

We propose a semi-parametric coupled component exponential GARCH model for
intraday and overnight returns that allows the two series to have different dynamical
properties. We adopt a dynamic conditional score model with t-distributed innovations
that captures the very heavy tails of overnight returns. We propose a several-step
estimation procedure that captures the nonparametric slowly moving components by
kernel estimation and the dynamic parameters by maximum likelihood. We establish the
consistency, asymptotic normality, and semiparametric efficiency of our semiparametric
estimation procedures. We extend the modelling to the multivariate case where we
allow time varying correlation between stocks. We apply our model to the study of
Dow Jones industrial average component stocks and CRSP size-based portfolios over the
period 1993–2017. We show that the ratio of overnight to intraday volatility has actually
increased in importance for Dow Jones stocks during the last two decades. This ratio has
also increased for large stocks in the CRSP database, but decreased for small stocks in
CRSP.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The balance between intraday and overnight returns is of considerable interest as it potentially sheds light on many
issues in finance: the efficient markets hypothesis, the calendar time versus trading time models, the process by which
information is impacted into stock prices, the relative merits of auction versus continuous trading, the effect of high
frequency trading on market quality, and the globalization and connectedness of international markets. We propose a
bivariate time series model for intraday and overnight returns that respects their temporal ordering and permits the
two processes to have different marginal properties, and to feedback into each other, and allows for both short run and
long components. In particular, our volatility model for each return series has a long run component that slowly evolves
over time, and is treated nonparametrically, and a parametric dynamic volatility component that allows for short run
deviations from the long run process, where those deviations depend on previous intraday and overnight shocks. We
adopt a dynamic conditional score (DCS) model, (Harvey, 2013; Harvey and Luati, 2014), that links the news impact
curves of the innovations to the shock distributions, which we assume to be t-distributions with unknown degrees of
freedom (which may differ between intraday and overnight). In practice, the overnight return distribution is more heavy
tailed than the intraday return, and in fact very heavily tailed. Our model allows for a difference in the tail thickness of
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the conditional distributions. The short run dynamic process allows for leverage effects and separates the overnight shock
from the intraday shock. We also introduce a multivariate model that allows for time varying correlations between stocks
and between overnight and intraday returns.

We apply our model to the study of 26 Dow Jones industrial average component stocks over the period 1993–2017,
a period that saw several substantial institutional changes. There are several purposes for our application. First, many
authors have argued that the introduction of computerized trading and the increased prevalence of High Frequency
Trading (HFT) strategies in the period post 2005 has lead to an increase in volatility, see Boehmer et al. (2015) and Linton
et al. (2013). To address this, a direct comparison of volatility before and after would be problematic here because of
the Global Financial Crisis (GFC), which raised volatility during the same period that HFT was becoming more prevalent.
There are a number of studies that have investigated this question with natural experiments methodology (Brogaard,
2011), but the conclusions one can draw from such work are event specific. We model the volatility process with a
view to addressing this hypothesis in a more general way. One implication of this hypothesis is that ceteris paribus
the ratio of intraday to overnight volatility should have increased during this period because trading is not taking place
during the market close period. We would like to evaluate whether this has occurred. One could just compare the daily
return volatility from the intraday segment with the daily return volatility from the overnight segment, as many studies
such as French and Roll (1986) have done. However, this would ignore both fast and slow variation in volatility through
business cycle and other causal factors. Also, overnight raw returns are very heavy tailed and so sample (unconditional)
variances are not very reliable. We use our dynamic two component model, which allows for both fast and slow dynamic
components to volatility, as is now common practice (Engle and Lee, 1999; Engle and Rangel, 2008; Hafner and Linton,
2010; Rangel and Engle, 2012; Han and Kristensen, 2015). Our model also allows dynamic feedback between overnight and
intraday volatility, which is of interest in itself. Our model generates heavy tails in observed returns, but the parameter
estimates we employ are robust to this phenomenon. Our methodology therefore allows us to compare the long run
components of volatility over this period without over reliance on Gaussian-type theory. We show that for the Dow Jones
stocks the long run component of overnight volatility has actually increased in importance during this period relative
to the long run component of intraday volatility (although intraday volatility is still generally higher than overnight
volatility). We provide a formal test statistic that confirms quantitatively the strength of this effect; our test can be
interpreted as carrying out a difference in difference analysis but in ratio form, (Imbens and Wooldridge, 2007). This
finding seems to be hard to reconcile with the view that trading has increased volatility. We also document the short
run dynamic processes. Notably, we find, unlike Blanc et al. (2014), that overnight returns significantly affect future
intraday volatility. We also find that overnight return shocks have t-distributions with degrees of freedom roughly equal
to three, which emphasizes the potential fragility of Gaussian-based estimation routines that earlier work has been based
on. We also estimate a multivariate model and document that there has been an upward trend in the long run component
of contemporary overnight correlation between stocks as well as in the long run component of contemporary intraday
correlation between stocks. However, the trend development for the overnight correlations started later than for intraday,
and started happening only after 2005, whereas the intraday correlations appear to have slowly increased more or less
from the beginning of the period.

We also apply our model to size-sorted portfolios of CRSP stocks over the period 1993–2017. We find that the ratio
of overnight to intraday volatility has indeed increased for large stocks, but has decreased for small stocks especially in
the 1990s. Notably, the slope increases monotonically from the smallest-cap to the largest-cap decile, and the ratio of
overnight to intraday volatility is typically high during recent crises.

A second practical purpose for our model is to improve forecasts of intraday volatility or close to close volatility. Our
model allows us to condition on the open price to forecast intraday volatility or to update the close to close volatility
forecast and also to take into account the full dynamic consequences of the overnight shock and previous ones. We
compare forecast performance of our model with a procedure based only on close to close returns and find in most
cases superior performance.

We work only with the return series, although for some stocks intraday transaction and quote records are available
for the duration of our study, which would permit the computation of realized volatility measures, which are for some
the preferred measure of intraday volatility. This however would pose some additional questions in terms of the joint
modelling of discrete time returns and realized volatility, and puts an imbalance between the measurement of intraday
and overnight volatility.1 Furthermore, it would be problematic to implement some of those techniques on the small CRSP
stocks in the early part of the sample period, so it is not a silver bullet. Instead we do make use of alternative measures
of market (SP500) volatility – the VIX (which includes overnight volatility) and the (Rogers and Satchell, 1991) intraday
volatility measure – to conduct a robustness check. We find that these measures confirm the finding regarding the rise
of overnight volatility relative to intraday after 2004.

Related Literature. Overnight returns have recently attracted much attention in empirical finance. Many find overnight
and intraday returns behave entirely differently, and overnight returns tend to outperform intraday returns. Specifi-
cally, Cooper et al. (2008) suggest that the U.S. equity premium over the period 1993–2006 is solely due to overnight
returns. Kelly and Clark (2011) find the overnight returns are on average larger than the intraday returns. Berkman et al.

1 Our main findings involve averages of the daily volatility series and so the efficiency gain of realized volatility may not be so large in this
context.
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(2012) find a significant positive mean overnight return and a significant negative mean intraday return. They suggest
stocks that have recently attracted the attention of retail investors tend to have higher net retail buying at the open,
leading to high overnight returns that followed by intraday reversals. Aboody et al. (2018) suggest overnight returns
can serve as a measure of firm-specific investor sentiment, and find short-term persistence in overnight returns. Polk
et al. (2019) link investor heterogeneity to the strong persistence of the overnight and intraday returns. They find an
overnight versus intraday tug of war in strategy risk premium, and the risk premium is earned entirely overnight for the
largest stocks. Besides the difference in expected returns, overnight returns are found less volatile (French and Roll, 1986;
Lockwood and Linn, 1990; Aretz and Bartram, 2015), but more leptokurtic than intraday returns in the U.S. market (Ng
and Masulis, 1995; Blanc et al., 2014).

Tsiakas (2008) proposed a stochastic volatility model for daytime returns with feedback from night to day and
leverage effects built in. He assumed Gaussian innovations; he did not model the overnight returns. In the literature
on realized volatility, many authors have considered how to incorporate overnight returns into daily variance modelling
and forecasting, by scaling the intraday measure (e.g., Martens, 2002 and Fleming et al., 2003), or by combining daytime
realized volatility and the squared overnight return with optimally chosen weight parameters (e.g., Hansen and Lunde,
2005). However, these authors also did not model the overnight returns either. Andersen et al. (2011) decomposed
the total daily return variability into the continuous sample path variance, the discontinuous intraday jumps, and the
overnight variance. For this overnight variance, they used an augmented GARCH-t type structure with the immediately
preceding daytime realized volatility as an additional explanatory variable. Blanc et al. (2014) employ a quadratic ARCH
model with flexible dynamics for both intraday and overnight returns; they also allow for feedback from overnight to
intraday returns and leverage effects. They use a t distributed shock to drive each process and to define an estimation
algorithm. They impose a pooling assumption on the model parameters across 280 S&P500 stocks that are continually in
the index over 2000–2009, and assume stationarity over the period in question.

Our paper is closely related to the Generalized Autoregressive Score models or the Beta-t-(E)GARCH model. Creal
et al. (2013) introduced a general class of time series models called Generalized Autoregressive Score models (GAS).
Simultaneously, Harvey and Chakravarty (2008) developed a score driven model specifically for volatilities, called the
Beta-t-(E)GARCH model, built on exactly the same philosophy. Harvey (2013) settles on the dynamic conditional score
model terminology, and we follow that nomenclature. This paper is also related to the work of Engle and Rangel (2008)
and Hafner and Linton (2010) about incorporating long run volatilities. Engle and Rangel (2008) introduced nonparametric
slowly varying trends into GARCH models; Hafner and Linton (2010) propose a multivariate extension and develop the
distribution theory for inference.

2. The model and its properties

We let rDt denote intraday returns and rNt denote overnight returns on day t . We take the ordering that night precedes
day so that rDt = ln(PC

t /P
O
t ) and rNt = ln(PO

t /P
C
t−1), where PO

t denotes the open price on day t and PC
t denotes the close

price on day t . Daily close to close returns satisfy rt = rDt + rNt . The timeline is illustrated below

· · · −→ PC
t−1

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
Night t
−→
rNt

PO
t

Day t
−→
rDt  

rt

PC
t

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
Night t+1
−→
rNt+1

PO
t+1 −→ · · ·

We do not distinguish between weekend, holiday weekends, and ordinary midweek over night periods, although we
comment on this issue in the concluding section below.

Our model allows intraday returns to depend on overnight returns with the same t , but overnight returns just depend
on lagged variables. We suppose that(

1 δ

0 1

)(
rDt
rNt

)
=

(
µD
µN

)
+Π

(
rDt−1

rNt−1

)
+

(
uD
t

uN
t

)
, (1)

where uD
t and uN

t are conditional mean zero shocks. Under the EMH, δ = 0 and Π = 0, but we allow these coefficients
to be nonzero to pick up what could be mispricing effects or short run effects such as might arise from the market
microstructure, Scholes and Williams (1977).

We suppose that the error process has conditional heteroskedasticity, with both long run and short run effects, both
modelled in exponential form, Nelson (1991). Specifically, we suppose that

ut =

(
uD
t

uN
t

)
=

(
exp(λDt ) exp(σ

D(t/T ))εDt
exp(λNt ) exp(σ

N (t/T ))εNt

)
, (2)
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where: εDt and εNt are i.i.d. mean zero shocks from t distributions with vD and vN degrees of freedom, respectively, while
σ D(·) and σN (·) are unknown but smooth functions that will represent the slowly varying (long-run) scale of the process,
and T is the number of observations. Suppose that for j = D,N:

σ j (s) =

∞∑
i=1

θ
j
iψ

j
i (s) , s ∈ [0, 1] (3)

for some orthonormal basis {ψ
j
i (s)}

∞

i=1 with
∫ 1
0 ψ

j
i (s) ds = 0 and∫

ψ
j
i (s) ψ

j
k (s) ds =

{
1 if i = k
0 if i ̸= k.

