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a b s t r a c t

We study the efficient estimation of nonparametric regression in the presence of
heteroskedasticity. We focus our analysis on local polynomial estimation of nonpara-
metric regressions with conditional heteroskedasticity in a time series setting. We
introduce a weighted local polynomial regression smoother that takes account of the
dynamic heteroskedasticity. We show that, although traditionally it is advised that one
should not weight for heteroskedasticity in nonparametric regressions, in many popular
nonparametric regression models our method has lower asymptotic variance than the
usual unweighted procedures. We conduct a Monte Carlo investigation that confirms the
efficiency gain over conventional nonparametric regression estimators in finite samples.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the nonparametric regression model

yt = m(Xt ) + ut , t = 1, . . . , T , (1)

where the function m(·) is assumed to be unknown but smooth, while ut is an error process that is mean zero given the
covariate Xt ∈ Rd (which may include lagged values of yt ). The parameters of interest include m(x) and partial derivatives
of m at x. A popular estimator of m(x) is the local polynomial regression estimator, which minimizes a localized least
squares criterion, see, e.g. Fan and Gijbels (1996).

When the error term has some additional structure beyond the conditional moment restriction, it may be possible to
improve the estimation of m by taking that structure into account. We consider the regression model (1) where the errors
are heteroskedastic, i.e.,

ut = σtεt , (2)

where σ 2
t = var (ut |Ft−1), while εt and ε2

t − 1 are stationary martingale difference sequences (m.d.s.) i.e., E(εt |Ft−1) = 0,
and E

(
ε2
t − 1|Ft−1

)
= 0. Here, Ft−1 is the information set that contains Xt and additional information such as lags of
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(Xt , yt) or possibly other covariates. The specific content of Ft−1 may vary over different models, and more details will be
given in our later discussion on specific models. We do not assume that the error term is independent of the covariate.
As will be more clear later in this paper, it is the information in addition to Xt that brings efficiency improvement. In the
special case where Ft−1 only contains information about Xt , the conditional variance can be written as

σt = σ (Xt ), (3)

for some measurable function σ (·). In this case, it is not possible to improve the asymptotic efficiency (in the sense of
Tibshirani (1984)) of the local linear least squares estimator of m, which has variance proportional to σ2(x)

fX (x)
, where fX (x)

is the covariate density. This is in contrast to the case of linear regression where the Gauss–Markov theorem assures
that GLS improves on OLS except in certain pathological cases, Amemiya (1985, Chapter 6) and Robinson (1987). This is
because, locally to Xt = x the process yt is homoskedastic. For this reason, the traditional advice in the literature is that
one should not weight for heteroskedasticity in nonparametric regressions, see, e.g., Jones (1993).

However, in many applications, (3) is not satisfied, and var(ut |Xt ) ̸= var (ut |Ft−1) = σ 2
t . The most widely used class of

models in economics and finance are the ARCH/GARCH models. In this case, σ 2
t is characterized by a parametric model

that does not satisfy (3). For example, suppose that σ 2
t follows a GARCH(1,1) process described by unknown parameters

θ = (ω, β, γ )
⊺
:

σ 2
t = ω + βσ 2

t−1 + γ u2
t−1. (4)

Since Xt ∈ Ft−1, then E(ut |Xt ) = 0 so that

E(yt |Ft−1) = E(yt |Xt ) = m(Xt ) and σ 2
t = var(yt |Ft−1). (5)

However, E(u2
t |Xt ) ̸= σ 2

t . We argue in this paper that this type heteroskedasticity will allow efficiency improvements to
be made by GLS weighting. In general, if there are variables in Ft−1 that affect the volatility but have no influence on the
conditional mean, then additional heteroskedasticity can be found even after fixing the value of Xt , and efficiency gain can
be achieved by GLS weighting. In essence, we just need some kind of exclusion restriction that the variables driving the
variance are not all present in the conditional mean. We show that one can improve efficiency of the conditional mean
estimation by taking into account the volatility structure we have described above.

The analysis and proposed approach in this paper actually applies to a wide range of models. A growingly popular
approach to volatility modeling is to include additional information either from high frequency data (e.g., Realized
Volatility) or from option prices (e.g., the VIX). This case also fits into our framework where we have expanded the
definition of Ft−1 to include these variables but excluded them from having an influence on the conditional mean.
Another case of interest is where the variance is deterministic, perhaps nonparametric, say σ 2

t = σ 2(t/T ) for some
smooth function σ 2(·), (Starica, 2003) (which is consistent with the widely used rolling window analysis). In this case,
E(u2

t |Xt ) = E(u2
t ) = σ 2

t , and the covariate has no effect on the evolution of the variance.2 If Xt = t/T , but σ 2
t is a dynamic

heteroskedastic process, we also generally get efficiency improvements. If Xt is a stochastic process independent of ut ,
then it is also independent of σ 2

t , we in any case get efficiency gains.
We examine the effect of weighting on nonparametric regressions in this paper. We point to cases where an efficiency

gain can be achieved via weighting. and where they cannot. In particular, an efficiency gain can be achieved when the
weighting is determined by the correctly specified error volatility structure. In that case the ‘‘GLS weighted’’ least squares
smoothing method is shown to have a smaller variance than the variance of the unweighted estimator and yet the bias of
the two estimators is the same. In practice, we have to estimate the error variance. We show that this feasible estimator
can achieve the same limiting variance and improves the pointwise mean squared error relative to the unweighted
estimator. We also propose consistent confidence intervals based on our procedures, which will thereby be shorter than
the corresponding ones from the unweighted procedures.

In some applications the efficiency gains may be important. For example, in nonparametrically predicting stock returns
one finds that the conditional mean is not very well estimated, but in any case, the memory is relatively short. By contrast,
the conditional variance has a very strong nonlinear shape with substantial dynamics or memory (see, e.g. Engle, 1982;
Engle and Rangel, 2008). This suggests that conditioning on the variables we include in the mean equation, the variance
is still stochastic and may vary substantially such that our GLS procedure will afford substantial efficiency gains in the
estimation problem. This may permit shorter confidence intervals and more accurate hypothesis testing. Unfortunately,
this efficiency improvement need not translate into improved forecasting, as is well known, (Diebold and Nason, 1990).

Literature Review. There is an extensive literature on efficient estimation of nonparametric models. The simplest case
is where the error term is independent of the covariate and is i.i.d. with known density f . This case was considered in
Tibshirani’s (1984) Phd Thesis where he introduced the local likelihood estimator that replaces the local least squares
objective function. The local likelihood estimator has lower large sample variance than the least-squares based local
polynomial estimator (and indeed than any other asymptotically normal estimator as follows by the classical Cramér–Rao
inequality); under some conditions, the bias of the local likelihood estimator is the same as the bias of the simple local

2 In this case also, one can say that there are variables (time) that affect volatility but do not affect the covariate (except in the special case
where also Xt = t/T ).
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polynomial estimator, so that the local likelihood estimator has lower pointwise mean squared error (MSE). Linton and
Xiao (2007) showed that one could achieve the same performance asymptotically, even when f is unknown, by a two
step procedure based on estimation of the error density using kernel density techniques. Avramidis (2016) extended this
work to cover the estimation of a conditional variance function in the presence of an unknown mean. Linton et al. (2011)
consider the case with filtered data, i.e., under repeated left truncation and or right censoring, and established efficient
procedures. Wang and Yao (2012) considered the single index model case wherem(x) = g(β

⊺
x). Jin et al. (2015) considered

the case ut = σ (Xt )εt where εt are i.i.d. and independent of Xt with unknown density f . The efficiency gain here is coming
from the shape of the error density that has to be estimated. Chen et al. (2015) have considered adaptive estimation
of variable coefficient models where essentially m(Xt ) is replaced by r(zt )Xt , where r is an unknown function of the
observable quantity zt . Meanwhile, Yao (2013) has proposed an EM algorithm for implementing the adaptive estimation
method. A separate line of work has considered the problem where ut is serially correlated, i.e., A(L)ut = εt , where εt
is i.i.d. and independent of Xt with mean zero, while A(L) =

∑
∞

j=1 ajL
j is a lag polynomial. Xiao et al. (2003) proposed a

more efficient estimator of m based on a prewhitening transformation Yt −A(L)(Yt −m(Xt )) = m(Xt )+ εt , where the right
hand side is now a standard nonparametric regression with whitened errors (and replacing the unknown quantities on
the left hand side by preliminary estimates of m and the parameters of A(L)). The transform implicitly takes account of the
autocorrelation structure. They obtained an improvement in terms of variance over the usual kernel smoothers. Linton
and Mammen (2005) considered an extension of this model and proposed likelihood based procedures that extended this
and showed how one can obtain even higher efficiency; see also Liu et al. (2010), Linton and Wang (2016) and Geller
and Neumann (2018). Su and Ullah (2006) constructed efficient estimators in the case where the errors are nonlinearly
autodependent. In a panel setting, there are a number of papers that propose more efficient estimators of nonparametric
regression curves using weighting schemes, following Wang (2003b). Henderson et al. (2008) extend this work to allow for
fixed effects as well, see also Martins-Filho and Yao (2009). To summarize, both parametric and nonparametric structures
can be used to improve efficiency of the estimation of m(x).

The rest of this paper is organized as follows: A general discussion on weighted nonparametric regression is given
in Section 2. The proposed estimator and leading special cases are studied in Section 3. Section 4 discusses some further
issues. Bandwidth selection is considered in Section 5. Some Monte Carlo experiments are reported in Section 6. Section 7
concludes. A supplementary appendix contains some preliminary technical results, details of proofs, an application to the
variance ratio test, and some potential extensions.

The basic result of our paper applies to different types of nonparametric estimators. We focus on the local polynomial
estimator due to its wide applicability and good properties on the boundary, see, e.g., Fan (1992), and Fan and Gijbels
(1996) for discussion on the attractive properties of local polynomials regression. For comparison purpose, we will briefly
discuss the Nadaraya–Watson regression in Section 4 and further investigate the impact of weighting on biases. Without
loss of generality and for simplicity of derivation, we assume that d = 1 in this paper but our result can be easily extended
to the general case of multivariate Xt .

2. Weighted nonparametric regressions

In this section we consider a general weighted pth local polynomial regression based on an observed weighting scheme
{λt}. Suppose that we observe {(Yt , Xt , λt )}Tt=1, where λt is a (so far unspecified) weighting scheme, and consider the
general weighted local polynomial regression based on {λt}.

Let β̂λ;p(x) = (̂βλ0(x), . . . , β̂λp(x))⊺ minimize the weighted least squares objective function

QT (β; x, K , h, {λt}) =

T∑
t=1

λtK
(
x − Xt

h

)⎛⎝Yt −

∑
0≤j≤p

βj((Xt − x)/h)j

⎞⎠2

(6)

with respect to β = (β0, . . . , βp)⊺. Then, with wt = λtK
( x−Xt

h

)
and Xt = (1, (Xt − x)/h, . . . , ((Xt − x)/h)p)⊺, we have

β̂λ;p(x) =

[
T∑

t=1

wtXtX
⊺
t

]−1 T∑
t=1

wtXtYt , (7)

provided the matrix
∑T

t=1 wtXtX
⊺
t is of full rank.

The special case with λt = 1 corresponds to the standard local polynomial estimator, (Fan and Gijbels, 1996). In
particular, the local polynomial estimator of m(x) is given by the component β̂λ0(x) of the estimator β̂λ=1;p(x), and we
denote this estimator by m̂LP (x). In the leading case when p = 1, this is the local linear regression. Its asymptotic properties
are well known.