We suppose σ D(·) and σN (·) integrate to zero to achieve identification. It is similar to the Hafner and Linton (2010)
normalization. The only difference is that we are normalizing the log variance to integrate to zero for convenience because
our model is in exponential form. This normalization also has the advantage of delivering orthogonality between the score
for the parameters in the short run component and the score for θ , as we will see later in Theorem 1, see Linton (1993).
In the following, j is always used to denote D,N without further mentioning.

Regarding the short run dynamic part of (2), we adopt a dynamic conditional score approach, Creal et al. (2011) and
(Harvey and Luati, 2014). The conditional (scale) score function associated with the t-distributed shocks is (1 − x2(ν +

1)/(νσ 2
+ x2))/σ 2, and so we take as innovation processes

mj
t =

(1 + vj)(e
j
t )2

vj exp(2λ
j
t ) + (ejt )2

− 1, vj > 0

where ejt = exp(−σ j(t/T ))uj
t . Note that mj

t is a bounded function of ejt with E(mD
t |F

N
t ) = 0 and E(mN

t |FD
t−1) = 0, where

FN
t−1 is the information set at the open of day t − 1 and FD

t−1 is the information set at the close of day t − 1. We suppose
that λDt and λNt are linear combinations of past values of the shocks determined by mj

t , j = D,N:

λDt = ωD(1 − βD) + βDλ
D
t−1 + γDmD

t−1 + ρDmN
t (4)

+ γ ∗

D (m
D
t−1 + 1)sign(eDt−1) + ρ∗

D(m
N
t + 1)sign(eNt )

λNt = ωN (1 − βN ) + βNλ
N
t−1 + γNmN

t−1 + ρNmD
t−1 (5)

+ ρ∗

N (m
D
t−1 + 1)sign(eDt−1) + γ ∗

N (m
N
t−1 + 1)sign(eNt−1).

We suppose that this stochastic process has a compatible initialization, for simplicity we assume below that the process
started in the infinite past. This gives two dynamic processes for the short run scale of the overnight and intraday return.
The parameters ρD, ρ∗

D capture the effect of overnight shocks on intraday volatility, while ρN , ρ∗

N capture the effects of
intraday shocks on overnight volatility; we call ρD, ρ∗

D, ρN , ρ
∗

N feedback parameters that couple together the processes
λDt , λ

N
t , whereas γD, γ ∗

D , γN , γ
∗

N are capturing the effect of shocks from previous same type of period on same type of
period volatility. We allow for leverage effects, (Nelson, 1991; Glosten et al., 1993), through the parameters γ ∗

D , ρ
∗

D, ρ
∗

N ,
and γ ∗

N .
2 The parameters βD, βN measure the persistence of the volatility processes. We set the intercepts this way so that

ωD is the unconditional mean of λDt and ωN is the unconditional mean of λNt ; we may consider exp(ωD −ωN ) to measure
the relative mean volatility contribution of the daily process and the overnight process. Let

φ = (ωD, βD, γD, γ
∗

D , ρD, ρ
∗

D, vD, ωN , βN , γN , γ
∗

N , ρN , ρ
∗

N , vN )
⊺

∈ Φ ⊂ R14

be the finite dimensional parameters of interest. The two unknown functions σ D(·) and σN (·) complete the semiparametric
model for the process {ut}.

Harvey (2013) argues that the quadratic innovations that feature in GARCH models naturally fit with the Gaussian
distribution for the shock, but once one allows heavier tail distributions like the t-distribution, it is anomalous to or not
obvious why to focus on quadratic innovations, and indeed this focus leads to a lack of robustness because large shocks
are fed substantially into the volatility update. He argues that it is more natural to link the shock to volatility to the
distribution of the rescaled return shock, which in the case of the t distribution has the advantage that large shocks are
automatically down weighted, and in such a way driven by the shape of the error distribution.3 The DCS model has the
incidental advantage that there are analytic expressions for moments, autocorrelation functions, multi-step forecasts, and
the mean squared forecast errors.

Before introducing our estimation procedure we comment on some properties of our model that are useful in
applications and in theoretical understanding. In Lemma 2 we prove that if

⏐⏐βj
⏐⏐ < 1, j = D,N , then ejt and λ

j
t are strongly

stationary and β-mixing with exponential decay. He et al. (2002) derive formulae for moments of a family of exponential

2 The shock variable mj
t can be expressed as mj

t = (vj + 1)bjt − 1, where bjt has a beta distribution, beta
(
1/2, vj/2

)
.

3 This type of argument is similar to the argument in limited dependent variable models such as binary choice where a linear function of
covariates is connected to the observed outcome by a link function determined by the distributional assumption.
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GARCH models, and similar calculations can be reproduced here. We discuss next the invertibility of the process (λDt ,λ
N
t )

⊺.
This property is important for the asymptotic theory. To establish invertibility, we write the dynamics of (λDt ,λ

N
t )

⊺ as a
stochastic recurrence equation(SRE) in terms of et ,(

λDt+1

λNt+1

)
= ft

((
λDt

λNt

)
, et

)
for some mapping ft . Following Straumann and Mikosch (2006) and Wintenberger (2013), the model is invertible if this
SRE is stable so that the effect of any initialization (λD0 , λ

N
0 )

⊺ vanishes asymptotically at an exponential rate. Sufficient
conditions for invertibility are the contraction condition and the existence of logarithmic moments (Bougerol, 1993). The
existence of logarithmic moments can be easily obtained since λDt , λ

N
t and their scores are functions of bounded variables

mj
t−k. For the contraction condition, it is easy to have

∂λDt

∂λDt−1
= βD +

(
γD + γ ∗

D sign(u
D
t−1)

) ∂mD
t−1

∂λDt−1
+
(
ρD + ρ∗

Dsign(u
N
t )
) ∂mN

t

∂λNt

∂λNt

∂λDt−1

= βD + aDDt−1 + aDNt aNDt−1,

∂λNt

∂λDt−1
= βD + aDDt−1 + aDNt aNDt−1,

∂λDt

∂λNt−1
= aDNt (βN + aNNt−1),

∂λNt

∂λDt−1
= aNDt−1.

The Jacobian matrix of the mapping ft is thus[
βD + aDDt−1 + aDNt aNDt−1 aDNt (βN + aNNt−1)

aNDt−1 βN + aNNt−1

]
= AtBt−1,

for certain matrices At , Bt defined below in (9).
Applying Theorem 3.1 in Bougerol (1993), if for some integer p ≧ 1, E log(supλD0 ,λN0 ∥

∏p
i=1 Ap−i+1Bp−i∥∞) < 0

holds, then (λDt ,λ
N
t )

⊺ is invertible (the norm ∥.∥∞ is defined below in (10)). Taking p = 1, it is sufficient to have
E log(sup ∥A1B0∥∞) < 0. When ρD, ρ∗

D, ρN , ρ
∗

N = 0, this condition becomes |βD + aDDt−1| < 1 and |βN + aNNt−1| < 1, equivalent
to that in Harvey and Lange (2018) for the univariate model. Otherwise, our condition is in general more restrictive than
theirs. It is possible that E log(sup ∥A1B0∥∞) < 0 does not hold in some cases, in which case we should take larger p.
The condition is often satisfied, e.g., with p = 2. With invertibility, the assumption that hj

t starts from the infinite past in
assumption A.3 below can be relaxed.

Finally, we note that although the conditional distribution of returns is symmetric about the mean, the unconditional
distribution implied by our model may be asymmetric because of the conditional mean process and the asymmetric
news impact curve that we allow for, (He et al., 2008). Thiele (2019) considers some DCS models with asymmetric
t-distributions, which might be a possible direction for future work.

3. Estimation

Suppose that we know δ, µ,Π and hence uj
t , j = D,N . In practice these can be replaced by root-T consistent estimators,

and we shall not detail the properties of the mean estimators in the sequel as these are well known, and we shall drop
them from the notation for convenience in the theoretical analysis. We next describe how we estimate the unknown
quantities φ and σ j(.). For any α > 0, we have for j = N,D,

E
(⏐⏐⏐uj

t

⏐⏐⏐α) = E
(⏐⏐⏐εjt ⏐⏐⏐α) E (exp(αλjt)) exp(ασ j(t/T )) = c j(φ;α) × exp(ασ j(t/T )),

where c j is a constant that depends in a complicated way on the parameter vector φ and on α. Therefore, we can estimate
σN (s), σ D(s) as follows with kernel technology. Let K (u) be a kernel with support [−1, 1] and h a bandwidth, and let
Kh(.) = K (./h)/h. Then let

σ̃ j(s) =
1
α

log

(
1
T

T∑
t=1

Kh(s − t/T )
⏐⏐⏐uj

t

⏐⏐⏐α) (6)

for any s ∈ (0, 1). In fact, we employ a boundary modification for s ∈ [0, h] ∪ [1 − h, 1], whereby K is replaced by a
boundary kernel, which is a function of two arguments K (u, c), where the parameter c controls the support of the kernel;
thus left boundary kernel K (u, c) with c = s/h has support [−1, c] and satisfies

∫ c
−1 K (u, c)du = 1,

∫ c
−1 uK (u, c)du = 0,

and
∫ c

−1 u
2K (u, c)du < ∞. Similarly for the right boundary. The purpose of the boundary modification is to ensure that

the bias property holds throughout [0, 1], (Härdle and Linton, 1994). One may apply more sophisticated adjustments such
as Jones et al. (1995) that preserves positivity but reduces the bias in the boundary region. For identification, we recenter
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σ̃ j(t/T ) as

σ̃ j(t/T ) = σ̃ j(t/T ) −
1
T

T∑
t=1

σ̃ j(t/T ). (7)

Note that σ̃ j(u) can be written as σ̃ j(u) =
∑

∞

i=1 θ̃
j
iψ

j
i (s) for some coefficients θ̃ ji (that satisfy

∑
∞

i=1 |̃θ
j
i | < ∞) determined

uniquely by the estimator σ̃ j(u), that is, we can represent the kernel estimator as a sieve estimator with a potentially
infinite number of coefficients, see Appendix B.2. We will use this representation for notational convenience, that is, we
will represent σ̃ j(.) in terms of {̃θ

j
i }

∞

i=1 or just θ̃ for shorthand. In practice, the bandwidth may be chosen by some rule of
thumb method.

Let ẽNt = exp(−σ̃N (t/T ))uN
t and ẽDt = exp(−σ̃ D(t/T ))uD

t , and let θ̃ denote {σ̃ j(s), s ∈ [0, 1], j = N,D}. Define the global
log-likelihood function for φ (apart from an unnecessary constant and conditional on the estimated values of θ )

lT (φ; θ̃ ) =
1
T

T∑
t=1

lt (φ; θ̃ ) =
1
T

T∑
t=1

(
lNt (φ; θ̃ ) + lDt (φ; θ̃ )

)
, (8)

ljt (φ; θ̃ ) = −λ
j
t (φ; θ̃ ) −

vj + 1
2

ln

(
1 +

(̃ejt )2

vj exp(2λ
j
t (φ; θ̃ ))

)
+ lnΓ

(
vj + 1

2

)
−

1
2
ln vj − lnΓ

(vj
2

)
,

where Γ is the gamma function and λjt (φ; θ̃ ) are defined in (4) and (5). For practical purposes, λj1|0 may be set equal to
the unconditional mean, λj1|0 = ωj. We estimate φ by maximizing lT (φ; θ̃ ) with respect to φ ∈ Φ . Let φ̃ denote these
estimates.

Given estimates of φ and the preliminary estimates of σ D(·), σN (·), we calculate

η̃Nt = exp(−λ̃Nt )u
N
t ; η̃Dt = exp(−λ̃Dt )u

D
t ,

where λ̃jt = λ
j
t (̃φ; θ̃ ). We then update the estimates of σ D(·), σN (·) with the local likelihood function in Severini and Wong

(1992) given η̃jt and ṽj, i.e., we maximize the objective function

L̃jT (γ ; λ̃j, s) = −
1
T

T∑
t=1

Kh(s − t/T )

[
γ +

ṽj + 1
2

ln

(
1 +

(̃ηjt exp(−γ ))2

ṽj

)]
with respect to γ ∈ R, for j = D,N separately, where λ̃j = (̃λj1, . . . , λ̃

j
T )

⊺
. Here, we also use a boundary kernel for

s ∈ [0, h]∪[1−h, 1]. In practice we use Newton–Raphson iterations making use of the analytic derivatives of the objective
functions, which are given in (25) in Appendix B. Harvey (2013) gives some discussion about computational issues. To
summarize, the estimation algorithm is as follows.

Algorithm.

Step 1. Estimate δ, µj,Π by least squares and σ̃ j(u), u ∈ [0, 1], j = N,D from (6) and (7)
Step 2. Estimate φ by optimizing lT (φ; θ̃ )with respect to φ ∈ Φ (by Newton–Raphson) to give φ̃.
Step 3. Given the initial estimates θ̃ and φ̃, we replace λjt with λ̃jt = λ

j
t (̃φ; θ̃ ). Then let σ̂ j (s) optimize L̃jT (σ

j (s) ; λ̃, s) with
respect to σ j (s). Rescale σ̂ j(t/T ) = σ̂ j(t/T ) −

1
T

∑T
t=1 σ̂

j(t/T ) =
∑

∞

i=1 θ̂
j
iψ

j
i (s). Update φ by optimizing lT (φ; θ̂ )with

respect to φ ∈ Φ to give φ̂.
Step 4. Repeat Steps 2–3 to update θ̂ and φ̂ until convergence. We define convergence in terms of the distance measure

∆r =

∑
j=D,N

∫ [
σ̂ j,[r](u) − σ̂ j,[r−1](u)

]2
du +

(̂
φ[r]

− φ̂[r−1])⊺ (̂φ[r]
− φ̂[r−1]) ,

that is, we stop when ∆r ≤ ϵ for some prespecified small ϵ.

4. Large sample properties of estimators

In this section we give the asymptotic distribution theory of the estimators considered above. The proofs of all results
are given in Appendix B. Let hj

t = λ
j
t + σ j(t/T ), and let:

At =

[
1 aDNt
0 1

]
, Bt−1 =

[(
βD + aDDt−1

)
0

aNDt−1

(
βN + aNNt−1

)] , (9)

aDDt−1 = −2
(
γD + γ ∗

D sign(u
D
t−1)

)
(vD + 1) bDt−1

(
1 − bDt−1

)
aDNt = −2

(
ρD + ρ∗

Dsign(u
N
t )
)
(vN + 1) bNt

(
1 − bNt

)
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aNNt−1 = −2
(
γN + γ ∗

N sign(u
N
t−1)

)
(vN + 1) bNt−1

(
1 − bNt−1

)
aNDt−1 = −2

(
ρN + ρ∗

Nsign(u
D
t−1)

)
(vD + 1) bDt−1

(
1 − bDt−1

)
bDt =

(eDt )
2

vD exp(2λDt ) + (eDt )2
; bNt =

(eNt )
2

vN exp(2λNt ) + (eNt )2
.

We use the maximum row sum matrix norm, ∥·∥∞, defined by

∥A∥∞ = max
1≤i≤n

n∑
j=1

⏐⏐aij⏐⏐ . (10)

Assumptions A

1. ∥E (At ⊗ At)∥∞ < ∞, ∥EBtEAt∥∞ < 1, ∥E (Bt−1At−1 ⊗ Bt−1At−1)∥∞ < ∥EBtEAt∥∞, and the top-Lyapunov exponent of
the sequence of AtBt−1 is strictly negative. The top Lyapunov exponent is defined as Theorem 4.26 of Douc et al. (2014).

2. 0 ≤
⏐⏐βj
⏐⏐ < 1.

3. hj
t starts from the infinite past. The parameter φ0 is an interior point of Φ ⊂ R14, where Φ is the parameter space of
φ0.

4. The functions σ j are twice continuously differentiable on [0, 1], j = D,N .
5. E|uj

t |
(2+δ)α

< ∞ for some δ > 0, j = D,N .
6. The function l(φ) = E(lT (φ; θ0)) is uniquely maximized at φ = φ0.
7. The kernel function K is bounded, symmetric about zero with compact support, that is K (s) = 0 for all |s| > C1 with

some C1 < ∞. Moreover, it is Lipschitz, that is |K (s) − K (s′)| ≤ L|s − s′| for some L < ∞ and all s, s′ ∈ R. Denote
∥K∥

2
2 =

∫
K (s)2ds.

8. h (T ) → 0,as T → ∞ such that T 1/2−δh → ∞ for some small δ > 0.

Assumptions A3–A7 are used to derive the properties of σ̃ j(s), in line with Vogt and Linton (2014) and Vogt (2012).
But we only require that E|uj

t |
α(2+δ)

< ∞, since we use σ̃ j(s) = log(T−1∑T
t=1 Kh(s − t/T )|uj

t |
α
)/α. This is in line with

the fact that the fourth-order moment of overnight returns may not exist for some datasets. The mixing condition in
Vogt and Linton (2014) is replaced by Assumption A2, because of our tight model structure. Assumption A1 is required
to derive the stationarity of score functions, where ∥E (At ⊗ At)∥∞ < ∞ can be verified easily, since bNt in At follows a
beta distribution.

Lemma 1 in Appendix A gives the uniform convergence rate of the initial estimator σ̃ j(s), which is close to T−2/5

when h = O(T−1/5). The proof mainly follows Theorem 3 in Vogt and Linton (2014). We note that our initial estimator is
robust to the specification of the short run dynamic process in the sense that Lemma 1 continues to hold under the weak
dependence assumptions for whatever stationary mixing process is assumed for λjt .

We next present an important orthogonality condition that allows us to establish a simple theory for the parametric
component.

Theorem 1. Suppose that Assumptions A1–A4 hold. Then, for each k and i, for k ∈ {1, . . . ,∞} and i ∈ {1, . . . , 14}, we have

1
T

T∑
t=1

E
[
∂ lt (φ0; θ0)
∂θk

∂ lt (φ0; θ0)
∂φi

]
= o(T−1/2).

The proof of Theorem 1 is provided in Appendix B. Theorem 1 implies that the score functions with respect to θ and
φ are asymptotically orthogonal. The intuition behind this is that σ j is a function of a deterministic variable, t/T , while
λ
j
t is a stationary process independent of time t . The cross product of their score functions can be somehow separated,

see Linton (1993) for a similar result. The asymptotic orthogonality implies that the particular asymptotic property of φ̃
and φ̂ in Theorem 2 follows.

Define the asymptotic information matrix

I(φ0) = lim
T→∞

1
T

T∑
t=1

E
[
∂ lt (φ0; θ0)

∂φ

∂ lt (φ0; θ0)
∂φ⊺

]
.

Theorem 2. Suppose that Assumptions A1–A8 hold. Then
√
T
(
φ̃ − φ0

)
=

√
T
(̂
φ − φ0

)
+ oP (1) H⇒ N

(
0, I(φ0)−1) .

Theorem 3. Suppose that Assumptions A1–A8 hold. Then for s ∈ (0, 1)

√
Th

(
σ̂ D(s)

σ̂N (s)
−
σ D
0 (s)

σN
0 (s)

)
H⇒ N

(
0, ∥K∥

2
2

(
(vD+3)
2vD

0

0 (vN+3)
2vN

))
. (11)
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Theorem 2 shows that φ̃ and φ̂ have the same asymptotic property and are efficient. The form of the limiting variance
in (11) is consistent with the known Fisher information for the estimation of scale parameters of a t-distribution with
known location and degrees of freedom (these quantities are estimated at a faster rate), which makes this part of the
procedure also efficient in the sense considered in Tibshirani (1984). The proofs of Theorems 2 and 3 are provided in
Appendix B. The information matrix, I(φ0), can be computed explicitly. We can conduct inference with Theorems 2 and
3 using plug-in estimates of the unknown quantities. In the application we present various Wald statistics for testing
hypotheses about φ such as: the absence of leverage effects, the absence of feedback effects, and the equality of intraday
and overnight parameters.

Test of constancy of the ratio of long run components. We next provide a test of the constancy of the ratio of long
run overnight to intraday volatility. We consider the null hypothesis to be

H0 : exp
(
σN
0 (s)

)
= ρ exp

(
σ D
0 (s)

)
for some ρ ∈ R+, for all s ∈ (0, 1),

versus the general alternative that the ratio exp
(
σN
0 (s)

)
/exp

(
σ D
0 (s)

)
is time varying. By Theorem 3 and the delta method,

exp(σ̂ D(s)) and exp(σ̂N (s)) converge jointly to a normal distribution, and are asymptotically mutually independent.
Therefore, consider the t-ratio

t̂(s) =

√
Th (̂ρ(s) − ρ̂)

√
ω̂(s)

,

ρ̂(s) =
exp(σ̂N (s))
exp(σ̂ D(s))

, ρ̂ =

∫ 1

0

exp(σ̂N (s))
exp(σ̂ D(s))

ds

ω̂(s) = ρ̂2
∥K∥

2
2

(
v̂N + 3
2̂vN

+
v̂D + 3
2̂vD

)
.

Large values of |̂t(s)| are inconsistent with the null hypothesis. It follows from Theorem 3 that for s ∈ (0, 1), t̂(s) H⇒

N(0, 1) under the null hypothesis. We may carry out the pointwise test statistic or confidence interval based on this. We
also consider an integrated version of this, specifically let

τ =

∫
t̂(s)2dWT (s) − aT

bT
,

where WT (.) is some weighting function, for example Lebesgue measure on [0, 1], and aT , bT are constants. This test
statistic is similar to for example Fan and Li (1996). Under the null hypothesis, E (̂t(s)2) ≃ 1 so we take aT = 1. Under the
null hypothesis

var
(∫

t̂(s)2dWT (s)
)

= E
(∫ ∫

t̂(s)2̂t(r)2dWT (s)dWT (r)
)

− 1.

In the special case that WT is the measure that puts equal mass on the points s1, . . . , sM with M = O(Th) so that t̂(sl) and
t̂(sk) are asymptotically independent for l ̸= k, we may take bT =

√
2, because E (̂t(s)4) ≃ 3. Under the null hypothesis,

τ H⇒ N(0, 1), while under the alternative hypothesis τ → ∞ with probability one. This testing strategy is well suited
to detect general alternatives to the null hypothesis of constancy of the volatility ratio.

5. A multivariate model

We next consider an extension to a multivariate model. We keep a similar structure to the univariate model except
that we allow the slowly moving component to be matrix valued.

We consider two approaches to modelling the conditional mean. Suppose that

rt =

(
rDt
rNt

)
; µ =

(
µD
µN

)
,

where rDt , r
D
t are n × 1 vectors containing all the intraday and overnight returns respectively, and let

Drt = µ+Πrt−1 + ut ,

where uD
t and uN

t are mean zero shocks, while

D =

(
In diag (∆)

0 In

)
; Π =

(
diag(Π11) diag(Π12)

diag(Π21) diag(Π22)

)
,

and∆,Π11,Π12,Π21, andΠ22 are n×1 vectors. This dynamic model is similar to that considered in the univariate section.
In the application we also consider an alternative modelling approach when we have also market returns. In this case,
we specify r jit using a microstructure-adjusted Market Model

rDit = aDi + βDD
i rDmt + βDN

i rNmt + uD
it
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rNit = aNi + βNN
i rNmt + βND

i rDmt−1 + uN
it ,

where rDmt and rNmt are the market intraday and overnight returns and rDit and rNit are the returns of stock i. Including a
lagged return in the market model to account for microstructure goes back to Scholes and Williams (1977).

We now consider the specification of the variance equation for the errors ut . We suppose that

ut =

(
ΣD(t/T )

1
2 diag

(
exp(λDt )

)
0

0 ΣN (t/T )
1
2 diag

(
exp(λNt )

))(εDt
εNt

)
,

where: εjit are i.i.d. shocks (mutually independent across i, j, and t , identically distributed over t) from univariate t
distributions with vij degrees of freedom, while λjt are n× 1 vectors. We assume that ΣD(.) and ΣN (.) are smooth matrix
functions but are otherwise unknown. They allow slowly evolving correlation between stocks in the day or night, and for
those correlations to vary by stock and over time.