We next present the asymptotic properties of the weighted estimator in the case where p is an odd integer. We make
the following regularity assumptions on the model, the weighting scheme, and the kernel function and bandwidth.

Assumption A1. The data are generated by (1) and (2).
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Assumption A2. E(εt |Ft−1) = 0, and E
(
ε2
t − 1|Ft−1

)
= 0, where Ft−1 = σ (Xt−i, i ≥ 0; yt−j, j ≥ 1; λt ).

Assumption A3. The density fX (·) of Xt is uniformly bounded and is bounded away from zero on its support X , a compact
subset of R. The joint densities of (Xt , Xt+ℓ), (Xt , Xt+ℓ, Xt+j), (Xt , Xt+ℓ, Xt+j, Xt+s) are continuous and bounded. The functions
fX (·) and m(·) are (p + 1) times partially differentiable. The derivatives f (r)X (x) = dr f (x) /dxr and m(r)(x) = drm (x) /dxr
are bounded and uniformly continuous on X , and there exists C1 < ∞ such that

|f (r)X (u) − f (r)X (v)| ≤ C2∥u − v∥,

|m(r)(u) − m(r)(v)| ≤ C1∥u − v∥.

Assumption A4. The process {Wt} is stationary and absolutely regular, where Wt = (Xt , σt , λt ). That is,

ϱ(τ ) = sup
s

E

{
sup

A∈G∞
s+τ

|P(A|Gs
−∞

) − P(A)|

}
→ 0, as τ → ∞,

where Gt
s is the σ -field generated by {Wj : j = s, . . . , t}. In addition, there is a positive δ such that Wt has finite 2+δ

moments, and for some δ > δ′ > 0, ϱ(τ ) = O(τ−(2+δ′)/δ′

). The conditional density of {εt , σt , λt}, fεt ,σt ,λt |Xt (ε, σ , λ|x) is
uniformly bounded and has continuous partial derivatives.

Assumption A5. The kernel K has support [−1, 1] and is symmetric about zero. The functions Hj(u) = ujK (u), for all j with
0 ≤ |j| ≤ 2p+1, are Lipschitz continuous, i.e., there exists a positive finite constant C such that |Hj(u) − Hj(v)| ≤ C∥u−v∥.

Assumption A6. As T → ∞, h → 0 and Th → ∞.

Most of these assumptions are standard in local polynomial nonparametric estimation, (Fan and Gijbels, 1996). These
conditions are useful in our technical development and, no doubt some of them could be replaced by a range of similar
assumptions. In Assumption A2 we allow for the case that λt is not a measurable function of {Xt−i, i ≥ 0; yt−j, j ≥ 1}; in
fact it suffices for consistency here that E(ut |Xt , λt ) = 0. Assumption A3 facilitates the Taylor expansions of the regression
function and density function to the required order. Assumption A4 assumes that the data is weakly dependent so that
a LLN and CLT apply. Assumption A5 for the kernel function and Assumption A6 for the bandwidth expansion are also
quite standard in nonparametric estimation. We introduce the following notations:

M(K ) =

⎡⎢⎣µ0(K ) · · · µp(K )
...

...

µp(K ) · · · µ2p(K )

⎤⎥⎦ , Γ (K ) =

⎡⎢⎣ν0(K ) · · · νp(K )
...

...

νp(K ) · · · ν2p(K )

⎤⎥⎦ ,

B(K ) =
[
µp+1(K ), · · · , µ2p+1(K )

]⊺ , γ (K ) = M−1(K )B(K ) ; ω(K ) = M(K )−1Γ (K )M(K )−1,

bp(x) =
m(p+1)(x)
(p + 1)!

; δλ (x) =
E
[
λ2
t σ

2
t |Xt = x

]
[E (λt |Xt = x)]2

,

where µj(K ) =
∫

∞

−∞
ujK (u)du and νj(K ) =

∫
∞

−∞
ujK 2(u)du. Let γj(K ) = e

⊺

j γ (K ) and ωjk(K ) = e⊤

j ω(K )ek, where ej is the
p+ 1 elementary vector with 1 in the jth position and 0 elsewhere. In the univariate local linear case ω11(K ) = ν0(K ). Let
β0(x) = (β00(x), . . . , β0p(x))

⊺
, where β0j(x) = (hj/j!)m(j) (x).

Theorem 1. Suppose that Assumptions A1–A6 hold. Then, as T → ∞,
√
Th
(̂
βλ;p(x) − β0(x) − hp+1bp(x)γ (K )

)
H⇒ N

(
0,

δλ(x)
fX (x)

ω(K )
)

.

Furthermore, β̂λ;p(x) and β̂λ;p(x′) are asymptotically independent when x ̸= x′.

Theorem 1 gives the asymptotic distribution of the local polynomial regression estimator of m(x) and its derivatives for
an arbitrary weighting sequence. From the result of Theorem 1 we can see that weighting does not affect the asymptotic
bias of the local polynomial regression. The leading bias term of the weighted local polynomial regression is independent
of the choice of weights {λt}, this is because the influence of λt in the numerator and denominator cancels out. The
argument is as follows. Notice that the exact conditional bias of the local polynomial estimator is given by[

T∑
t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXt∆t (x),
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where ∆t (x) = m(Xt )−
∑

0≤k≤p
1
k!m

(k)(x)(Xt − x)k. The numerator and the denominator are both affected by the weighting
process, in particular:

h−(p+1) 1
Th

T∑
t=1

wtXt∆t (x)
P

−→ E {λt | Xt = x} fX (x) bp(x)B(K ),

1
Th

T∑
t=1

wtXtX
⊺

t
P

−→ fX (x)E (λt |Xt = x)M(K ).

From the above results, we can see how the impact of weighting, which is reflected by the term E(λt |Xt = x), is canceled
out.

However, the weighting does change the limiting variance except in some special cases; the effect of weighting on
the nonparametric regression is captured by the factor δλ(x) as indicated by Theorem 1. We next consider some different
scenarios with regard to the form of λt and σ 2

t and their effect on δλ(x).
If we choose a weight that is a smooth function of the regressor, i.e. λt = λ(Xt ), then E(λt |Xt = x) = λ(x), and

E
[
λ2
t σ

2
t |Xt = x

]
= λ(x)2E

[
σ 2
t |Xt = x

]
, so that

δλ (x) =
E
[
λ2
t σ

2
t |Xt = x

]
[E (λt |Xt = x)]2

= E
[
σ 2
t |Xt = x

]
.

In this case, the weighted local polynomial estimator has the same limiting variance as the unweighted local polynomial
regression estimator. This is because, in the shrinking neighborhood of x, the weights are asymptotically the same, the
weighted local polynomial estimator is asymptotically equivalent to the equally weighted local polynomial estimator. In
fact, no matter what is the form of σ 2

t , any weights λ(Xt ) in the form of a smooth function of Xt , would give you the same
limiting variance. Combining this result with those on bias, we can see that the weighted local polynomial regression using
weights λ(Xt ) has the same mean-squared error (and limiting distribution) as the ordinary local polynomial estimation.

Suppose that σ 2
t = σ (Xt )2. Then, the ‘‘optimal’’ weights λt = 1/σ (Xt )2 deliver the same results as the ordinary

nonparametric regression. This is because the assumption σ 2
t = σ 2(Xt ) implies that the nonparametric regression model

is locally-homoskedastic. In this case, unweighted kernel estimators are asymptotically efficient (in the Tibshirani (1984)
sense) under normality. In fact, incorrectly weighted regressions are worse than the ordinary nonparametric regressions
in this case. To see this, notice that E

[
λ2
t |Xt = x

]
− [E (λt |Xt = x)]2 =var(λt |Xt = x) ≥ 0. Therefore,

δλ (x) =
E
[
λ2
t σ

2
t |Xt = x

]
[E (λt |Xt = x)]2

=
σ (x)2E

[
λ2
t |Xt = x

]
[E (λt |Xt = x)]2

≥ σ (x)2.

The equality holds only when var(λt |Xt = x) = 0, which holds when λt = λ(Xt ) or λt = constant. Thus, the ordinary
local polynomial estimator is asymptotically the best you can get. For this reason, it is generally advised in the literature
that nonparametric regressions should not be weighted, see, e.g. Jones (1993).

Suppose that σ 2
t ̸= σ 2(Xt ). Then, if we choose λt = σ−2

t , we have

δλ (x)|
λt=σ−2

t
=

E
[
σ−2
t |Xt = x

][
E
(
σ−2
t |Xt = x

)]2 =
1

E
(
σ−2
t |Xt = x

) ≤ E
(
σ 2
t |Xt = x

)
.

This shows the efficiency gain that can be achieved by local GLS regression. In fact, by the Cauchy–Schwarz inequality,
for any weights λt ,

δλ (x) =
E
[
λ2
t σ

2
t |Xt = x

]
[E (λt |Xt = x)]2

≥
1

E
(
σ−2
t |Xt = x

) ,
and the equality holds only when λt = cσ−2

t for some constant c , indicating that λt = σ−2
t is the optimal weight.

We investigate this case further in the next section. In fact, in this case, using the wrong weighting (λt ̸= σ−2
t ) is not

necessarily worse than the unweighted estimator: as in linear regression, (Amemiya, 1983), weighting may also improve
efficiency. Our standard errors below are consistent whether or not λt ̸= σ−2

t .
We close with a discussion of standard errors. There are a number of choices for standard errors in nonparametric

regression, see Chu et al. (2017), and we just define here the most straightforward and general approach, which is valid
provided only E(ut |Xt , λt ) = 0. In fact, it will also be asymptotically valid in some cases we discuss below where this
condition is only valid asymptotically. Note that conditional on {Xt , λt}

T
t=1 the estimator β̂λ;p(x) is linear in Y and so its

conditional variance is obtainable in closed form, (Fan and Gijbels, 1996, 4.9).
Let ût (x) = Yt − X⊺

t β̂λ;p(x) and

V̂ (x) =

[
T∑

t=1

wtXtX
⊺
t

]−1 T∑
t=1

w2
t XtX

⊺
t ût (x)2

[
T∑

t=1

wtXtX
⊺
t

]−1

. (8)
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Then, similarly to Fan and Gijbels (1996, 4.11), we can show that(
e
⊺

j V̂ (x)ej
)−1 (̂

βλj(x) − β0j(x) − hp+1bp(x)γj(K )
)

H⇒ N (0, 1) (9)

under the conditions A1–A6, i.e., whether or not λt = σ−2
t . From this we can obtain confidence intervals for β0j(x)

(assuming undersmoothing). More sophisticated pointwise and uniform confidence intervals can be constructed by using
bias correction/bootstrap, see for example, Hall (1992a,a) and Calonico et al. (2014), and we expect similar improvements
to carry over to these cases due to the more efficient estimation.

3. The local GLS estimator

The previous section provides a general discussion on weighted nonparametric regressions. We now specialize the
discussion to the case where the weighting λt = σ−2

t , where σ 2
t = E(u2

t |Ft−1) is the conditional variance of the error
process. We first give a general result for this estimator. Then in two subsections we consider particular models for the
error variance, one parametric, and one nonparametric, which allow us to estimate consistently the optimal weighting
and thereby to achieve asymptotically the same efficiency.

Define m̂(x) = β̂λ0(x) from (7) with λt = σ−2
t . We call this the local GLS estimator. In this case, the objective function

(6) can be given the interpretation of a local likelihood, under Gaussianity, see Tibshirani (1984), and so the estimation
method can be given an optimality justification along the lines he gave.