We can write the covariance matrices in terms of the correlation matrices and the variances as follows

Σ j(s) = diag
(
exp(σ j(s))

)
Rj(s)diag

(
exp(σ j(s))

)
, j = D,N,

with diag
(
exp(σ j(s))

)
being the volatility matrix and Rj(s) being the correlation matrix with unit diagonal elements and

off-diagonal elements Rj
il(s) with −1 ≤ Rj

il(s) ≤ 1. For identification, we still assume
∫ 1
0 σ

j
i (s)ds = 0, for i ∈ {1, . . . , n} and

j = D,N .
As with the univariate model, define ejt = diag(exp(λjt ))ε

j
t ∈ Rn, and suppose that:

mj
it =

(1 + vij)(e
j
it )

2

vij exp(2λ
j
it ) + (ejit )2

− 1,

λDit = ωiD(1 − βiD) + βiDλ
D
it−1 + γiDmD

it−1 + ρiDmN
it

+ γ ∗

iD(m
D
it−1 + 1)sign(uD

it−1) + ρ∗

iD(m
N
it + 1)sign(uN

it ),

λNit = ωiN (1 − βiN ) + βiNλ
N
it−1 + γiNmN

it−1 + ρiNmD
it−1

+ ρ∗

iN (m
D
it−1 + 1)sign(uD

it−1) + γ ∗

iN (m
N
it−1 + 1)sign(uN

it−1).

For each i define the parameter vector φi = (ωiD, βiD, γiD, γ
∗

iD, ρiD, ρ
∗

iD, viD, ωiN , βiN , γiN , γ
∗

iN , ρiN , ρ
∗

iN , viN )
⊺

∈ Φ ⊂ R14, and
let φ = (φ

⊺

1, . . . , φ
⊺

n)
⊺
denote all the dynamic parameters.

Define ιi the vector with the ith element 1 and all others 0, so that εjit = ι
⊺
i diag(exp(−λ

j
t ))Σ j( t

T )
−1/2uj

t . The normalized
global log-likelihood function is

lT (φ,Σ(·)) =
1
T

T∑
t=1

lNt (φ,Σ(·)) + lDt (φ,Σ(·))

ljt (φ,Σ(·)) =

n∑
i=1

⎛⎝−

n∏
i=1

λ
j
it −

vij + 1
2

ln

⎛⎝1 +

(ι⊺i diag
(
exp(−λjt − σ j(t/T ))

) (
Σ j
( t
T

))−1/2 uj
t )2

vij

⎞⎠⎞⎠
−

1
2
log detΣ j

(
t
T

)
+

n∑
i=1

(
lnΓ

(
vij + 1

2

)
−

1
2
ln vij − lnΓ

(vij
2

))
.

Our estimation algorithm is as follows. We first define an initial estimator for Σ j(t/T ) and then obtain an estimator of
φ, and then we update them. Suppose that we know ∆,Π and µ. To give an estimator of Σ j(t/T ) that is robust to heavy
tails, we estimate the volatility parameter

σ̃
j
i (s) =

1
α

log

(
1
T

T∑
t=1

Kh(s − t/T )
⏐⏐⏐uj

it

⏐⏐⏐α) , (12)

and then rescale σ̃ j(t/T ) as

σ̃
j
i (t/T ) = σ̃

j
i (t/T ) −

1
T

T∑
t=1

σ̃
j
i (t/T ). (13)

Supposing that the heavy tails issue is less severe in the estimation of correlation, which seems reasonable, we estimate
the correlation parameter by standard procedures

R̃j
ik(s) =

∑T
t=1 Kh(s − t/T )uj

iku
j
ik√∑T

t=1 Kh(s −
t
T )u

j
itu

j
it
∑T

t=1 Kh(s −
t
T )u

j
ktu

j
kt

(14)
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for s ∈ (0, 1), and boundary modification as previously detailed. Alternatively, we can use a robust correlation estimator.
Omitting the superscript j = D,N here, we may compute the pairwise Kendall tau

τ̂k,l (s) =

∑T
i=1
∑T−1

j=i Kh(s −
i
T )Kh(s −

j
T )
(
I
{(

ui,k − uj,k
) (

ui,l − uj,l
)
> 0

}
− I

{(
ui,k − uj,k

) (
ui,l − uj,l

)
< 0

})∑T
i=1
∑T−1

j=i Kh(s −
i
T )Kh(s −

j
T )
(
I
{(

ui,k − uj,k
) (

ui,l − uj,l
)
> 0

}
+ I

{(
ui,k − uj,k

) (
ui,l − uj,l

)
< 0

}) .
Then applying the relation between Kendall tau and the linear correlation coefficient for the elliptical distribution
suggested by Lindskog et al. (2003) and Battey and Linton (2014), we obtain the robust linear correlation estimator,
ρ̂k,l (s) = sin( π2 τ̂k,l (s)). In some cases, the matrix of pairwise correlations must be adjusted to ensure that the resulting
matrix is positive definite.

We have

Σ̃ j(s) = diag
(
exp(σ̃ j(s))

)
R̃j(s)diag

(
exp(σ̃ j(s))

)
, j = D,N.

Letting ẽjt = Σ̃ j( t
T )

−1/2uj
t , we obtain φ̃i by maximizing the univariate log-likelihood function of ẽjit in (8) for each

i = 1, . . . , n. To update the estimator for each Σ j( t
T ), denote Θ = (Σ j)−1/2. We first obtain Θ̂ with the local likelihood

function given λ̃jt and ṽj, i.e., maximize the local objective function

LjT (Θ; λ̃, s) =
1
T

T∑
t=1

Kh(s − t/T )

⎡⎣log |Θ| −

n∑
i=1

⎛⎝ ṽij + 1
2

ln

⎛⎝1 +

(ι⊺i diag
(
exp(−λ̃jt )

)
Θuj

t )2

ṽij

⎞⎠⎞⎠⎤⎦
with respect to vech(Θ), and let Σ̂ j(t/T ) = Θ̂−2. The derivatives of the objective function are given in (13) and (14) in
the Supplementary Material contained in Linton and Wu (2018).

Our multivariate model can be considered as a diagonal DCS EGARCH model with a slowly moving correlation matrix.
Assuming diagonality on the short run component λjt enables us to estimate the model easily and rapidly. In particular,
the computation time of the initial estimator is only of order n, with n being the number of assets considered; it is thus
feasible even with quite large n. The extension to models with non-diagonal short run components is possible, but only
feasible with small n. We do not provide the distribution theory here for space reasons but it follows by similar arguments
to given for the univariate case. The invertibility conditions of λjt are the same as those in the univariate model.

Blanc et al. (2014) impose a pooling assumption in their modelling, which translates here to the restriction that φi = φ1
for all i = 1, . . . , n. This improves efficiency when the restriction is true. We can test the restriction by a standard Wald
procedure or Likelihood ratio statistic. In the application we find these pooling restrictions are strongly rejected by the
data.

6. Empirical application

In this section, we first apply our coupled-component GARCH model to the Dow Jones stocks, and we report detailed
estimates and examine the out-of-sample forecast performance. We also apply our model to the size-based portfolios
with stocks in the CRSP database, and briefly describe the results in Section 6.7.

6.1. Data and preliminary analysis

We investigate 26 components of the Dow Jones industrial average index during the period of 4 January 1993 to 29
December 2017. The 26 stocks are AAPL,MSFT, XOM, JNJ, INTC, WMT, CVX, UNH, CSCO, HD, PFE, BA, VZ, PG, KO, MRK,
DIS, IBM, GE, MCD, MMM, NKE, UTX, CAT, AXP, and TRV.4 The data are obtained from Datastream, and the prices have
been adjusted for corporate actions. We define overnight returns as the log price change between the close of one trading
day and the opening of the next trading day. We do not incorporate weekend and holiday effects into our model as they
are not the focus of this paper. In addition, although the weekend effect is documented by studies such as French (1980)
and Rogalski (1984), and further supported by Cho et al. (2007) with a stochastic dominance approach, many studies
suggest the disappearance of the weekend effect, including Mehdian and Perry (2001) and Steeley (2001). In addition,
Sullivan et al. (2001) claim that many calendar effects arise from data-snooping.

Berkman et al. (2012) find significant positive mean overnight returns of +10 basis points (bp) per day, along with -7
bp for intraday returns from the 3000 largest U.S. stocks. Following Berkman et al. (2012), we first compute the cross-
sectional mean returns for each day, then compute the time-series mean and standard deviation of these values. The mean
intraday return is 2.05 bp with a standard error of 1.12 bp, while the mean overnight return is 1.68 bp with a standard
error of 0.71 bp. The difference between overnight and intraday means is not statistically significant.

4 These stocks are constituents of the Dow Jones index according to the constituent list in May 2018. The V, GS, and DWDP.K are excluded
because they do not have prices available in 1993. The JPM is excluded because its open price from 2 September 1993 to 4 January 1995 is missing
in Datastream.
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Compared with intraday returns, overnight returns exhibit more negative skewness and leptokurtosis (Table A.1
in Linton and Wu (2018)). Specifically, 9 of these 26 stocks exhibit negative intraday skewness, while 25 of these 26
stocks have negative overnight skewness. The largest sample kurtosis for overnight returns is 935.78, which suggests the
non-existence of the population kurtosis. We find that the per hour variance of intraday returns is roughly 12 times the
per hour variance of overnight returns, which is somewhat less than the range of 13–100 times found by French and Roll
(1986) .5

6.2. Results of the univariate model

We estimate the univariate coupled-component GARCH model for each Dow Jones stocks. The estimates and their
robust standard errors in the mean equations are reported in Table A.2 in Linton and Wu (2018). Πij refers to the element
of the ith row jth column in the coefficient matrix Π . For the prediction of intraday returns, 12 of the 28 26stocks have
significantΠ11 values that are all negative, and 7 of 28 stocks have significant δ values which are all positive. This outcome
suggests that both overnight and intraday returns tend to have a negative effect on the subsequent intraday return.
However, we do not find clear patterns for predicting overnight returns. The constant terms, µD and µN , are positive
for most Dow Jones stocks.

Parameters βD and βN are significantly different from 1, and ρD, γD, ρN and γN are positive and significant; see Table
A.3 in Linton and Wu (2018). In addition, we find significant leverage effects, with negative and significant ρ∗

D, γ
∗

D , ρ
∗

N , and
γ ∗

N , which suggest higher volatility after negative returns. We are also concerned about the difference between overnight
and intraday parameters. Table A.4 in Linton and Wu (2018) reports Wald tests with the null hypothesis that the intraday
and overnight parameters are equal within each stock. The parameter ωD, which determines the unconditional short-run
scale, is significantly larger than ωN . The overnight degree-of-freedom parameter is around 3, which is significantly smaller
than the intraday counterpart at approximately 8. Both are in line with previous studies suggesting that overnight returns
are more leptokurtic but less volatile. With other pairs of intraday and overnight parameters, βj, γ , ρj, γ

∗

j , ρ
∗

j , the null
hypothesis is seldom rejected. However, the joint null hypothesis, (βD, γ , ρD, γ

∗

D , ρ
∗

D) = (βN , γ , ρN , γ
∗

N , ρ
∗

N ), is rejected by
many stocks. It is noteworthy that the null hypothesis H0 : γN = ρD is not rejected by our data, which is inconsistent
with Blanc et al. (2014). They suggest that past overnight returns weakly affect future intraday volatilities, except for the
very next one, but have a substantial impact on future overnight volatilities. This inconsistency is probably because the
dynamic conditional score model shrinks the impact of extreme overnight observations. After this shrinkage, the effect
of overnight innovations on parameter estimation becomes closer to the intraday innovations.

Many papers have argued that the introduction of high-frequency trading in the period post 2005 has led to an increase
in volatility. We find that the intraday volatility significantly dominates the overnight volatility in the first half of the
study period, but this domination gradually disappears, especially after the 2008 financial crisis. In addition, the intraday
volatilities after 2005 are in general smaller than those before 2005, except for the financial crisis period; see Figure A.2
in Linton and Wu (2018). This finding is contrary to the typical argument that high-frequency trading increases volatilities.
To further investigate this point, we plot the ratios of overnight to intraday volatility in Fig. 1. The five dashed vertical lines
from left to right indicate the dates: 10 March 2000 (dot-com bubble), 11 September 2001 (the September 11 attacks), 16
September 2008 (financial crisis), 6 May 2010 (flash crash), and 1 August 2011 (August 2011 stock markets fall). All stocks
exhibit upward trends over the 25-year period considered here, and many of them experience peaks around August 2011,
corresponding to the August 2011 stock markets fall.

6.3. Constancy of the ratio of overnight to intraday volatility

The long-run intraday and overnight components, σ D(t/T ) and σN (t/T ), and their 95% point-wise confidence intervals
are depicted in Figure A.3 in Linton and Wu (2018). Most stocks arrive at their first peaks around 10 March 2000,
corresponding to the dot-com bubble event, while some arrive at around September 2011, right after 9–11. The intraday
components reach their second peaks during the financial crisis in September 2008, while overnight components continue
to rise until around 2011. Roughly speaking, the intraday components are larger than the overnight ones before the first
peaks, but smaller after the financial crisis of September 2008. However, it is imperative to remember that the long-run
components are constructed with rescaling

∫ 1
0 σ (s)ds = 0. In general, the intraday volatility is still larger.

We test the constancy of the ratio of long run overnight to intraday volatility. Figure A.4 in Linton and Wu (2018)
displays the test statistics t̂(s) and the 95% point-wise confidence intervals for s ∈ [0, 1]. Consistent with the results
above, the equal ratio null hypothesis is mostly rejected before the first peaks (in 2000) and after the second peaks (in
2010).

Cumulatively, this evidence indicates that the overnight volatility has increased in importance during the 25-year
period considered here, relative to the intraday volatility for the Dow Jones stocks.

5 Suppose that hourly stock returns satisfy rht ∼ µh, σ
2
h , κ3h, κ4h , which is consistent with French and Roll (1986). Daily (based on a 6-hour trading

day) and weekend (66 h from Friday close to Monday open) returns should then satisfy

rDt ∼ 6µh, 6σ 2
h ,
κ3h
√
6
,
κ4h

6
; rWt ∼ 66µh, 66σ 2

h ,
κ3h
√
66
,
κ4h

66
.

In fact, overnight returns including weekend returns are very leptokurtic.
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Fig. 1. Ratios of overnight to intraday volatility: univariate model. This figure shows the dynamic ratio of overnight to intraday volatility, based on
the univariate coupled-component model, with one subplot for each stock. The five dashed vertical lines from left to right represent the dates: 10
March 2000 (dot-com bubble), 11 September 2001 (the September 11 attacks), 16 September 2008 (financial crisis), 6 May 2010 (flash crash), and
1 August 2011 (August 2011 stock markets fall), respectively. Intraday and overnight volatiles are defined as

√
νj
νj−2 exp(2λ

j
t + 2σ j( t

T )), for j = D,N .

6.4. Volatility forecast comparison

We also compare our coupled-component GARCH model with its one-component version for the open-to-close returns
to assess the improvement in volatility forecast from using overnight returns. We construct 10 rolling windows, each
containing 5652 in-sample and 50 out-of-sample observations. In each rolling window, the parameters in the short-run
variances are estimated with the in-sample data once and stay the same during the one-step out-of-sample forecast. In
the one-step-ahead forecast of the long-run covariance matrices, the single-side weight function is used. For instance, to
forecast the long-run covariance matrix of period τ (s = τ/T ), we set the two-sided weight function Kh(s − t/T ) = 0,



Please cite this article as: O. Linton and J. Wu, A coupled component DCS-EGARCH model for intraday and overnight volatility. Journal of Econometrics
(2020), https://doi.org/10.1016/j.jeconom.2019.12.015.

O. Linton and J. Wu / Journal of Econometrics xxx (xxxx) xxx 13

for t >= τ , and then rescale Kh(s − t/T ) to obtain a sum of 1. Table A.5 in Linton and Wu (2018) reports Giacomini
and White (2006) model pair-wise comparison tests with the out-of-sample quasi-Gaussian and student t log-likelihood
loss functions. For most stocks, the coupled-component GARCH model dominates the one-component model. Some
dominances are statistically significant. We omit the comparison for overnight variance forecast between the one-
component and the coupled-component model since it is not plausible to estimate a GARCH model with overnight returns
alone.

6.5. Diagnostic tests

Ljung–Box tests on the absolute and squared standardized residuals are used to verify whether the coupled-component
GARCH model is adequate to capture the heteroskedasticity, shown in Table A.6 in Linton and Wu (2018). With the
absolute form, strong heteroskedasticity exists in both intraday and overnight returns but disappears in the standardized
residuals, implying that our model captures the heteroskedasticity well. However, we are sometimes unable to detect the
heteroskedasticity in overnight returns with squared values. In general, the use of the absolute form is more robust when
the distribution is heavy tailed.

Figure A.5 in Linton and Wu (2018) displays the quantile–quantile (Q–Q) plots of the intraday innovations, comparing
these with the student t distribution with ν̂D degrees of freedom. The points in the Q–Q plots approximately lie on a line,
showing that the intraday innovations closely approximate the t distribution. Figure A.6 in Linton and Wu (2018) displays
the Q–Q plots of the overnight innovations. Many stocks have several outliers in the lower left corners. Our model only
partly captures the negative skewness and leptokurtosis of overnight innovations.

6.6. Results of the multivariate model

The long-run correlations between intraday or overnight returns are presented in Figure A.7 in Linton and Wu (2018).
Each subplot presents the averaged correlations between that individual stock and the remaining stocks. The correlations
exhibit an obvious upward trend during the sample period of 1998–2016. In the 1990s, the overnight correlations and
intraday correlations are both around 0.2, albeit with fluctuations. In the period 2000 to 2007, intraday correlations start
to increase and are larger than the overnight correlations. However, during the period 2008 to 2016, overnight correlations
increase substantially to around 0.7 in 2011 and remain higher than 0.5, while intraday correlations peak in around 2008
but the correlations are seldom larger than 0.5. Both correlations start to decrease in 2017.

The eigenvalues of the dynamic covariance matrices and their scaled values (the eigenvalues divided by the sum of
eigenvalues) are presented in Figure A.8 in Linton and Wu (2018). The dynamic of eigenvalues reinforces the previous
remark that the stock markets experienced high intraday risk in the 9–11 attacks in 2001 and in the 2008 financial
crisis, while stock markets experienced high overnight risk in around 2011. The largest eigenvalue represents a strong
common component, illustrating that a large proportion of the market financial risk can be explained by a single factor.
The largest eigenvalue increases substantially during our research period. The second and third largest eigenvalues still
account for a considerable proportion of risk in the volatile period from 2000 to 2002, but become rather insignificant
in the volatile period from 2008 to 2011. The largest intraday eigenvalue proportion reaches its peak in 2008, while the
largest overnight eigenvalue proportion remains consistently high until 2011. Remarkably, the largest eigenvalue explains
nearly 50% of intraday risk in the 2008 financial crisis and 70% of overnight risk in the August 2011 stock markets fall.
The overnight eigenvalue proportion is much higher than its intraday counterpart in the period 2008 to 2016. Generally
speaking, the market risk in the crisis period from 2008 to 2011 can be largely explained by a single-factor structure, in
particular, the overnight risk. This is in line with the finding of Li et al. (2017) that stocks returns tend to obey an exact
one-factor structure at times of market-wide jump events.

One concern is that our initial correlation estimator is based on the Pearson product moment correlation. This Pearson
estimator may perform poorly because of the heavy tails of overnight innovations. Therefore, we also try the robust
correlation estimator in the initial step, yet the results remain unchanged (Figure A.9 in Linton and Wu (2018)). This figure
plots the largest scaled eigenvalue of the estimated covariance matrix to assess the difference between using robust (in
black) and non-robust (in red) correlation estimators in the initial step. We use dashed lines for the initial estimators and
solid lines for the updated estimators. Despite the large difference of initial estimators, particularly for overnight returns,
the updated estimators are roughly similar. Like the eigenvalues, the updated covariances themselves are also robust to
a different initial estimator.

6.7. Results with CRSP stocks

We also investigate the overnight and intraday volatilities of 10 size-based portfolios with stocks in the CRSP database
from January 1993 to December 2017. The portfolios are constructed with the CRSP assignments. We estimate the
univariate coupled-component GARCH model with the intraday and overnight returns in each size-based portfolio.
Parameters βD and βN are significantly different from 1, and ρD, γD, ρN and γN are significantly positive (Table A.10
in Linton and Wu (2018) ). The leverage effects are also significant, suggesting higher volatility after negative returns. The
overnight degrees of freedom are larger than 4, less heavy tailed than that of individual Dow Jones stocks.
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Fig. 2. Ratio of overnight to intraday volatility of size-based portfolios. This figure plots the ratio of overnight to intraday volatility for portfolios
formed on size. Decile 1 is the portfolio with the smallest market capitalizations and decile 10 is the portfolio with the largest market capitalizations.
The intraday and overnight volatilities are

√
νj
νj−2 exp(2λ

j
t + 2σ j( t

T )) for j = D,N , respectively. The five dashed vertical lines from left to right indicate
the dates 10 March 2000 (dot-com bubble), 11 September 2001 (the September 11 attacks), 16 September 2008 (financial crisis), 6 May 2010 (flash
crash), and 1 August 2011 (August 2011 stock markets fall), respectively.

Fig. 2 presents the ratio of overnight to intraday volatility of those portfolios. The ratio exhibits a downward trend in
small-cap portfolios (in particular before 2000) and an upward trend in large-cap portfolios. Notably, the trend changes
monotonically from the smallest-cap portfolio to the largest-cap portfolio.6 The main explanation for this phenomenon
is perhaps the variation in international linkage. Stocks with higher international correlations show considerably higher
overnight to intraday volatility ratio, and likewise with larger market capitalization. The changes of minimal tick size also
make a contribution to the downward trend of small stocks during 1990s. See the detailed discussion in Linton and Wu
(2018).

7. Conclusion

The empirical results show that the ratio of overnight to intraday volatility for especially large stocks has increased
during the last 25 years when accounting for both slowly changing and rapidly changing components. This is contrary to
what is often argued with regard to the change in market structure and the effects of high frequency trading. Portfolios
of small stocks on the other hand seem to exhibit a different trend.

We found various other results. First, we found in the multivariate model that (slowly moving) correlations between
assets have increased during our sample period. In addition, overnight correlations increase more substantially than
intraday correlations during recent crises. We also found that the information in overnight returns is valuable for updating
the forecast of the close to close volatility.

In our modelling we have not separated midweek overnight components from weekend components. We may extend
the model to allow multiple different components reflecting weekend different from intraweek overnight, but at the cost
of estimating many more parameters. We are also considering how to extend the model to allow stocks traded in different
time zones, (Lin et al., 1994).
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Appendix A. Lemmas

Lemma 1. Suppose that Assumptions A1–A8 hold. Then,

sup
u∈[0,1]

⏐⏐⏐σ̃ j(u) − σ
j
0(u)

⏐⏐⏐ = Op

(
h2

+

√
log T
Th

)
.∫ 1

0

(
σ̃ j(u) − σ

j
0(u)

)2
du = Op

(
h2

+

√
1
Th

)
.

Furthermore
θ̃ − θ

2 = Op

(
h2

+

√
1
Th

)
.