We slightly modify Assumption A4 to accommodate the special case where λt = σ−2
t .

Assumption A4′. Let W1t = {Xt , σt}, {W1t} be a stationary absolutely regular process. That is,

ϱ(τ ) = sup
s

E

{
sup

A∈G∞
s+τ

|P(A|Gs
−∞

) − P(A)|

}
→ 0, as τ → ∞,

where Gt
s is the σ -field generated by {W1j : j = s, . . . , t}. In addition, there is a positive δ such that E(|W1t |

2+δ) < ∞, and
for some δ′ with δ > δ′ > 0, ϱ(τ ) = O(τ−(2+δ′)/δ′

). The conditional density of {εt , σt}, fεt ,σt |Xt (ε, σ |x) is uniformly bounded
and has continuous partial derivatives.

Corollary 1. Suppose that Assumptions A1–A3, A4′, A5 and A6 hold. Then, as T → ∞,

√
Th
[
m̂(x) − m(x) − h(p+1)b(x)

]
H⇒ N

(
0,

ω11(K )
fX (x)E

[
σ−2
t |Xt = x

]) .

Corollary 1 indicates that the asymptotic variance of the infeasible weighted local estimator m̂(x) is proportional to
1/E

[
σ−2
t |Xt = x

]
, which is less than E

[
σ 2
t |Xt = x

]
, unless precisely (3) holds. We next discuss some concrete special cases.

Example. Suppose that {Xt} and {ut} are independent processes (included in this case is the situation where Xt = t/T
and ut is a stochastic process; also included is the case where σ 2

t is the stochastic volatility class of processes without
leverage effects, e.g., (Shephard, 1996) that is independent of the process X). In this case, E

[
σ−2
t |Xt = x

]
= E

[
σ−2
t
]
and

E
[
σ 2
t |Xt = x

]
= E

[
σ 2
t

]
, and for any nontrivial stochastic process

E
[
σ 2
t

]
>

1
E
[
σ−2
t
]

by the Cauchy–Schwarz inequality.

Example. Suppose that Xt = yt−j so that the processes {Xt} and {ut} are not independent . In that case, E
[
σ 2
t |Xt = x

]
and

E
[
σ−2
t |Xt = x

]
are not constant, but we may also have an efficiency gain because these quantities are not exact reciprocals

of each other unless σ 2
t only depends on yt−j.

In practice, σ 2
t may be unknown in which case m̂(x) is infeasible. However, the infeasible procedure defines an efficiency

standard against which we should measure our feasible estimator. We next consider the case where estimated weights
are allowed for.

Let σ̂ 2
t be a consistent estimator of σ 2

t ; we will consider several examples below depending on model structure.
Then define the feasible weighted local polynomial estimator m̃(x) as β̂λ0(x) from (7) with λt = σ̂−2

t . Letting ŵt =

K ((x − Xt) /h) /σ̂ 2
t , then the proposed estimator has the representation (provided the denominator matrix has full rank)

β̃(x) =

[
T∑

t=1

ŵtXtX
⊺

t

]−1 T∑
t=1

ŵtXtYt , (10)

and m̃(x) = β̃0(x) = e⊤

1 β̃(x). We call this the local FGLS estimator.
We add the following high level Assumption A7 to take into account the preliminary estimation of weights.
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Assumption A7. Let wt = K ((x − Xt) /h) /σ 2
t . Then :

(a)
(Th)−1∑T

t=1 (ŵt − wt)XtX
⊺

t

 = op (1);

(b)
(Th)−1/2∑T

t=1 (ŵt − wt)Xt∆t(x)
 = op (1);

(c)
(Th)−1/2∑T

t=1 (ŵt − wt)Xtut

 = op (1).
The result for the proposed estimator is summarized in Theorem 2.

Theorem 2. Suppose that Assumptions A1–A3, A4′, A5–A7 hold. Then, as T → ∞,

√
Th
[
m̃(x) − m(x) − h(p+1)bp(x)

]
H⇒ N

(
0,

ω11(K )
fX (x)E

[
σ−2
t |Xt = x

]) .

Theorem 2 shows that the proposed estimator is asymptotically equivalent to the infeasible weighted local estimator
m̂(x) and thus is more efficient than the conventional local polynomial estimator. The relative efficiency of m̃(x) is given
by

E
[
σ 2
t |Xt = x

]
× E

[
σ−2
t |Xt = x

]
, (11)

which varies with x. If the process σ 2
t were independent of the covariate, then the relative efficiency is E

[
σ 2
t

]
×E
[
σ−2
t
]
.

The efficiency gains above can deliver smaller nonparametric confidence intervals for the regression function. One
can construct confidence intervals using (8) with ŵt replacing wt and under the conditions of Theorem 2 these will
have correct asymptotic coverage. One may also use the GLS structure to define alternative confidence intervals based on
explicitly estimating fX (x) and E

[
σ−2
t |Xt = x

]
, see Chu et al. (2017), although this will not improve the confidence interval

to first order.
In the next two subsections we consider two different models for the heteroskedasticity and show how one can

construct the local FGLS estimator in each case and how one can establish the equivalence of the FGLS estimator with the
GLS estimator.

3.1. The case with GARCH model

We consider in more detail the special case where errors terms satisfy a GARCH(1,1) process. In particular, without
loss of generality, we assume that the model is given by (1), (2), and (4). Given model (4), and under Assumption A1′,

σ 2
t =

ω

1 − β
+ γ

∞∑
j=1

β j−1u2
t−j.

The proposed estimation procedure for the GARCH case is as follows:

1. First, we construct a preliminary local polynomial estimator m̆(x) using bandwidth h1 by minimizing QT (β; x, K , h1,

{1}) from (6) with respect to β

2. Then estimate σ 2
t using ût = yt − m̆(Xt ), denote the estimated variance by

σ̂ 2
t =

ω̂

1 − β̂
+ γ̂

min{t−1,τ }∑
j=1

β̂ j−1̂u2
t−j,

where θ̂ = (ω̂, β̂, γ̂ )
⊺
are preliminary root-T consistent estimators of θ = (ω, β, γ )

⊺
, and τ = τ (T ) = ln(T ) is

a truncation parameter. For example, θ̂ could be the Gaussian QMLE constructed from the residuals, (Bollerslev,
1986).

3. The feasible weighted local polynomial estimator m̃(x) is constructed by minimizing QT
(
β; x, K , h, {σ̂ 2

t }
)
from (6)

with respect to β, where h is the bandwidth in the final estimation.

For simplicity, we use the same kernel function in both the preliminary estimation and the final estimation. In the
presence of a general GARCH(p,q) model, see, e.g. Francq and Zakoian (2004, 2010) for more details on QMLE estimation.

Notice that although σ 2
t is characterized by a parametric model, estimation of σ 2

t uses ût = yt − m̆(Xt ), which is
based on a preliminary nonparametric regression estimator m̆(Xt ) of the conditional mean function. Consequently, the
estimation of σ 2

t depends on the bandwidth h1.
We modify Assumptions A1, A6 and A7 to accommodate the GARCH case. We assume that the GARCH process is

stationary, and we undersmooth in the preliminary estimation.

Assumption A1′. The data is given by (1), (2) and (4), where ω > 0, β ≥ 0, γ ≥ 0, β + γ < 1.
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Assumption A6′. As T → ∞, h → 0, h1 → 0 and h1/h → 0. Th1h1+p
→ ∞, Th2

1h
−1

→ ∞,
√
Thhp+1

1 → 0. τ = c log T
for some constant c > 0.

Assumption A7′. θ̂ is a root-T estimator of θ = (ω, β, γ )
⊺
.

Under Assumption A1′, the GARCH parameters θ can be estimated at rate root-T . Assumption A6′ for the bandwidth
expansion is standard in nonparametric estimation. Assumption A7′ implies Assumption A7 under this GARCH setting.

The result for the GARCH case is summarized in Theorem 3.

Theorem 3. Suppose that Assumptions A1′, A2, A3, A4′, A5, A6′, A7′ hold. Then, as T → ∞,

√
Th
[
m̃(x) − m(x) − h(p+1)b(x)γ1(K )

]
H⇒ N

(
0,

ω11(K )
fX (x)E

[
σ−2
t |Xt = x

]) .

Theorem 3 shows that, in the presence of the GARCH effect, the proposed estimator is asymptotically equivalent to the
infeasible weighted local estimator m̂(x) and thus is more efficient than the conventional local polynomial estimator. We
note that in this case the condition E(ut |Xt , λt ) = 0 fails, but in large samples λt = σ̂ 2

t ≃ σ 2
t ∈ Ft−1 and since we have

assumed that E(ut |Ft−1) = 0 the consistency and asymptotic normality follow. Indeed the standard errors constructed
from (8) are consistent in this case.

Remark. For the preliminary estimator θ̂ , several methods exist for estimating parameters in GARCH models with
unknown innovation distributions. The QMLE is arguably the most frequently used estimator in practice. The asymptotic
properties of the QMLE have been studied in the literature under regularity conditions similar to ours. When the
innovation distribution is heavy tailed, Peng and Yao (2003) propose a least absolute deviations estimator (LADE) as an
alternative which is robust with respect to the heavy tails of the innovation distribution. In fact, the LADE is asymptotically
normal with the standard convergence rate under weaker assumptions.

Remark. The above analysis and results can be easily extended to the case of general parametric volatility when
σ 2
t = var(yt |Ft−1) = σ 2

t (θ ), where θ is the vector of unknown parameters. For example, the well-known location-scale
type model where σ 2

t is equal to a parametric function of covariate Zt , say σ 2
t = ρ0 + ρ1Z2

t .

3.2. Nonparametric deterministic volatility

Although our analysis in this paper focuses on nonparametric regressions with stationary stochastic conditional
heteroskedasticity, the approach can also be applied to the nonstationary case. In this subsection, we illustrate such
extensions for nonparametric regressions with locally varying unconditional volatilities, or long run components. Suppose
that σ 2

t = σ 2(t/T ) with σ 2(·) a smooth unknown function, that is,

ut = σtεt , σt = σ (t/T ), (12)

where εt and ε2
t −1 are stationary martingale difference sequences. In this case, the process ut is not stationary, although

it is locally stationary, (Dahlhaus, 1997). We assume that Assumption A4 holds with Wt = Xt being a stationary absolutely
regular process.

For this model, under regularity conditions, the asymptotic distribution of the conventional local-polynomial regression
estimator is given by

√
Th
[
m̂LP (x) − m(x) − hp+1bp(x)γ1(K )

]
H⇒ N

(
0,

∫ 1
0 σ (r)2dr
fX (x)

ω11(K )

)
. (13)

In this section, we proposed a weighted local-polynomial regression estimator along the lines of the previous sections
and showed that the proposed weighted local-polynomial regression estimator has the same bias but a smaller variance.