Proof of Lemma 1. Denote H j(s) = exp(σ j(s)). We drop the superscript j in what follows and have

|ut | = H(t/T ) |et | = E |et |H(t/T ) + H(t/T ) (|et | − E |et |)
|ut |

E |et |
= H(t/T ) +

H(t/T )
E |et |

(|et | − E |et |)

=: H(t/T ) + ξt ,

where Eξt = 0. Suppose we know E |et |. This gives a non-parametric regression function, so we can invoke the
Nadaraya–Watson estimator

H̃(s)
∗

=

∑T
t=1 Kh(s − t/T ) |ut |

E|et |∑T
t=1 Kh(s − t/T )

.

From Lemma 2, {et} is a β mixing process with exponential decay, and ξt thereby is also a β mixing process with
exponential decay. Invoking Theorem 3 in Vogt and Linton (2014), Theorem 4.1 in Vogt (2012) or Kristensen (2009) yields

sup
s∈[C1h,1−C1h]

⏐⏐⏐H̃(s)
∗

− H0(s)
⏐⏐⏐ = Op

(√
log T
Th

+ h2

)
.

Denote σ̃ (s)
∗

= log H̃(s)
∗

. Taylor expansion at H0(s) gives

σ̃ (s)
∗

= σ (s) +

(
H̃(s)

∗

− H(s)
) 1
H(s)

−
1
2

(
H̃(s)

∗

− H(s)
)2 1

¯H(s)2
,

where H̄(s) is between H̃(s)
∗

and H0(s). Therefore,

sup
s∈[C1h,1−C1h]

⏐⏐⏐σ̃ (s)∗ − σ0(s)
⏐⏐⏐ = Op

(
h2

+

√
log T
Th

)
.

For s ∈ [0, h] ∪ [1 − h, 1], we use a boundary kernel to ensure the bias property holds through [0, 1].
Until now we have obtained the property for the un-rescaled estimator σ̃ (s)

∗

. Next, we are going to show the
convergence rate of the rescaled estimator σ̃ (s). Recall that

σ̃ (s) = σ̃ (s) −
1
T

T∑
t=1

σ̃ (
t
T
),

and we can rewrite σ̃ (s) as:

σ̃ (s) = σ̃ (s)
∗

−
1
T

T∑
t=1

σ̃ (
t
T
)
∗

,

as E |et | in σ̃ (s)
∗

has vanished due to the rescaling. Plugging this into sups∈[C1h,1−C1h] |̃σ (s) − σ0(s)| gives

sup
s∈[0,1]

|̃σ (s) − σ0(s)|

= sup
s∈[0,1]

⏐⏐⏐⏐⏐σ̃ (s)∗ −
1
T

T∑
t=1

σ̃ (
t
T
)
∗

− σ0(s)

⏐⏐⏐⏐⏐
= sup

s∈[0,1]

⏐⏐⏐⏐⏐σ̃ (s)∗ −
1
T

T∑
t=1

σ̃ (
t
T
)
∗

− σ0(s) −
1
T

T∑
t=1

σ0(
t
T
) +

1
T

T∑
t=1

σ0(
t
T
)

⏐⏐⏐⏐⏐
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≤ sup
s∈[0,1]

⏐⏐⏐σ̃ (s)∗ − σ0(s)
⏐⏐⏐+ ⏐⏐⏐⏐⏐ 1T

T∑
t=1

(
σ̃ (

t
T
)
∗

− σ0(
t
T
)
)⏐⏐⏐⏐⏐+

⏐⏐⏐⏐⏐ 1T
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t=1

σ0(
t
T
)

⏐⏐⏐⏐⏐
= Op

(
h2

+

√
log T
Th

)
+ Op

(
h2

+

√
log T
Th

)
+

⏐⏐⏐⏐⏐ 1T
T∑

t=1

σ0(
t
T
)

⏐⏐⏐⏐⏐
= Op

(
h2

+

√
log T
Th

)
+

⏐⏐⏐⏐⏐ 1T
T∑

t=1

σ0(
t
T
)

⏐⏐⏐⏐⏐ .
We only have to work out the second term

⏐⏐⏐ 1T ∑T
t=1 σ0(

t
T )
⏐⏐⏐. According to Theorem 1.3 in Tasaki (2009),

lim
T→∞

T 2

(∫ 1

0
σ0(s)ds −

1
2T

T∑
t=1

σ0(
t
T
) −

1
2T

T−1∑
t=0

σ0(
t
T
)

)
= −

1
12

(
σ ′

0(1) − σ ′

0(0)
)
.

Since
∫ 1
0 σ0(s)ds = 0 and σ ′

0(1) − σ ′

0(0) is bounded by Assumption A4, it follows⏐⏐⏐⏐⏐ 1T
T∑

t=1

σ0(
t
T
)

⏐⏐⏐⏐⏐ ≤

⏐⏐⏐⏐⏐ 1
2T

T∑
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σ0(
t
T
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1
2T
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σ0(
t
T
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⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐ 1
2T

T∑
t=1

σ0(
t
T
) −

1
2T

T−1∑
t=0

σ0(
t
T
)

⏐⏐⏐⏐⏐
= O(T−2) +

1
2T

|σ0(1) − σ0(0)|

= O(T−1).

Therefore, the uniform convergence rate is

sup
s∈[0,1]

|̃σ (s) − σ0(s)| = Op

(
h2

+

√
log T
Th

)
+ O(T−1)

= Op

(
h2

+

√
log T
Th

)
.

The L2 rate follows by similar arguments.
Recall that σ (s) =

∑
∞

j=1 θjψj(s) for the orthogonal basis ψj. By construction σ̃ (s) is a member of the same normed
space as σ (s), in which case we can write σ̃ (s) =

∑
∞

j=1 θ̃jψj(s) for coefficients θ̃j, j = 1, 2, . . .. that satisfy
∑

∞

j=1 |θ̃j| < ∞.
In particular, let

Q (θ ) =

∫ 1

0

(
σ̃ (s) −

∫ 1

0
σ̃ (u)du −

∞∑
k=1

θkψk(s)

)2

ds.

We have for k = 1, 2, . . .

∂Q
∂θk
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(
σ̃ (s) −
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)
ψk(s)ds

and so
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0

(
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0
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)
ψk(s)ds =
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0
σ̃ (s)ψk(s)ds,

since
∫ 1
0 ψk(s)ds = 0. We have Q (̃θ ) = 0. The coefficients satisfy θ̃k − θk =

∫ 1
0 (σ̃ (s) − σ (s)) ψk(s)ds.

We have∫
(σ̃ (s) − σ (s))2 ds =
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under the assumption that ψj are orthonormal. So given the L2 rate of convergence of σ̃ we have the same convergence
rate for the implied coefficients. ■

Lemma 2. If
⏐⏐βj
⏐⏐ < 1, j = D,N, then ejt and λ

j
t are strictly stationary and β-mixing with exponential decay.

Proof of Lemma 2. For simplicity, we consider the model without leverage effects

λDt = ωD(1 − βD) + βDλ
D
t−1 + γDmD

t−1 + ρDmN
t

λNt = ωN (1 − βN ) + βNλ
N
t−1 + γNmN

t−1 + ρNmD
t−1.

Let us write it as

⎛⎜⎜⎜⎝
λDt

λNt

mD
t

mN
t

⎞⎟⎟⎟⎠ =
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0 0 0 0
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t

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since mN
t and mD

t are i.i.d random variables and follow a beta distribution, we can easily find an integer s ≥ 1 to satisfy

E

⏐⏐⏐⏐⏐⏐⏐⏐
ρDmN

t + ωD(1 − βD)
ωN (1 − βN )

mD
t
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s

< ∞

(Condition A2 in Carrasco and Chen (2002)). The largest eigenvalue of the matrix⏐⏐⏐⏐⏐⏐⏐
βD 0 γD 0
0 βN ρN βN
0 0 0 0
0 0 0 0

⏐⏐⏐⏐⏐⏐⏐
is smaller than 1 by assumption. Define Xt =

(
λDt λNt mD

t mN
t

) ⊺

. According to Proposition 2 in Carrasco and
Chen (2002), the process Xt is Markov geometrically ergodic and E |Xt |

s < ∞. Moreover, if Xt is initialized from the
invariant distribution, it is then strictly stationary and β-mixing with exponential decay. The process {ejt} is a generalized
hidden Markov model and stationary β-mixing with a decay rate at least as fast as that of {λ

j
t} by Proposition 4

in Carrasco and Chen (2002). The extension to the model with leverage effects is straightforward, by defining Xt =(
λDt λNt mD

t mN
t sign

(
eDt
)

sign
(
eNt
)) ⊺

. ■

Lemma 3. The score functions of hj
t with respect to βD, vD and σ j(t/T ) are⎛⎝ ∂
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0

)
.

⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠ = AtBt−1

⎛⎜⎝ ∂hDt−1
∂σD(t−k/T )

∂hNt−1
∂σD(t−k/T )

⎞⎟⎠ (16)

= At

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k, k > 1⎛⎝ ∂hDt

∂σD(t/T )

∂hNt
∂σD(t/T )

⎞⎠ =

(
1
0

)
; and

⎛⎝ ∂hDt
∂σD(t−1/T )

∂hNt
∂σD(t−1/T )

⎞⎠ = At

(
aDDt−1

aNDt−1

)
,
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with Λt =

(
aDDt
aNDt

)
. If the top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative,

(
∂
∂βD

hD
t

∂
∂βD

hN
t

)
,

⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠ and⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠( ∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary.

Proof of Lemma 3. Since hj
t = λ

j
t + σ j(t/T ), we can write hj

t in a recursive formula as

hD
t = σ D(t/T ) − βDσ

D(
t − 1
T

) + ωD(1 − βD) + βDhD
t−1 + γDmD

t−1

+ ρDmN
t + γ ∗

D (m
D
t−1 + 1)sign(uD

t−1) + ρ∗

D(m
N
t + 1)sign(uN

t ) (17)

hN
t = σN (t/T ) − βNσ

N (
t − 1
T

) + ωN (1 − βN ) + βNhN
t−1 + γNmN

t−1

+ ρNmD
t−1 + ρ∗

N (m
D
t−1 + 1)sign(uD

t−1) + γ ∗

N (m
N
t−1 + 1)sign(uN

t−1). (18)

and mD
t and mN

t can be expressed as

mD
t =

(1 + vD)(uD
t )

2 exp(−2hD
t )

vD + (uD
t )2 exp(−2hD

t )
− 1, vD > 0

mN
t =

(1 + vN )(uN
t )

2 exp(−2hN
t )

vN + (uN
t )2 exp(−2hN

t )
− 1, vN > 0.

Taking the first order derivative of Eqs. (17) and (18) with respect to βD gives

∂hD
t

∂βD
= −σ D(

t − 1
T

) − ωD + hD
t−1 + βD

∂

∂βD
hD
t−1 +

∂

∂βD
γDmD

t−1 +
∂

∂βD
ρDmN

t

+
∂

∂βD
γ ∗

D (m
D
t−1 + 1)sign(uD

t−1) +
∂

∂βD
ρ∗

D(m
N
t + 1)sign(uN

t ) (19)

∂hN
t

∂βD
= βN

∂

∂βD
hN
t−1 +

∂

∂βD
γNmN

t−1 +
∂

∂βD
ρNmD

t−1

+
∂

∂βD
ρ∗

N (m
D
t−1 + 1)sign(uD

t−1) +
∂

∂βD
γ ∗

N (m
N
t−1 + 1)sign(uN

t−1) (20)

and the derivatives of mD
t−1 and mN

t−1 are

∂

∂βD
mD

t−1 =
∂mD

t−1

∂hD
t−1

∂

∂βD
hD
t−1 = −2 (vD + 1) bDt−1

(
1 − bDt−1

) ∂

∂βD
hD
t−1

∂

∂βD
mN

t−1 =
∂mN

t−1

∂hN
t−1

∂

∂βD
hN
t−1 = −2 (vN + 1) bNt−1

(
1 − bNt−1

) ∂

∂βD
hN
t−1.

Substituting them back into (19) and (20) gives

∂hD
t

∂βD
= λDt−1 − ωD +

(
βD + aDDt−1

) ∂
∂φ

hD
t−1 + aDNt

∂

∂φ
hN
t

∂hN
t

∂βD
= 0 +

(
βN + aNNt−1

) ∂
∂φ

hN
t−1 + aNDt−1

∂

∂φ
hD
t−1

with the matrix form(
∂
∂βD

hD
t

∂
∂βD

hN
t

)
= At

(
λDt−1 − ωD

0

)
+ AtBt−1

(
∂
∂βD

hD
t−1

∂
∂βD

hN
t−1

)
.

Note that AtBt−1 and At

(
λDt−1 − ωD

0

)
are strictly stationary and ergodic, by Theorem 4.27 in Douc et al. (2014), when the

top-Lyapunov exponent of the sequence of AtBt−1 is strictly negative,

(
∂
∂βD

hD
t

∂
∂βD

hN
t

)
converges and is strictly stationary.
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Likewise, taking the first order derivative of hj
t with respect to σ D

( t−k
T

)
yields

∂hD
t

∂σ D((t − k) /T )
=
(
βD + aDDt−1

) ∂hD
t−1

∂σ D((t − k) /T )
+ aDNt

∂hN
t

∂σ D((t − k) /T )
, k > 1

∂hD
t

∂σ D(t/T )
= 1,

∂hD
t

∂σ D((t − 1) /T )
= aDDt−1 + aDNt aNDt−1

∂hN
t

∂σ D((t − k) /T )
=
(
βN + aNNt−1

) ∂hN
t−1

∂σ D((t − k) /T )
+ aNDt−1

∂hD
t−1

∂σ D((t − k) /T )
, k > 1

∂hN
t

∂σ D(t/T )
= 0,

∂hN
t

∂σ D((t − 1) /T )
= aNDt−1,

and (16) follows. Similarly,

⎛⎝ ∂hDt
∂σD((t−k)/T )

∂hNt
∂σD((t−k)/T )

⎞⎠ is strictly stationary across time t .

Finally, we can write⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂hDt
∂σD((t−k)/T )

∂hNt
∂σD((t−k)T )

∂hDt
∂βD

∂hNt
∂βD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

(
AtBt−1 0

0 AtBt−1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂hDt−1
∂σD((t−k)/T )

∂hNt−1
∂σD((t−k)/T )

∂hDt−1
∂βD

∂hNt−1
∂βD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎝At

(
λDt−1 − ωD

0

)
0

⎞⎠ .

Both

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂hDt
∂σD((t−k)/T )

∂hNt
∂σD((t−k)/T )

∂hDt
∂βD

∂hNt
∂βD

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎝ ∂hDt
∂σD((t−k)/T )

∂hNt
∂σD((t−k)/T )

⎞⎠( ∂hDt
∂βD

∂hNt
∂βD

)
are strictly stationary, since the top-Lyapunov exponent of the

sequence
(
AtBt−1 0

0 AtBt−1

)
, same as that of AtBt−1, is strictly negative by assumption. ■

Lemma 4. Suppose that Assumptions A1–A4 hold. Then,

∑
k

k

E
⎛⎝⎡⎣ ∂hDt

∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎤⎦( ∂
∂βD

hD
t

∂
∂βD

hN
t

)⎞⎠
∞

< ∞.

Proof of Lemma 4. By (15) and (16), we have

E

⎛⎜⎝ ∂hDt+1
∂σD(t+k/T )

∂hNt+1
∂σD(t+k/T )

⎞⎟⎠( ∂
∂βD

hD
t+1

∂
∂βD

hN
t+1

)
= EAt+1

(
aDDt
aNDt

) (
λDt − ωD 0

)
AT
t+1; k = 1

E

⎛⎜⎝ ∂hDt+1
∂σD(t+k/T )

∂hNt+1
∂σD(t+k/T )

⎞⎟⎠( ∂
∂βD

hD
t+1

∂
∂βD

hN
t+1

)
= E

(
1
0

) (
λDt − ωD 0

)
AT
t+1 = 0; k = 0.

When k > 1, it holds

Evec

⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠( ∂
∂βD

hD
t

∂
∂βD

hN
t

)

= EvecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−1 − ωD 0

)
AT
t
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+ EvecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−2 − ωD 0

)
AT
t−1B

T
t−1A

T
t

+ · · ·

+ EvecAt

(
k−1∏
i=1

Bt−iAt−i

)
Λt−k

(
λDt−k+1 − ωD 0

)
AT
t−k+2B

T
t−k+2...A

T
t−1B

T
t−1A

T
t

= E
k−1∑
j=1

(At ⊗ At)

( j−1∏
i=1

(Bt−i ⊗ Bt−i) (At−i ⊗ At−i)

)
vec

⎛⎝⎛⎝k−1∏
i=j

Bt−iAt−i

⎞⎠Λt−k
(
λDt−j − ωD 0

)⎞⎠ .
Since (Bt−1 ⊗ Bt−1) (At−1 ⊗ At−1) and BtAt are i.i.d, and EBtAt = EBtEAt , we obtain

Evec

⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠( ∂
∂βD

hD
t

∂
∂βD

hN
t

)
(21)

=

k−1∑
j=1

E (At ⊗ At) (E (Bt ⊗ Bt) (At ⊗ At))
j−1 Evec

⎛⎝⎛⎝k−1∏
i=j

Bt−iAt−i

⎞⎠Λt−k
(
λDt−j − ωD 0

)⎞⎠ .
Let us write λDt−1 as

λDt − ωD = γD

∞∑
k=1

βk−1
D mD

t−k + ρD

∞∑
k=1

βk−1
D mN

t−k+1 + γ ∗

D

∞∑
k=1

βk−1
D (mD

t−k + 1)sign(eDt−k)

+ ρ∗

D

∞∑
k=1

βk−1
D (mN

t−k+1 + 1)sign(eNt−k+1)

which is a function of
{(

mD
t−i,m

N
t−i+1

)
, i > 1

}
, and note that Bt , At , and Λt are independent of

{(
mD

s ,m
N
s

)
, s ̸= t

}
.

Therefore, we have

E

⎛⎝⎛⎝k−1∏
i=j

Bt−iAt−i

⎞⎠Λt−k
(
λDt−j − ωD

)⎞⎠
= γDE

⎛⎝k−1∏
i=j

Bt−iAt−i

⎞⎠Λt−k

k∑
i=j+1

β
i−1−j
D

(
mD

t−i +
(
mD

t−i + 1
)
sign(eDt−i)

)

+ ρDE

⎛⎝k−1∏
i=j

Bt−iAt−i

⎞⎠Λt−k

k∑
i=j+1

β
i−1−j
D

(
mN

t−i+1 + (mN
t−i+1 + 1)sign(eNt−i+1)

)
,

with the first termE
⎛⎝k−1∏

i=j

Bt−iAt−i

⎞⎠Λt−k

k∑
i=j+1

β
i−1−j
D

(
mD

t−i +
(
mD

t−i + 1
)
sign(eDt−i)

)
∞

≤

⎛⎝ k−1∑
i=j+1

β
i−1−j
D

⎞⎠E (Bt
(
mD

t + (mD
t + 1)sign(eDt )

)
At
)

∞
∥EBtEAt∥

k−j−1
∞

∥EΛt∥∞

+ β
k−j−1
D

EΛt−k
(
mD

t−k + (mD
t−k + 1)sign(eDt−k)

)
∞

∥EBtEAt∥
k−j
∞

≤
1

1 − βD

E (Bt
(
mD

t + (mD
t + 1)sign(eDt )

)
At
)

∞
∥EΛt∥∞ ∥EBtEAt∥

k−j−1
∞

+ β
k−j−1
D

EΛt−k
(
mD

t−k + (mD
t−k + 1)sign(eDt−k)

)
∞

∥EBtEAt∥
k−j
∞
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and the second termE
⎛⎝k−1∏

i=j

Bt−iAt−i

⎞⎠Λt−k

k∑
i=j+1

β
i−j−1
D

(
mN

t−i+1 + (mN
t−i+1 + 1)sign(eNt−i+1)

)
∞

≤
1

1 − βD

E (Bt
(
mN

t + (mN
t + 1)sign(eNt )

)
At
)

∞
∥EΛt∥∞ ∥EBtEAt∥

k−j−1
∞

.

According to the definition of ∥∥∞,Evec
⎛⎝⎛⎝k−1∏

i=j

Bt−iAt−i

⎞⎠Λt−k
(
λDt−j − ωD 0

)⎞⎠
∞

≤

E
⎛⎝⎛⎝k−1∏

i=j

Bt−iAt−i

⎞⎠Λt−k
(
λDt−j − ωD 0

)⎞⎠
∞

Therefore,Evec
⎛⎝⎛⎝k−1∏

i=j

Bt−iAt−i

⎞⎠Λt−k
(
λDt−j − ωD 0

)⎞⎠
∞

≤ cT ∥EBtEAt∥
k−j−1 (22)

with

cT =
1

1 − βD
|γD|

E (Bt
(
mD

t + (mD
t + 1)sign(eDt )

)
At
)

∞
∥EΛt∥∞

+ ∥EBtEAt∥∞

EΛt−k
(
mD

t−k + (mD
t−k + 1)sign(eDt−k)

)
∞

+
1

1 − βD
|ρD|

E (Bt
(
mN

t + (mN
t + 1)sign(eNt )

)
At
)

∞
∥EΛt∥∞ .

Substituting (22) into (21) givesEvec
⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠( ∂
∂βD

hD
t

∂
∂βD

hN
t

)
∞

≤

k−1∑
j=1

∥E (At ⊗ At)∥∞ ∥E (Bt−i ⊗ Bt−i) (At−i ⊗ At−i)∥
j−1
∞

cT ∥EBtEAt∥
k−j−1
∞

≤ cT ∥E (At ⊗ At)∥∞

k−1∑
j=1

∥E (Bt−i ⊗ Bt−i) (At−i ⊗ At−i)∥
j−1
∞

∥EBtEAt∥
k−j−1
∞

≤ cT ∥E (At ⊗ At)∥∞

∥EBtEAt∥
k−2
∞

1 −
∥E(Bt−i⊗Bt−i)(At−i⊗At−i)∥∞

∥EBtEAt∥∞

,

provided that ∥EBtEAt∥∞ < 1 and ∥E (Bt−1At−1 ⊗ Bt−1At−1)∥∞ < ∥EBtEAt∥∞. It is then straightforward to show

∑
k

k

Evec
⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠( ∂
∂βD

hD
t

∂
∂βD

hN
t

)
∞

< ∞

and thereby

∑
k

k

E
⎛⎝ ∂hDt
∂σD(t−k/T )

∂hNt
∂σD(t−k/T )

⎞⎠( ∂
∂βD

hD
t

∂
∂βD

hN
t

)
∞

< ∞. ■

Lemma 5. Suppose that Assumptions A1–A4 hold. Then, we have

1
T

T∑
t=1

E
(
∂hD

t

∂θ

)
= 0.
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Proof of Lemma 5. Similar to the proof of Theorem 1, we only need to show
∑T

t=1 k

E
⎛⎝ ∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)T )

⎞⎠
∞

< ∞. Note

that E

⎛⎝ ∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)/T )

⎞⎠ = EAtBt−1At−1Bt−2..At−k+2Bt−k+1At−k+1Λt−k = EAt (EBt−1At−1)
k−1 EΛt−k, when k > 1. Obviously,

∑T
t=1 k

E
⎛⎝ ∂hDt
∂σN ((t−k)/T )

∂hNt
∂σN ((t−k)/T )

⎞⎠
∞

< ∞. ■

Appendix B. Proof of main results

B.1. Proof of Theorem 1

Let φi = βD and θk be an element in function σ D(·) (for simplicity, the subscript k is omitted in the following
explanation). Recall that hj

t = λ
j
t+σ

j(t/T ), and the log-likelihood function, without unnecessary constant, can be rewritten
as a function of hj

t

ljt = −hj
t −

vj + 1
2

ln

(
1 +

(uj
t )2

vj exp(2h
j
t )

)
+ lnΓ

(
vj + 1

2

)
−

1
2
ln vj − lnΓ

(vj
2

)
with the score functions

∂ lt
∂θ

=
∂ lDt
∂hD

t

∂hD
t

∂θ
+
∂ lNt
∂hD

t

∂hD
t

∂θ
= mD

t
∂hD

t

∂θ
+ mN

t
∂hD

t

∂θ

∂ lt
∂βD

=
∂ lDt
∂hD

t

∂hD
t

∂βD
= mD

t
∂hD

t

∂βD
+ mN

t
∂hD

t

∂βD
.