A feasible weighted local-polynomial regression estimator m̃(x) requires estimates of σ 2
t , which can be estimated

nonparametrically. We consider the following estimation procedure:

1. First, we construct a preliminary local polynomial estimator m̆(·) using bandwidth h1 by minimizing QT (β; x, K , h1,
{1}) from (6) with respect to β

2. Then estimate σ (t/T )2 by nonparametric smoothing on ût = yt − m̆(Xt ),

σ̂ (r)2 =

∑T
t ̸=Tr,t=1 G ((r − t/T ) /hσ ) û2

t∑T
t ̸=Tr,t=1 G ((r − t/T ) /hσ )

,

where G is a kernel function and hσ is a bandwidth for the estimation of volatility.
3. The feasible weighted local polynomial estimator m̃(x) is constructed by minimizing QT

(
β; x, K , h, {σ̂ 2

t }
)
from (6)

with respect to β, where h is the bandwidth in the final estimation.
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In step 2, we use the leave-one-out estimator here to obtain a martingale difference sequence structure that simplifies
the proof, see, e.g. Xu and Phillips (2008). We also suppose the following:

Assumption A1′′. The data is given by (1), (2) and σt = σ (t/T ), where the function σ (·) is continuous and 0 < cL ≤

infu∈[0,1] σ (u) ≤ supu∈[0,1] σ (u) ≤ cU < ∞, such that
∫ 1
0 σ (r)2dr and

∫ 1
0 σ (r)−2dr exist.

Assumption A4′′. {Xt} is a stationary absolutely regular process. That is,

ϱ(τ ) = sup
s

E

{
sup

A∈G∞
s+τ

|P(A|Gs
−∞

) − P(A)|

}
→ 0, as τ → ∞,

where Gt
s is the σ -field generated by {Xj : j = s, . . . , t}. In addition, there is a positive δ such that E(|Xt |

2+δ) < ∞, and
for some δ′ with δ > δ′ > 0, ϱ(τ ) = O(τ−(2+δ′)/δ′

). The conditional density of εt , fεt |Xt (ε|x) is uniformly bounded and has
continuous partial derivatives.

Assumption A5′. The kernels K (·) and G(·) have support [−1, 1] and are symmetric about zero.

Assumption A6′′. As T → ∞, h → 0, h1 → 0, hσ → 0 and h1/h → 0, h2p
1 h−1

σ → 0, T−1h−1
1 h−1

σ log(T ) → 0, Th1h1+p
→ ∞,

Th2
1h

−1
→ ∞,

√
Thhp+1

1 → 0, Thσh1/2
→ ∞, Th2

σ → ∞.

We obtain the following result.

Theorem 4. Suppose that Assumptions A1′′, A2, A3, A4′′, A5′, A6′′ hold. Then, as T → ∞

√
Th
[
m̃(x) − m(x) − hp+1bp(x)γ1(K )

]
H⇒ N

(
0,

ω11(K )

fX (x)
∫ 1
0 σ (r)−2dr

)
.

Theorem 4 shows that, in nonparametric regressions with locally varying volatilities, the weighted local estimator m̃(x)
is more efficient than the conventional local polynomial estimator. The relative efficiency (ratio of variances) of m̃(x) to
m̆(x) is

veff =

∫ 1

0
σ (r)2dr ×

∫ 1

0
σ (r)−2dr ≥ 1, (14)

where the inequality follows by the Cauchy Schwarz inequality (1 = σ × σ−1) — this is just the ratio of the arithmetic
mean to the harmonic mean of σ (r)2. The magnitude of the efficiency gain increases with the variability of σ (r)2
and is unbounded. The feasible weighted local-polynomial regression estimator m̃(x) is asymptotically equivalent (same
asymptotic variance) to the infeasible weighted local-polynomial regression estimator m̂(x). Muller and Stadtmuller (1987)
consider the case where Xt = t/T and confirm the equivalence of the unweighted and weighted kernel regression
smoothers. We note that in this case the condition E(ut |Xt , λt ) = 0 fails, but in large samples λt = σ̂−2

t ≃ σ−2
t is

deterministic and the consistency and asymptotic normality follow. Indeed the standard errors constructed from (8) are
valid in this case.

Remark. Following Vogt (2013) one may also allow the covariate to be locally stationary, i.e., to have a time varying
density, which changes the variance formula a little.

4. A discussion on the bias of weighted kernel regressions

The idea of weighted regression and the previous analysis may be extended to many other nonparametric methods
and models. The local polynomial estimator is widely used due to its attractive properties. For this reason, we focus our
analysis on the local polynomial regression. Similar analysis on weighted regression can be applied to other nonparametric
methods, say, the well-known Nadaraya–Watson regression. In general, under the assumption E

(
u2
t |Ft−1

)
̸= E

(
u2
t |Xt

)
, GLS

regression reduces the variances of nonparametric regressions. However, the weighting effect on biases is different among
different types of nonparametric regressions. For comparison purposes and to further illustrate the effect of weighting,
we briefly discuss weighted Nadaraya–Watson regression in this section. We show that although weighting has similar
effects on variance, it has a different impact on biases for different nonparametric regression estimators. In particular,
the weighted local polynomial regression with odd order does not change the bias, but the weighted Nadaraya–Watson
kernel regression estimator (even order polynomial) does change the bias.

Consider the weighted Nadaraya–Watson regression that minimizes the following criterion:
T∑

t=1

λtK
(
x − Xt

h

)
(Yt − β)2 , (15)
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where λt are weights associated to the tth observation in the local polynomial regression. Let wt = λtK ((x − Xt) /h).
To compare the kernel estimator with pth order local polynomial regression, we consider (p + 1)th order kernel in
the Nadaraya–Watson regression, thus

∫
K (u)urdu = 0 for r = 1, . . . , p, and

∫
K (u)up+1du = 1. The weighted

Nadaraya–Watson estimator is given by

m̂(x) =

∑T
t=1 λtKh(Xt − x)yt∑T
t=1 λtKh(Xt − x)

. (16)

Again, suppose that the model is given by (1) and (2), it can be verified that the variance of the limiting distribution
is given by (δλ(x)/fX (x))ν0(K ). The impact of weighting on the limiting variance of the Nadaraya–Watson regression is
the same as that of the local polynomial regression. In particular, any weights λ in the form of a smooth function of Xt
would give the same limiting variance. If σ 2

t ̸= σ (Xt )2, GLS regressions will reduce the limiting variance. In particular, the
limiting variance of GLS regression is determined by ν0(K )/fX (x)E

(
σ−2
t |Xt = x

)
, which is smaller than the limiting variance

of the unweighted NW kernel estimator ν0(K )E
(
σ 2
t |Xt = x

)
/fX (x), as long as E

(
u2
t |Ft−1

)
̸= E

(
u2
t |Xt

)
.

To analyze the bias term, let the joint density of (λt , Xt) be g(v, x), notice that K is (p + 1)th order kernel, it can be
verified that

m(r)(Xt )
1
Th

T∑
t=1

λtKh(Xt − Xt )ur
≈ hp+1−rm(r)(Xt )

1
(p + 1 − r)!

∫
vg (p+1−r)

x (v, x)dvµp+1(K )

where g (p+1−r)
x (v, x) =

∂p+1−r g(v,x)
∂xp+1−r . The leading bias of the weighted Nadaraya–Watson estimator is given by

hp+1 µp+1(K )
fX (x)E (λt | Xt = x)

[p+1∑
r=1

1
r!(p + 1 − r)!

(
m(r)(x)

∫
vg (p+1−r)

x (v, x)dv
)]

.

Although weighting does not change the bias in the local polynomial regression, it does change the bias term in the
Nadaraya–Watson regression. Bias reduction is possible by appropriately chosen weights. In the special case where
λt = λ(Xt ) and the kernel is second order, i.e., p + 1 = 2, the leading bias is

1
2
h2µ2(K )

[
2m(1)(Xt )

(λf )′(x)
(λf ) (x)

+ m(2)(x)
]

, (17)

where we denote λ(x)f (x) by (λf )(x), which is the result given by Jones (1993).

5. Bandwidth selection

The proposed weighted nonparametric estimator involves the use of bandwidth parameter h, and the preliminary
estimation of weights also involves a bandwidth h1 in the unweighted local regressions. In practice, a data-driven
smoothing parameter selection is highly appreciated. Although in principle the bandwidth could be selected by minimizing
the second order effects in MSE of the nonparametric estimator, the second order term is quite complicated and messy,
and it is practically difficult to select an optimal bandwidth along this direction. Cross-validation has been widely used
in selecting tuning parameters in econometrics and statistics, see, e.g. Hall and Racine (2015). In this section, we propose
the following cross-validation type procedure for selecting smoothing parameters.

1. First, we construct a preliminary local polynomial estimator m̆(·) using bandwidth h1 by minimizing QT (β; x, K , h1,

{1}) from (6) with respect to β

2. Then estimate σ 2
s using ûs = ys − m̆(Xs), denote the estimated variance by σ̂ 2

s .
3. For each t , we estimate m(Xt ) using observations {(Ys, Xs) , |s − t| > κ}, for some large κ . More specifically, we

construct the leave-k -out (k = 2κ + 1) weighted local polynomial estimator m̃−t (Xt ) by minimizing:

T−1
∑

s:|s−t|>κ

K ((Xs − Xt) /h)
σ̂ 2
s

⎛⎝Ys −

∑
0≤j≤p

βj

(
Xt − Xs

h

)j
⎞⎠2

,

where h is the bandwidth in final estimation.
4. Calculate

CV (h, h1) =

T∑
t=1

(Yt − m̃−t (Xt ))2

We may choose (h, h1) to minimize CV (h, h1).
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Remark. (1) This is a cross-validation type estimator. Since the data is weakly dependent over time, we construct the
final estimator of m(Xt ) based on observations separated away from time t . Under weak dependence, the tth observation
is almost independent with the dataset based on which we estimate it. However, σ̂ 2

t is constructed based on the whole
sample for two reasons: since σ 2

t is captured by a parametric model and the parameters are estimated based on the whole
sample, we expect that the impact of the tth observation on the parameter estimation is relatively small due to weak
dependence; on the other hand, the dependence structure is maintained when estimating the volatility parameters. (2)
The proposed cross-validation type estimator can be easily extended to the case when the volatility is nonparametrically
estimated. For the case of nonparametric deterministic volatility discussed in Section 3.2, the second step of estimating
σ 2
s in the above procedure will then be replaced by the nonparametric volatility estimator, which is dependent on hσ , as

a result, the criterion in step 4 will now become CV (h, h1, hσ ).

For convenience in practice, we also propose a simple rule of thumb method following Fan and Gijbels (1996, p 111).
Specifically, to estimate bias terms we use a global polynomial curve

m(x) = α0 + α1x + · · · + αp+1xp+1, (18)

which is estimated by least squares, yielding estimates α̂j, j = 0, . . . , p + 1. We propose the following rule of thumb
bandwidth estimator

hROT = C0,p(K )

⎡⎢⎣(max1≤t≤T Xt − min1≤t≤T Xt
)(

α̂p+1
p+1!

)2
×

1
T

∑T
t=1 σ̂−2

t

⎤⎥⎦
1/(2p+3)

T−1/(2p+3), (19)

where C0,p(K ) is taken from Fan and Gijbels (1996, Table 3.2). This bandwidth approximates the minimizer of the
asymptotic integrated mean square error of the odd order local polynomial regression function estimator under specific
conditions, which includes the specification (18) as well as the mean independence of σ−2

t from Xt . When these conditions
are violated hROT still converges to zero at the right rate but may not be optimal.

6. Simulation study

We conducted a Monte Carlo simulation to evaluate the finite sample performance of the proposed estimation
procedure. In particular, we compare the finite sample performance between the proposed estimator m̃(x) and the
conventional unweighted nonparametric estimator m̆(·). We also report the performance of the infeasible weighted local
polynomial estimator m̂(·) based on known σ 2

t to illustrate the potential of efficiency gain. Thus, the three estimators we
consider are:

1. The conventional unweighted local polynomial estimator m̆(·) based on minimizing QT (β; x, K , h1, {1}) from (6)
with respect to β .

2. The proposed weighted local polynomial estimator m̃(·) based on minimizing QT
(
β; x, K , h1, {σ̂

2
t }
)
from (6) with

respect to β , where σ̂ 2
t is calculated based on estimated ARCH/GARCH parameters.

3. The infeasible weighted local polynomial estimator m̂(·) based on minimizing QT
(
β; x, K , h1, {σ

2
t }
)
from (6) with

respect to β .

The data were generated from the model Yt = m(Xt ) + σtεt , where εt are i.i.d. standard normal distributions. Several
specifications of m(x) were investigated in generating the data and qualitatively similar results were obtained. Thus we
report the results for the case m(x) = x2 at x = 0.

6.1. ARCH

Our first model is the ARCH(1) model

σ 2
t = ω + γ u2

t−1,

with ω = 1. We consider a range of ARCH parameter values: γ = 0.5, 0.7, 0.9. The ARCH parameters are estimated based
on OLS regression: û2

t = ω+γ û2
t−1+ η̌t , where ût is the conventional local polynomial regression residual ût = yt −m̆(Xt ),

and thus σ 2
t can be estimated by σ̂ 2

t = ω̂ + γ̂ û2
t−1.

For the regressor Xt , we consider three cases: Case (I) Xt are i.i.d. standard normal; {Xt}
T
t=1 and {εt}

T
t=1 are independent.

Case (II) Xt are i.i.d. U[0,1]; {Xt}
T
t=1 and {εt}

T
t=1 are independent. Case (III) Xt = Yt−1. We report the results of the

case T = 100. The results with T = 500 are qualitatively similar. The number of replications is 2000 in each case.
We investigated both local linear estimation and the third order (p = 3) local polynomial estimation with kernel
K(u) = 0.75(1 − u2)1(|u| ≤ 1), again, similar results were obtained and thus we only report the results of the case
p = 3. Different bandwidth values were considered for the case p = 3. In particular, we consider bandwidth choices
h = d0 × sXT−1/9 and h1 = d1 × sXT−1/6, where sX is the sample standard deviation of X , for 5 different sets of values
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Table 1
(Case I: Xt = i.i.d. N(0,1)).
h γ = 0.5 γ = 0.7 γ = 0.9

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ 0.0001 0.0421 0.0421 −0.0015 0.0708 0.0708 0.0103 0.1802 0.1803
m̂ 0.0018 0.0327 0.0327 0.0003 0.0394 0.0394 0.0002 0.0447 0.0447
m̃ 0.0009 0.0344 0.0344 −0.0005 0.0450 0.0450 0.0107 0.0766 0.0767

2 m̆ −0.0025 0.0335 0.0335 −0.0030 0.0550 0.0550 −0.0018 0.1221 0.1221
m̂ −0.0035 0.0259 0.0259 −0.0010 0.0308 0.0308 −0.0046 0.0329 0.0329
m̃ −0.0041 0.0272 0.0272 −0.0034 0.0353 0.0353 −0.0028 0.0909 0.0909

3 m̆ −0.0043 0.0355 0.0355 −0.0062 0.0679 0.0679 −0.0007 0.1213 0.1213
m̂ −0.0023 0.0261 0.0261 −0.0055 0.0292 0.0293 −0.0003 0.0328 0.0328
m̃ −0.0023 0.0286 0.0286 −0.0043 0.0440 0.0440 0.0192 0.0890 0.0894

4 m̆ 0.0013 0.0311 0.0311 0.0050 0.0511 0.0511 0.0146 0.1079 0.1081
m̂ −0.0019 0.0239 0.0239 0.0007 0.0274 0.0274 0.0110 0.0308 0.0310
m̃ −0.0027 0.0283 0.0283 0.0009 0.0321 0.0321 0.0136 0.0516 0.0518

5 m̆ −0.0047 0.0329 0.0329 0.0071 0.0557 0.0557 0.0140 0.1437 0.1439
m̂ −0.0026 0.0250 0.0250 −0.0003 0.0267 0.0267 0.0033 0.0315 0.0315
m̃ −0.0025 0.0270 0.0270 0.0055 0.0458 0.0459 0.0060 0.0462 0.0462

6 m̃ROT −0.0108 0.0221 0.0223 0.0109 0.0317 0.0318 −0.0116 0.0422 0.0423

7 m̃cv −0.0153 0.0205 0.0207 0.0117 0.0289 0.0290 −0.0101 0.0401 0.0402

Table 2
(Case II: Xt = i.i.d. U[0,1]).
h γ = 0.5 γ = 0.7 γ = 0.9

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ −0.0381 0.8241 0.8256 0.0027 1.3371 1.3371 0.0204 2.7215 2.7219
m̂ −0.0327 0.6700 0.6711 0.0031 0.7752 0.7752 −0.0098 0.8281 0.8282
m̃ −0.0338 0.6932 0.6943 0.0005 0.8998 0.8998 0.0028 1.2184 1.2184

2 m̆ −0.0106 0.4061 0.4062 0.0078 0.6196 0.6197 0.0121 1.4287 1.4289
m̂ −0.0177 0.3142 0.3145 0.0159 0.3531 0.3533 0.0192 0.4029 0.4033
m̃ −0.0141 0.3322 0.3324 0.0160 0.3895 0.3898 0.0122 0.5589 0.5590

3 m̆ −0.0032 0.3802 0.3802 −0.0062 0.5617 0.5617 0.0002 1.0959 1.0959
m̂ −0.0111 0.2622 0.2624 −0.0063 0.2888 0.2888 0.0064 0.3556 0.3556
m̃ −0.0130 0.2938 0.2940 −0.0107 0.3282 0.3284 0.0118 0.5264 0.5266

4 m̆ −0.0145 0.3429 0.3431 0.0012 0.6861 0.6861 −0.0078 1.0942 1.0942
m̂ −0.0085 0.2495 0.2496 0.0015 0.3201 0.3201 −0.0091 0.3693 0.3694
m̃ −0.0105 0.2638 0.2639 −0.0019 0.3748 0.3748 −0.0059 0.4924 0.4924

5 m̆ −0.0085 0.3458 0.3459 −0.0194 0.5715 0.5718 −0.0278 1.2512 1.2520
m̂ −0.0078 0.2723 0.2724 −0.0045 0.3083 0.3083 0.0053 0.3445 0.3446
m̃ −0.0046 0.3120 0.3120 −0.0028 0.3874 0.3874 −0.0070 0.5302 0.5303

6 m̃ROT −0.0753 0.2792 0.2848 0.0433 0.3441 0.3460 −0.0326 0.5179 0.5189

7 m̃cv −0.0128 0.2426 0.2427 0.0285 0.3167 0.3175 −0.0060 0.4014 0.4014

of (d0, d1): (3, 2), (5.5, 3.5), (8, 5), (15, 10), (25, 16). We also examine the performance of the estimator based on the
ROT bandwidth (denoted by m̃ROT in the tables) and the cross-validation based estimator (denoted by m̃cv in the tables)
proposed in Section 5. For the estimator based on the ROT bandwidth, we simply used h1 = 10× sXT−1/6 in the first stage
preliminary estimation.

We compared the biases, variances, and mean squared errors of these estimators given different choices of innovation
processes and bandwidth values. Tables 1, 2, 3 report results for cases (I), (II), (III). The efficiency gain from weighted
regression is quite significant. In addition, it is apparent that as the conditional heteroskedasticity increases (as γ increases
from 0.5 to 0.9), the efficiency gain from weighted nonparametric regression also increases. Third, the efficiency gain in
the case with independent regressors is generally larger than that of the autoregressions.

6.2. GARCH

We next consider the GARCH model. We consider the same regression function, i.e. the data were generated from the
model Yt = m(Xt ) + σtεt , with m(x) = x2. Now σt follows a GARCH(1,1) process

σ 2
t = ω + βσ 2

t−1 + γ u2
t−1

with ω = 1. We consider a range of GARCH parameter values given as follows
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Table 3
(Case III: Xt = Yt−1).
h γ = 0.5 γ = 0.7 γ = 0.9

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ 0.0076 2.2742 2.2743 −0.0316 1.3927 1.3937 −0.0222 2.2900 2.2905
m̂ −0.0020 2.2605 2.2605 −0.0227 1.0982 1.0987 −0.0180 2.2896 2.2900
m̃ 0.0030 2.1859 2.1859 −0.0392 1.2358 1.2374 −0.0443 2.2112 2.2132

2 m̆ 0.0029 0.8111 0.8111 0.0236 1.0902 1.0907 −0.0147 1.3587 1.3590
m̂ −0.0042 0.6403 0.6404 0.0044 0.6797 0.6798 −0.0132 0.5275 0.5276
m̃ −0.0001 0.7448 0.7448 0.0144 0.9944 0.9946 −0.0186 0.9854 0.9858

3 m̆ −0.0156 0.6050 0.6053 −0.0107 0.7629 0.7630 0.0159 1.3672 1.3675
m̂ −0.0044 0.4796 0.4797 0.0038 0.5601 0.5601 −0.0089 0.4358 0.4359
m̃ −0.0054 0.5729 0.5729 −0.0009 0.7510 0.7510 −0.0028 1.0082 1.0082

4 m̆ 0.0113 0.6568 0.6569 −0.0091 0.8096 0.8097 −0.0057 1.3241 1.3242
m̂ 0.0055 0.5193 0.5193 −0.0061 0.4770 0.4771 0.0109 0.5879 0.5880
m̃ 0.0103 0.6284 0.6285 −0.0059 0.6604 0.6605 0.0038 1.0216 1.0216

5 m̆ −0.0073 0.6495 0.6495 0.0002 0.6982 0.6982 0.0253 1.5548 1.5555
m̂ −0.0112 0.5258 0.5259 0.0014 0.4649 0.4649 0.0065 0.6399 0.6399
m̃ −0.0090 0.6260 0.6260 0.0032 0.5950 0.5950 0.0394 1.3590 1.3606

6 m̃ROT 0.0284 0.5140 0.5148 0.0230 0.9529 0.9534 0.2184 0.9304 0.9781

7 m̃cv −0.0019 0.3838 0.3839 0.0291 0.3927 0.3936 −0.0083 0.5996 0.5997

β 0.1 0.3 0.5 0.7 0.3 0.5 0.1 0.3 0.5 0.9 0.05
γ 0.8 0.6 0.4 0.2 0.5 0.3 0.6 0.4 0.2 0.05 0.9

We have investigated the sampling properties for similar designs on X . Qualitatively very similar results to the ARCH
model are obtained. For this reason, we report the results for the case where {εt}

T
t=1 are i.i.d. N(0,1), and {Xt}

T
t=1 are i.i.d.

U[0,1] random variables that are independent with {εs}
T
s=1. Again, T = 100, and the number of replications is 2000 in

each case.
Since there are more parameters in the GARCH case, and results are similar to the ARCH case, for simplicity, we only

report the biases and mean squared errors of the local polynomial estimators with p = 3 and x = 0. We consider the
same bandwidth choices 1–5, as well as the ROT and cross-validation bandwidth as in the previous case. The results
are contained in Table 4. In particular, we find that: Given each γ , as β increases, the relative efficiency gain increases.
Similarly, given each β , as γ increases, the relative efficiency gain increases.