Recall that mj
t = (vj + 1)bjt − 1,with bjt independent and identically beta distributed, we have E

(
mN

t m
D
t

)
= 0, E

(
mj

t

)2
is

time invariant, and E[(mj
t )2] < ∞. Therefore, we can write

T∑
t=1

E
(
∂ lt
∂θ

∂ lt
∂βD

)
= E

(
mD

t

)2 T∑
t=1

E
(
∂hD

t

∂θ

∂hD
t

∂βD

)
+ E

(
mN

t

)2 T∑
t=1

E
(
∂hN

t

∂θ

∂hN
t

∂βD

)
.

To prove the Theorem, it then suffices to show that
T∑

t=1

E

⎛⎝⎛⎝ ∂hDt
∂θ

∂hNt
∂θ

⎞⎠( ∂hDt
∂βD

∂hNt
∂βD

)⎞⎠
∞

= O(1).

By expressing λjt as a function of φ and
{(
σ j( t−i

T ), uj
t−i

)
, i ≥ 0

}
, we can write ∂hjt

∂θ
as⎛⎝ ∂hDt

∂θ

∂hNt
∂θ

⎞⎠ =

T∑
k=0

⎛⎜⎝ ∂hDt
∂σD( t−k

T )

∂σD( t−k
T )

∂θ

∂hNt
∂σD( t−k

T )

∂σD( t−k
T )

∂θ

⎞⎟⎠ =

T∑
k=0

⎛⎜⎝ ∂hDt
∂σD( t−k

T )

∂hNt
∂σD( t−k

T )

⎞⎟⎠ψD
i

(
t − k
T

)
,

when the limit exists. Thus we obtain,

1
T

T∑
t=1

E

⎛⎝⎛⎝ ∂hDt
∂θ

∂hNt
∂θ

⎞⎠( ∂hDt
∂βD

∂hNt
∂βD

)⎞⎠
=

1
T

T∑
k=0

T∑
t=1

E

⎛⎜⎝
⎛⎜⎝ ∂hDt
∂σD( t−k

T )

∂hNt
∂σD( t−k

T )

⎞⎟⎠( ∂hDt
∂βD

∂hNt
∂βD

)⎞⎟⎠ψD
i

(
t − k
T

)

=
1
T

T∑
k=0

E

⎛⎜⎝
⎛⎜⎝ ∂hDt
∂σD( t−k

T )

∂hNt
∂σD( t−k

T )

⎞⎟⎠( ∂hDt
∂βD

∂hNt
∂βD

)⎞⎟⎠ T∑
t=1

ψD
i

(
t − k
T

)
.
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The second equality follows since E

⎛⎜⎝ ∂hDt
∂σ j( t−k

T )

∂hNt
∂σ j( t−k

T )

⎞⎟⎠( ∂hDt
∂βD

∂hNt
∂βD

)
is invariant across time t by Lemma 3. Taylor expansion of

∑T
t=1 ψ

D
i

( t−k
T

)
around

∑T
t=1 ψ

D
i

( t
T

)
gives

1
T

∑
t

ψD
i

(
t − k
T

)
=

1
T

∑
t

ψD
i

(
t
T

)
−

1
T

k
T

∑
t

ψD′

i

(
t
T

)
+ O

(
k
T

)2

= O
(
1
T

)
+ O

(
k
T

)
+ O

(
k
T

)2

= O
(
k
T

)
.

Hence, it suffices to show

T∑
k=0

kE
⎛⎜⎝
⎛⎜⎝ ∂hDt
∂σD( t−k

T )

∂hNt
∂σD( t−k

T )

⎞⎟⎠( ∂hDt
∂βD

∂hNt
∂βD

)⎞⎟⎠


∞

< ∞,

which is obtained by Lemma 4.
The proof with respect to vD is similar, but the score function is slightly different. The score functions of lDt and lNt with

respect to vD are

∂ lDt
∂vD

= −
1
2
ln
(
1 +

(uD
t )

2

vD exp(2hD
t )

)
+

∂

∂vD

(
lnΓ

(
vD + 1

2

)
− lnΓ

(vD
2

))
−

1
2vD

+
vD + 1

2
(
1 +

(uDt )
2

vD exp(2hDt )

) (uD
t )

2

v2D exp(2hD
t )

(
1 + 2vD

∂hD
t

∂vD

)
+
∂hD

t

∂vD
(23)

∂ lNt
∂vD

=
vN + 1

2
(
1 +

(uNt )2

vN exp(2hNt )

) (uN
t )

2

v2N exp(2hN
t )

(
1 + 2vN

∂hN
t

∂vD

)
+
∂hN

t

∂vD
.

Then we have

T∑
t=1

E
(
∂ lDt
∂θ

∂ lDt
∂vD

)

=

T∑
t=1

E
(
mD

t
∂hD

t

∂θ

[
∂hD

t

∂vD
−

1
2
ln
(
1 +

(uD
t )

2

vD exp(2hD
t )

)])

+

T∑
t=1

E

⎛⎝mD
t
∂hD

t

∂θ

∂ lnΓ
(
vD+1

2

)
−

1
2 ln vD − lnΓ

(
vD
2

)
∂vD

⎞⎠
+

T∑
t=1

E

⎛⎜⎝mD
t
∂hD

t

∂θ

⎡⎢⎣ vD + 1

2
(
1 +

(uDt )
2

vD exp(2hDt )

) (uD
t )

2

v2D exp(2hD
t )

(
1 + 2vD

∂hD
t

∂vD

)⎤⎥⎦
⎞⎟⎠

=
1
2
E
(
mD

t

(
− ln

(
1 +

(εDt )
2

vD

)
+

vD + 1
2vD + (εDt )2

(εDt )
2

vD

))
1
T

T∑
t=1

E
(
∂hD

t

∂θ

)

+ E
(
mD

t

(
1 +

(vD + 1) (εDt )
2

2vD + (εDt )2

))
1
T

T∑
t=1

E
(
∂hD

t

∂vD

∂hD
t

∂θ

)
.

The first term vanishes by Lemma 5. Then we can use the same procedure above to obtain∑T
t=1 E

(
∂hDt
∂vD

∂hDt
∂θ

)
= O(1), and to finish the proof for vD. ■
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B.2. Proof of Theorem 2

By the triangle inequality,

sup
φ∈Φ

⏐⏐lT (φ; θ̃ ) − l(φ)
⏐⏐ ≤ sup

φ∈Φ

⏐⏐lT (φ; θ̃ ) − lT (φ; θ0)
⏐⏐+ sup

φ∈Φ

|lT (φ; θ0) − l(φ)| ,

where l(φ) = E(lT (φ; θ0)). By the identification condition l(φ) is uniquely maximized at φ = φ0 and standard arguments
(Harvey, 2013) show that the second term is op(1). The first term is also op(1) by the uniform consistency of σ̃ (s) in
Lemma 1 and the smoothness of the objective function in σ̃ (t/T ) and equivalently θk.

We next turn to asymptotic normality. The general strategy is that we first show the estimators obtained by maximizing
lT (φ; θ̃ ) and lT (φ; θ0) have the same asymptotic distribution, provided ∥θ̃−θ0∥ converges to 0. As a result, the asymptotic
property of φ̃ follows as in the parametric model with known σ (t/T ).

Following Severini and Wong (1992), the expansion of 1
√
T

∑T
t=1

∂ lt (φ0,θ̃ )
∂φ

at θ0 gives

1
√
T

T∑
t=1

∂ lt (φ0; θ̃ )
∂φ

=
1

√
T

T∑
t=1

∂ lt (φ0; θ0)
∂φ

+
1

√
T

T∑
t=1

(∑
k

∂2lt (φ0; θ0)
∂φ∂θk

(θ̃k − θk,0)

)
+ op(1). (24)

According to Theorem 1, we have
∑T

t=1 E(
∂2 lt (φ;θ )
∂φi∂θk

) = O(1), for each k and i, where k ∈ {1, . . . ,∞} and i ∈ {1, . . . , 14}. It
follows that

T∑
t=1

∂2lt (φ0; θ0)
∂φi∂θk

= Op(
√
T ).

Given that the dimension of the sieve space grows slowly and θ̃ converges to θ , the second term in (24) is of order op(1).
Therefore, the asymptotic property of φ̃ can be obtained with a similar procedure to Harvey (2013). He gives the

consistency and asymptotic normality of the estimator for the parametric beta-t-egarch model. The basic idea is that the
first three derivatives of lt with respect to φ (except vj) are linear combinations of bht (1 − bt )k, h, k = 0, 1, 2, . . ., with
bt =

(1+v)(et )2

v exp(2λt )+(et )2
. Since bt is beta distributed, these first three derivatives are all bounded. It is then straightforward

to show that the score function satisfies a CLT, and its derivative converges to the information matrix by the ergodic
theorem.

Obviously, φ̂ has the same limiting distribution as φ̃, since
∑T

t=1
∂ lt (φ0,θ̃ )
∂φ

and
∑T

t=1
∂ lt (φ0,θ )
∂φ

have the same asymptotic
property. ■

B.3. Proof of Theorem 3

Consider the local likelihood function given ηjt and vj, i.e., minimize the objective function

LjT (σ
j
; s) =

1
T

T∑
t=1

Kh(s − t/T )

[
σ j

+
vj + 1

2
ln

(
1 +

(ηjt exp(−σ j))2

vj

)]
with respect to ω, for j = D,N separately. The first order and second order derivatives are:

∂LjT (σ
j
; s)

∂σ j =
1
T

T∑
t=1

Kh(s − t/T )
[
−(vj + 1)bjt (σ

j) + 1
]

∂2LjT (σ
j
; s)

∂σ j2 = 2(vj + 1)
1
T

T∑
t=1

Kh(s − t/T )
[
bjt (σ

j)
(
1 − bjt (σ

j)
)]
, (25)

where

bjt (σ
j) =

(ηjt )
2

vj

exp(2σ j) +
(ηjt )

2

vj

.

We have

√
Th
(
σ̂ j(s) − σ

j
0(s)

)
=

[
1
Th
∂2LjT (σ

j
0; s)

∂σ j2

]−1
1

√
Th

∂LjT (σ
j
0; s)

∂σ j + op(1),
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This is asymptotically normal with mean zero and variance (when the t distribution is correct)

var

[
1

√
Th

∂LjT (σ
j
0; s)

∂σ j

]
= ∥K∥

2
2E
[(

1 − (vj + 1)bjt (σ
j
0(s))

)2]
t/T=s

.

This follows because

E
[(

1 − (vj + 1)bjt (σ
j
0(s))

)2]
= f (t/T )

for some smooth function f , and recall ηjt = exp(σ j(t/T ))εjt . It follows that

h2

Th

T∑
t=1

K 2
h (s − t/T )f (t/T ) → ∥K∥

2
2f (s),

Therefore,

√
Th
(
σ̂ j(s) − σ

j
0(s)

)
H⇒ N

⎛⎜⎜⎜⎝0,
∥K∥

2
2

E
[(

1 − (vj + 1)bjt
)2]

t/T=s

⎞⎟⎟⎟⎠
Further, since bjt is distributed as beta( 12 ,

vj
2 ), with

E
[(

1 − (vj + 1)bjt
)2]

t/T=s
=

2vj(
vj + 3

) .
It thus follows that

√
Th
(
σ̂ j(s) − σ

j
0(s)

)
H⇒ N

⎛⎝0,

√(
vj + 3

)
2vj

∥K∥
2
2

⎞⎠ .
when the t distribution is correct. ■
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