6.3. Locally varying volatility

We finally look at the locally varying volatility model. We consider the same regression function, i.e. the data were
generated from the model Yt = m(Xt ) + σtεt , with m(x) = x2. Now σt follows a locally varying volatility process:

σ 2
t = ω + γ sin(tπ/T )2

with ω = 0.1, and we consider different values for γ = 1, 2, 5. The choices of the regressor Xt are similar to the previous
cases, i.e., we again consider the same three cases where (i) Xt are i.i.d. standard normal and independent with εt ; (ii) Xt
are i.i.d. U[0,1] and independent with εt ; and (iii) Xt = Yt−1. We investigated the third order (p = 3) local polynomial
estimation with kernel K(u) = 0.75(1 − u2)1(|u| ≤ 1), again, similar results were obtained in local linear estimation and
we only report the results of the case p = 3. We use the same kernel function in estimating the volatility σ (·) as the one
used in estimating the mean function. In addition to h = d0 × sXT−1/9 and h1 = d1 × sXT−1/6, that we used before for the
second stage and first stage nonparametric estimation of the mean, we simply use hσ = sXT−1/6. The same 5 different sets
of values of (d0, d1) were considered. We also examine the performance of the ROT and cross-validation based estimator
(again, denoted by m̃cv in the tables) proposed in Section 5.

The number of replications is the same as before. We report the results of the case T = 100.
The Monte Carlo results that we obtained are very similar to the previous cases. For this reason, we only report the

result for the case when Xt are generated by i.i.d. U[0,1]. In particular, Table 5 reports results for the biases, variances,
and mean squared errors of these estimators given different choices of bandwidth values. Results of Table 5 show the
potential of efficiency gain from weighted nonparametric regression in the locally varying volatility models.

6.4. Additional discussion: The effect of weighting near IGARCH

The Monte Carlo simulation above indicates that the weighted nonparametric regression generally brings efficiency
gain for models with a GARCH error process. In particular, the efficiency gain from weighted regression is quite significant
when γ is large.
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Table 4
GARCH.
h (β, γ ) = (0.1, 0.8) (β, γ ) = (0.3, 0.6) (β, γ ) = (0.5, 0.4) (β, γ ) = (0.7, 0.2)

Bias MSE Bias MSE Bias MSE Bias MSE

1 m̆ 0.0385 1.4338 0.0003 1.6126 0.0329 1.8480 0.0326 1.7066
m̂ 0.0135 0.4775 0.0101 0.7220 0.0160 1.0654 0.0237 1.4932
m̃ 0.0195 0.5816 0.0064 0.8363 0.0176 1.2015 0.0313 1.5684

2 m̆ −0.0057 1.5221 0.0507 1.4295 0.0150 1.5971 0.0072 1.7455
m̂ 0.0109 0.4340 0.0311 0.6825 0.0268 0.9586 0.0110 1.4731
m̃ −0.0033 0.5508 0.0361 0.8192 0.0073 1.1020 0.0056 1.5527

3 m̆ −0.0125 1.5600 0.0245 1.7434 0.0033 1.7712 −0.0168 1.7405
m̂ −0.0023 0.4424 0.0304 0.6869 −0.0118 1.0316 −0.0091 1.4144
m̃ −0.0013 0.5324 0.0276 0.7789 −0.0156 1.1829 −0.0249 1.5416

4 m̆ 0.0279 1.5065 0.0103 1.6511 −0.0106 1.7384 −0.0180 1.6859
m̂ 0.0110 0.4743 0.0261 0.6901 −0.0414 1.0157 −0.0203 1.5276
m̃ 0.0193 0.5548 0.0315 0.7658 −0.0343 1.1487 −0.0163 1.5599

5 m̆ 0.0115 1.7135 −0.0022 1.7232 −0.0251 1.6672 0.0489 1.8362
m̂ −0.0047 0.4540 −0.0129 0.6624 −0.0001 1.0662 0.0601 1.5518
m̃ −0.0096 0.5750 −0.0185 0.7865 −0.0143 1.1997 0.0559 1.6254

6 m̃ROT 0.0145 0.4772 −0.0164 0.7216 0.0169 1.2048 0.1402 1.2641

7 m̃cv −0.0152 0.4161 0.0030 0.6798 −0.1266 1.0034 0.1337 1.2252

h (β, γ ) = (0.5, 0.3) (β, γ ) = (0.1, 0.6) (β, γ ) = (0.3, 0.4) (β, γ ) = (0.5, 0.2)

Bias MSE Bias MSE Bias MSE Bias MSE

1 m̆ −0.0269 0.9331 −0.0030 0.6135 0.0109 0.6110 −0.0154 0.6353
m̂ −0.0221 0.7452 −0.0063 0.3685 −0.0047 0.4632 −0.0152 0.5919
m̃ −0.0223 0.7924 −0.0037 0.4014 −0.0009 0.4925 −0.0148 0.6057

2 m̆ −0.0037 0.9313 −0.0186 0.6028 −0.0164 0.5611 −0.0151 0.5959
m̂ 0.0023 0.7549 −0.0202 0.3608 −0.0305 0.4278 −0.0153 0.5566
m̃ 0.0053 0.8082 −0.0214 0.3925 −0.0269 0.4473 −0.0204 0.5701

3 m̆ −0.0336 0.8765 0.0146 0.6235 −0.0112 0.6082 0.0340 0.5991
m̂ −0.0233 0.7011 0.0103 0.3456 −0.0214 0.4696 0.0275 0.5568
m̃ −0.0227 0.7448 0.0029 0.3769 −0.0132 0.4893 0.0348 0.5714

4 m̆ −0.0145 0.8483 0.0098 0.5578 −0.0161 0.5707 0.0454 0.5986
m̂ −0.0042 0.7075 0.0195 0.3415 −0.0105 0.4405 0.0458 0.5390
m̃ −0.0092 0.7374 0.0128 0.3669 −0.0110 0.4623 0.0469 0.5619

5 m̆ −0.0171 0.9010 −0.0039 0.5655 0.0043 0.5607 −0.0090 0.5937
m̂ −0.0208 0.7364 −0.0005 0.3501 0.0196 0.4324 −0.0013 0.5469
m̃ −0.0275 0.7777 0.0003 0.3769 0.0176 0.4549 −0.0016 0.5568

6 m̃ROT −0.0113 0.6964 0.0382 0.3674 0.0371 0.4795 0.0013 0.5332

7 m̃cv −0.0027 0.6957 −0.0532 0.3589 −0.0276 0.4394 −0.0001 0.5057

h (β, γ ) = (0.3, 0.5) (β, γ ) = (0.05, 0.9) (β, γ ) = (0.9, 0.05)

Bias MSE Bias MSE Bias MSE

1 m̆ −0.0289 1.2714 0.0075 2.2866 −0.0815 3.2651
m̂ −0.0178 0.5508 −0.0300 0.3856 −0.0644 3.2037
m̃ −0.0194 0.6025 −0.0263 0.5018 −0.0795 3.2220

2 m̆ −0.0512 0.8763 −0.0396 1.4264 −0.0495 3.6965
m̂ −0.0217 0.5442 0.0463 0.4416 −0.0996 3.6524
m̃ −0.0207 0.6002 0.0722 0.7835 −0.0819 3.6634

3 m̆ 0.0031 0.8514 −0.1526 1.6438 −0.0637 4.1541
m̂ 0.0076 0.5296 −0.0178 0.4140 −0.0401 4.0120
m̃ 0.0041 0.5655 0.0066 0.6197 −0.0376 4.0504

4 m̆ 0.0519 0.8754 −0.0016 1.3620 −0.1599 3.3553
m̂ 0.0384 0.5477 0.0328 0.4094 −0.1581 3.2812
m̃ 0.0328 0.6046 0.0318 0.4833 −0.1357 3.3467

5 m̆ −0.0376 0.8586 −0.0359 1.9688 0.0301 3.6197
m̂ −0.0169 0.5437 −0.0310 0.4007 0.0104 3.5215
m̃ −0.0197 0.5870 −0.0013 0.4575 0.0078 3.6016

6 m̃ROT 0.0265 0.5785 −0.0084 0.4687 0.1985 3.3681

7 m̃cv −0.0039 0.5586 −0.0121 0.3998 −0.1595 3.2911

The focus of this paper is on stationary time series. Although not the focus of this paper, an interesting case is the
IGARCH model, i.e., σ 2

t obeys (4) with β + γ = 1. Then provided ω > 0 and E[ln
(
β + γ ε2

t

)
] < 0, the process σ 2

t is
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Table 5
Locally varying volatility model.
h γ = 1 γ = 2 γ = 5

Bias Var MSE Bias Var MSE Bias Var MSE

1 m̆ 0.0149 0.2483 0.2486 −0.0768 0.6294 0.6353 −0.0693 1.1792 1.1840
m̂ 0.0154 0.1473 0.1475 −0.0545 0.3412 0.3442 −0.0415 0.5314 0.5331
m̃ 0.0156 0.1787 0.1789 −0.0577 0.4608 0.4642 −0.0839 0.8203 0.8274

2 m̆ −0.0198 0.1211 0.1215 0.0020 0.2411 0.2411 −0.0083 0.5346 0.5346
m̂ −0.0201 0.0712 0.0716 0.0195 0.1333 0.1337 −0.0363 0.2283 0.2296
m̃ −0.0165 0.0904 0.0907 0.0156 0.1669 0.1671 −0.0173 0.3322 0.3325

3 m̆ −0.0124 0.1217 0.1219 −0.0005 0.2123 0.2123 −0.0111 0.5075 0.5076
m̂ −0.0140 0.0806 0.0808 0.0027 0.0958 0.0958 −0.0076 0.1587 0.1587
m̃ −0.0142 0.0913 0.0915 0.0014 0.1470 0.1470 −0.0051 0.3128 0.3128

4 m̆ −0.0052 0.1093 0.1093 −0.0324 0.1768 0.1778 0.0416 0.4227 0.4245
m̂ −0.0021 0.0619 0.0620 0.0069 0.0930 0.0930 −0.0183 0.1581 0.1584
m̃ −0.0021 0.0802 0.0802 −0.0012 0.1176 0.1176 0.0148 0.2700 0.2703

5 m̆ 0.0092 0.1026 0.1027 0.0314 0.1780 0.1790 −0.0098 0.4810 0.4810
m̂ −0.0162 0.0617 0.0619 0.0049 0.0923 0.0923 −0.0265 0.1781 0.1788
m̃ −0.0050 0.0782 0.0782 0.0261 0.1212 0.1219 −0.0039 0.3051 0.3051

6 m̃ROT −0.0333 0.0876 0.0887 −0.0391 0.1178 0.1194 −0.0526 0.2783 0.2811

7 m̃cv −0.0214 0.0699 0.0703 −0.0009 0.1177 0.1177 0.0085 0.2700 0.2701

strictly stationary and ergodic, Nelson (1990), Theorem 2), while Nelson (1990, Theorem 3), implies that E(σ 2
t ) = ∞, and

E(u2
t ) = ∞ (but E(|ut |

1+α) < ∞ for some α ∈ (0, 1)). In this case, the Nadaraya–Watson smoother may be consistent but
its asymptotic variance is infinite, i.e., the rate of convergence is slower than

√
Th. However, the weighted smoother can

be asymptotically normal at the usual rates, since under strong stationarity we may have for example E(σ−2
t ) < ∞.

In the case of IGARCH, under appropriate regularity assumptions, in particular, if

E[ln
(
β + γ ε2

t−1

)
] < 0, and E

[(
β + γ ε2

t

)
ln
(
β + γ ε2

t

)]
< ∞

and we assume that ω > 0, then there exists a stationary solution to the GARCH model, and the stationary solution is
regularly varying and strong mixing with geometric rate. In this case, E

(
σ 2
t

)
= ∞. the unweighted local least-squares

estimator will converge at a slower rate. However, the weighted smoother can be asymptotically normal at the usual
rates, since under strong stationarity we may have E(σ−2

t ) < ∞. In addition, a root-n consistent estimator of the IGARCH
parameter can be obtained via the QMLE (see, e.g. Lumsdaine 1996), and can be used in constructing the weighted
nonparametric estimator. Thus, efficiency gain of weighted nonparametric regression may be extended to the IGARCH
case.

We provide a preliminary Monte Carlo investigation below on the relative efficiency between the unweighted
nonparametric regression and the weighted nonparametric regression for the GARCH model when the summation of
parameters is close to unity. We consider the same GARCH model as in the previous section, i.e. the data were generated
from the model Yt = m(Xt ) + σtεt , with m(x) = x2, and

σ 2
t = ω + βσ 2

t−1 + γ u2
t−1

with ω = 1. We consider some GARCH parameter values that (β + γ ) are near unity. Again, εt are i.i.d. N(0,1), and Xt are
i.i.d. U[0,1] random variables that are independent with {εt}

T
t=1. T = 100.

Table 6 reports the biases and mean squared errors of the local polynomial estimators with p = 3 and x = 0. We
consider the same bandwidth choices 1–5, as well as the ROT and cross-validation bandwidth as in the previous section.

These Monte Carlo results indicate that, efficiency gain of the weighted nonparametric regression over unweighted
nonparametric regression can also be obtained in the near IGARCH and IGARCH cases.

7. Conclusions

We have shown that the efficiency of local linear regression estimators can be improved by weighting factors that
take account of the heteroskedasticity where that heteroskedasticity is partly driven by factors different from those that
influence the mean. In some applications this may deliver substantial efficiency gains in estimation. In this paper, we
focus our analysis on stationary models. We expect that the method can be extended to nonstationary volatility models
such as IGARCH. Monte Carlo evidence indicates efficiency gains from the weighted nonparametric regressions in this
case. However, the asymptotic analysis requires different techniques. The analysis in our paper can also be extended to
nonparametric quantile regression with heteroskedastic errors. We wish to explore these extensions in future research.



O. Linton and Z. Xiao / Journal of Econometrics 213 (2019) 608–631 623

Table 6
Near IGARCH.
h (β, γ ) : (0.05, 0.95) (0.05, 0.94) (0.5, 0.5) (0.94, 0.05) (0.95, 0.05)

Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

1 m̆ −0.0582 2.7579 −0.1313 1.9291 −0.1765 6.2080 −0.0260 7.6961 −0.2222 9.7180
m̂ 0.0006 0.4925 −0.0829 0.4897 0.0255 1.6471 0.0136 6.0870 −0.1141 6.8226
m̃ −0.0157 0.6585 −0.0985 0.6095 0.0231 2.0672 0.0099 6.5904 −0.1635 7.6730

2 m̆ 0.0233 1.7763 −0.0170 2.2681 −0.0459 4.8465 −0.2219 7.9403 −0.0503 9.5961
m̂ −0.0101 0.4720 −0.0055 0.4172 0.0568 1.4943 −0.1590 6.2429 0.0032 6.0484
m̃ −0.0031 0.5727 0.0209 0.5001 0.0586 2.0535 −0.1983 6.8638 −0.0393 6.6404

3 m̆ 0.1142 6.8679 0.0257 2.8847 −0.0363 4.8474 −0.1087 7.3660 −0.1352 10.1685
m̂ −0.0650 0.4678 0.0184 0.4853 0.0153 1.6351 0.0078 5.4626 0.0255 6.5706
m̃ −0.0347 0.6831 0.0224 0.5838 0.0075 1.9647 0.0157 5.9843 0.0359 7.1606

4 m̆ 0.0006 1.6362 −0.0370 1.7776 −0.4752 14.3330 −0.0487 6.9447 −0.2477 10.7011
m̂ −0.0188 0.4217 0.0305 0.3899 −0.1528 1.6073 −0.0066 5.0597 −0.1492 7.3720
m̃ −0.0176 0.5554 0.0072 0.5165 −0.2036 2.3974 −0.0392 5.7262 −0.1860 8.3218

5 m̆ −0.2755 8.3777 0.1285 2.4898 −0.1210 5.0230 −0.1928 6.5399 0.0006 10.1353
m̂ −0.0288 0.3953 0.0274 0.4726 0.0311 1.5307 −0.1194 5.1529 0.0344 6.9045
m̃ −0.0551 0.5066 0.0147 0.5834 −0.0181 1.8940 −0.1366 5.8575 0.0723 7.7006

6 m̃ROT −0.0541 0.5193 0.0045 0.5169 −0.0143 1.9056 −0.0388 5.7157 0.0509 6.9218

7 m̃cv −0.0421 0.4575 0.0131 0.4675 −0.0077 1.6259 0.0001 5.1482 −0.0449 6.6402

8. A sketch of proofs

We provide a sketch of proofs for our theorems in the paper. A more detailed proof can be found in the supplementary
technical appendix.

8.1. Some preliminary results

Let MT ,h(x) be a (p + 1) × (p + 1) matrix with the (j, k) element defined as:

MT ,h,j,k =
1
Th

T∑
i=1

(
x − Xi

h

)j+k

K
(
x − Xi

h

)
, j, k = 0, 1, . . . , p,

and ΨT (x) be a (p + 1) × 1 vector with the jth element:

ΨT ,h,j =
1
Th

T∑
i=1

(
x − Xi

h

)j

K
(
x − Xi

h

)
Yi, j = 0, 1, . . . , p,

then, the local polynomial estimator m̆(x) can be written as m̆(x) = β̆0(x) = e⊤

1 M
−1
T ,h1

ΨT ,h1 .
To analyze the bias and variance effects of m̆(x), we define the stochastic term UT ,h1 (x) and the bias term BT ,h1 (x) as

(p + 1) × 1 vectors with the jth elements:

UT ,h,j =
1
Th

T∑
i=1

(
x − Xi

h

)j

K
(
x − Xi

h

)
ui, j = 0, 1, . . . , p,

BT ,h,j =
1
Th

T∑
i=1

(
x − Xi

h

)j

K
(
x − Xi

h

)
∆i(x), j = 0, 1, . . . , p,

where ∆i(x) = m(Xi) −
∑

0≤k≤p
1
k!m

(k)(x)(Xi − x)k. Then,√
Th1

[
m̆(x) − m(x) − e⊤

1 M
−1
T ,h1

(x)BT ,h1 (x)
]

= e⊤

1 M
−1
T ,h1

(x)
√
Th1UT ,h1 (x).

8.2. Proof of Theorem 1

The weighted local linear regression minimizes the following criterion:

Qn (x; β) = T−1
T∑

t=1

wt
(
Yt − β

⊺
Xt
)2
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and

√
Th

⎛⎝β̂λ − β−

[
T∑

t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXt∆t (x)

⎞⎠ =

[
1
Th

T∑
t=1

wtXtX
⊺

t

]−1 [
1

√
Th

T∑
t=1

wtXtut

]
.

Notice that, under Assumption A3, and by a Taylor expansion of m(Xt ) around x, it can be verified that the leading bias
term is given by

1
Th

T∑
t=1

wtXt∆t (x) ≈ hp+1m
(p+1)(x)fX (x)E (λt |Xt = x)

(p + 1)!
B(K ).

Second, under Assumptions A4 and A5,

1
Th

T∑
t=1

wtXtX
⊺

t → fX (x)E (λt |Xt = x)M(K ),

thus

1
hp+1

[
T∑

t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXt∆t (x) →
m(p+1)(x)
(p + 1)!

M(K )−1B(K ).

Finally, we look at the effect of weighting on variance. Notice that {εt} is a m.d.s., and Eε2
t = 1, under Assumptions A2–

A4, by central limiting theorem for m.d.s. and application of the Cramer–Wold device, we have

1
√
Th

T∑
t=1

wtXtut H⇒ N
(
0, fX (x) E

[
λ2
t σ

2
t |Xt = x

]
Γ (K )

)
.

Thus,

√
Th
(

β̂λ − β−hp+1m
(p+1)(x)

(p + 1)!
M(K )−1B(K )

)
H⇒ N

(
0,

E
[
λ2
t u

2
t |Xt = x

]
[E (λt |Xt = x)]2

1
fX (x)

M(K )−1Γ (K )M(K )−1

)
.

8.3. Proof of Corollary 1

The results can be obtained from Theorem 1 by taking λt = σ−2
t and calculating the corresponding expectations.

8.4. Proof of Theorem 2

Notice that
√
Th [m̃(x) − m(x)] =

√
Th [m̂(x) − m(x)] +

√
Th [m̃(x) − m̂(x)], by result of Theorem 1, we only need to

show:
√
Th [m̃(x) − m̂(x)] = op(1).

By definition, m̃(x) is obtained by minimizing

Q̃T (x; β) = T−1
T∑

t=1

ŵt
(
Yt − β

⊺
Xt
)2

,

and

β̃ = β +

[
T∑

t=1

ŵtXtX
⊺

t

]−1 T∑
t=1

ŵtXt∆t(x) +

[
T∑

t=1

ŵtXtX
⊺

t

]−1 T∑
t=1

ŵtXtut .

In addition, notice that

β̂ = β +

[
T∑

t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXt∆t(x) +

[
T∑

t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXtut ,
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Thus,

√
Th
(̃
β − β̂

)
=

[
1
Th

T∑
t=1

ŵtXtX
⊺

t

]−1
1

√
Th

T∑
t=1

ŵtXtYt −

[
1
Th

T∑
t=1

wtXtX
⊺

t

]−1 T∑
t=1

1
√
Th

wtXtYt

=

[
1
Th

T∑
t=1

ŵtXtX
⊺

t

]−1
1

√
Th

T∑
t=1

ŵtXt∆t(x) −

[
1
Th

T∑
t=1

wtXtX
⊺

t

]−1
1

√
Th

T∑
t=1

wtXt∆t(x)

+

[
1
Th

T∑
t=1

ŵtXtX
⊺

t

]−1
1

√
Th

T∑
t=1

ŵtXtut −

[
1
Th

T∑
t=1

wtXtX
⊺

t

]−1
1

√
Th

T∑
t=1

wtXtut

We need to analyze the following terms:
T∑

t=1

ŵtXtX
⊺

t ,
T∑

t=1

ŵtXt∆t (x),
1

√
Th

T∑
t=1

ŵtXtut .

Denote

Â =
1
Th

T∑
t=1

ŵtXtX
⊺

t , and A =
1
Th

T∑
t=1

wtXtX
⊺

t ,

B̂ =
1

√
Th

T∑
t=1

ŵtXt∆t(x), and B =
1

√
Th

T∑
t=1

wtXt∆t(x),

Ĉ =
1

√
Th

T∑
t=1

ŵtXtut , and C =
1

√
Th

T∑
t=1

wtXtut ,

then, notice that

Â−1
= A−1

− A−1 (̂A − A
)
A−1

+ A−1 (̂A − A
)
A−1 (̂A − A

)
Â−1,

we have
√
Th
(̃
β − β̂

)
= Â−1̂B − A−1B + Â−1Ĉ − A−1C

=
[
A−1

− A−1 (̂A − A
)
A−1

+ A−1 (̂A − A
)
A−1 (̂A − A

)
Â−1] (B + B̂ − B

)
− A−1B

+
[
A−1

− A−1 (̂A − A
)
A−1

+ A−1 (̂A − A
)
A−1 (̂A − A

)
Â−1] (C + Ĉ − C

)
− A−1C

= A−1 (̂B − B
)
− A−1 (̂A − A

)
A−1B + A−1 (̂A − A

)
A−1 (̂A − A

)
Â−1B − A−1 (̂A − A

)
A−1 (̂B − B

)
+ A−1 (̂A − A

)
A−1 (̂A − A

)
Â−1 (̂B − B

)
+ A−1 (̂C − C

)
− A−1 (̂A − A

)
A−1C + A−1 (̂A − A

)
A−1 (̂A − A

)
Â−1C − A−1 (̂A − A

)
A−1 (̂C − C

)
+ A−1 (̂A − A

)
A−1 (̂A − A

)
Â−1 (̂C − C

)
which is op(1) by (1) Assumption A7 and the fact that A =

1
Th

∑T
t=1 wtXtX

⊺

t → fX (x)E(λt |Xt = x)M(K ) which is positive
definite.

Thus
√
Th
(̂
β − β̃

)
= op(1). Consequently,

√
Th
[
m̃(x) − m(x) − h(p+1)b(x)

]
H⇒ N

(
0,

ω11(K )
fX (x)E

[
σ−2
t |Xt = x

]) .

8.5. Proof of Theorem 3

Notice that the conditional variance follows a GARCH(1,1) process, then under Assumption A1′,

σ 2
t = ω + βσ 2

t−1 + γ u2
t−1 =

ω

1 − β
+ γ

∞∑
j=1

β j−1u2
t−j.

Let θ̂ = (ω̂, β̂, γ̂ )
⊺
be a preliminary root-T consistent estimator of θ = (ω, β, γ ), and ût = yt − m̆(Xt ), we estimate σ 2

t by

σ̂ 2
t =

ω̂

1 − β̂
+ γ̂

min{t−1,τ }∑
j=1

β̂ j−1̂u2
t−j.
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Thus, for t > τ ,

σ̂ 2
t − σ 2

t

=
ω̂

1 − β̂
−

ω

1 − β
+ (γ̂ − γ )

τ∑
j=1

β̂ j−1̂u2
t−j

+ γ

τ∑
j=1

β̂ j−1 (̂u2
t−j − u2

t−j

)
+ γ

τ∑
j=1

(̂
β j−1

− β j−1) u2
t−j − γ

∞∑
j=τ+1

β j−1u2
t−j.

We use the proof of Theorem 2 to the GARCH case. In particular, we verify that under the assumptions of Theorem 3,
Assumption A7(a), (b) and (c) (that were used in the proof of Theorem 2) still hold in the GARCH case. Let

RT1 =
1
Th

T∑
t=1

(ŵt − wt)XtX
⊺

t , RT2 =
1

√
Th

T∑
t=1

(ŵt − wt)Xtut , RT3 =
1

√
Th

T∑
t=1

(ŵt − wt)Xt∆t(x)

we show each of these terms is op(1).
For

RT1 =
1
Th

T∑
t=1

(ŵt − wt)XtX
⊺
t

= −
1
Th

T∑
t=1

K ((x − Xt) /h)
σ 4
t

(σ̂ 2
t − σ 2

t )XtX
⊺
t +

1
Th

T∑
t=1

K ((x − Xt) /h)
σ 4
t σ̂ 2

t
(σ̂ 2

t − σ 2
t )

2XtX
⊺
t ,

and under Assumption A1′ we have

−
1
Th

T∑
t=1

K ((x − Xt) /h)
σ 4
t

(σ̂ 2
t − σ 2

t )XtX
⊺
t

= −

(
ω̂

1 − β̂
−

ω

1 − β

)
1
Th

T∑
t=1

K ((x − Xt) /h)
σ 4
t

XtX
⊺
t

−
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ̂

τ∑
j=1

β̂ j−1̂u2
t−j − γ

∞∑
j=1

β j−1u2
t−j

⎞⎠XtX
⊺
t

+ op(1)

It is easy to verify that, under Assumption A7′, the first term in the above expression is Op(T−1/2) = op(1), and the
second term can be decomposed into

(γ̂ − γ )
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝ τ∑
j=1

β̂ j−1̂u2
t−j

⎞⎠XtX
⊺
t

+
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

τ∑
j=1

β̂ j−1 (̂u2
t−j − u2

t−j

)⎞⎠XtX
⊺
t

+
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

τ∑
j=1

(̂
β j−1

− β j−1) u2
t−j

⎞⎠XtX
⊺
t

−
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

∞∑
j=τ+1

β j−1u2
t−j

⎞⎠XtX
⊺
t .
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Again, under Assumptions A1′, A6′, and A7′, the first and the third term above are op(1), and the second term can be
written as

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

τ∑
j=1

β̂ j−1 (̂u2
t−j − u2

t−j

)⎞⎠XtX
⊺
t

=
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝2γ
τ∑

j=1

β̂ j−1ut−j
(̂
ut−j − ut−j

)⎞⎠XtX
⊺
t

+
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

τ∑
j=1

β̂ j−1 (̂ut−j − ut−j
)2⎞⎠XtX

⊺
t .

We first consider

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

ut−j
(̂
ut−j − ut−j

)
XtX

⊺
t

=
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

ut−je⊤

1 M
−1
T ,h1

(Xt−j)BT ,h1 (Xt−j)XtX
⊺
t

+
1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

ut−je⊤

1 M
−1
T ,h1

(Xt−j)UT ,h1 (Xt−j)XtX
⊺
t

By a direct calculation of the first and second moments, we can verify that the first (bias) term is of order hp+1
1 , which

is op(1). The second term is asymptotically equivalent to

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t fX (Xt−j)

e⊤

1 M(K )−1UT ,h1 (Xt−j)XtX
⊺
t σt−jεt−j.

For convenience, denote the (i, j)th element of M−1 by µi,j(K ), then the above term can be written as

1
Th

p+1∑
l=1

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t fX (Xt−j)

µ1,l(K )UT ,h1,l−1(Xt−j)XtX
⊺
t σt−jεt−j.

For l = 1, . . . , p + 1,

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t fX (Xt−j)

µ1,l(K )UT ,h1,l−1(Xt−j)XtX
⊺
t σt−jεt−j

=
1

T 2h1h

T∑
t=τ+1

T∑
s=1

K ((x − Xt) /h)
σ 4
t fX (Xt−j)

µ1,l(K )
(
Xt−j − Xs

h1

)l−1

K
(
Xt−j − Xs

h1

)
XtX

⊺
t σsεsσt−jεt−j,

and we consider three cases (1) t − j = s; (2) t − j > s; (3) t − j < s. In particular, when t − j = s, only when l = 1
this term is non-zero, by a calculation of moments, it can be verified that its first moment is of order O

(
T−1h−1

1

)
, and the

second moment is O
(
T−2h−2

1

)
. Thus this term is op(1) under the bandwidth assumption. For the other cases, using the

inequality of Yoshihara (1976), we can verify that the term is of order O(T−3/2h−1
1 h−1/2

+ T−3/2h1/2) = O(T−3/2h−1
1 h−1/2).

Thus we can verify that

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t fX (Xt−j)

e⊤

1 M(K )−1UT ,h1 (Xt−j)XtX
⊺
t σt−jεt−j = Op

(
T−1h−1

1 + T−1h−1/2
1 h−1/2

)
= op (1) .

Notice that τ = O(log T ), by similar methods, one can verify

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

τ∑
j=1

β̂ j−1 (̂ut−j − ut−j
)2⎞⎠XtX

⊺
t = op(1),

Thus,

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

τ∑
j=1

β̂ j−1 (̂u2
t−j − u2

t−j

)⎞⎠XtX
⊺
t = op (1) .
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Next, consider

1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

∞∑
j=τ+1

β j−1u2
t−j

⎞⎠XtX
⊺
t .

Notice that |β| < 1, direct calculations show that

E

 1
Th

T∑
t=τ+1

K ((x − Xt) /h)
σ 4
t

⎛⎝γ

∞∑
j=τ+1

β j−1u2
t−j

⎞⎠XtX
⊺
t

 = O (|β|
τ ) ,

which is o(1) since τ = c ln T → ∞.
By similar analysis we can show that

1
Th

T∑
t=1

K ((x − Xt) /h)
σ 4
t σ̂ 2

t
(σ̂ 2

t − σ 2
t )

2XtX
⊺
t = op(1).

Combining the above results, we have RT1 = op(1).
The analysis of RT2 and RT3 is parallel to the analysis of RT1.

8.6. Proof of Theorem 4

Again, notice that
√
Th
[
m̃(x) − m(x) − hp+1b(x)

]
=

√
Th
[
m̂(x) − m(x) − hp+1b(x)

]
+

√
Th [m̃(x) − m̂(x)] ,

we show that, under our assumptions,

√
Th
[
m̂(x) − m(x) − hp+1b(x)

]
H⇒ N

(
0,

1

fX (x)
∫ 1
0 σ (r)−2dr

ω2

)
. (20)

and
√
Th [m̃(x) − m̂(x)] = op(1). (21)

For result (20) for β̂ , notice that

√
Th

⎛⎝β̂ − β−

[
T∑

t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXt∆t (x)

⎞⎠
=

[
1
Th

T∑
t=1

wtXtX
⊺

t

]−1 [
1

√
Th

T∑
t=1

wtXtut

]
.

It can be verified that

1
Th

T∑
t=1

wtXtX
⊺

t →

∫ 1

0
σ (r)−2drfX (x)M(K ),

and, by Taylor expansion,

1
Th

T∑
t=1

wtXt∆t (x) ≈ hp+1m
(p+1)(x)fX (x)

∫ 1
0 σ (r)−2dr

(p + 1)!
B(K ),

thus,

1
hp+1

[
T∑

t=1

wtXtX
⊺

t

]−1 T∑
t=1

wtXt∆t (x) →
m(p+1)(x)
(p + 1)!

M(K )−1B(K ),

For the stochastic component, notice that:

1
√
Th

T∑
t=1

wtXtut =
1

√
Th

T∑
t=1

XtK
(
x − Xt

h

)
σ−1
t εt ,
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First,

1
Th

T∑
i=1

[
K ((x − Xi) /h)

σ 2
i

]2 (x − Xi

h

)j+l

u2
i → fX (x)

[∫ 1

0
σ (r)−2dr

] ∫
K (u)2 uj+ldu.

in addition, for every fixed (p + 1)-vector λ

1
Th

T∑
i=1

λ⊺XtX
⊺
t λ

[
K ((x − Xi) /h)

σ 2
i

]2
u2
i → fX (x)

∫ 1

0
σ (r)−2drλ⊺Γ (K )λ

notice that
{
λ⊺XtK

( x−Xt
h

)
σtεt ,Ft

}
is a martingale difference sequence,

1
√
Th

T∑
t=1

λ⊺Xt
K ((x − Xi) /h)

σ 2
i

ut H⇒ N
(
0, fX (x)

∫ 1

0
σ (r)−2drλ⊺Γ (K )λ

)
.

Thus, by the Cramér–Wold device, we have

1
√
Th

T∑
t=1

wtXtut → N
(
0, fX (x)

∫ 1

0
σ (r)−2drΓ (K )

)
.

Thus, together with the analysis with the bias effect, we obtain

√
Th
(

β̂ − β−hp+1m
(p+1)(x)

(p + 1)!
M(K )−1B(K )

)
H⇒ N

(
0,

1

fX (x) ·
∫ 1
0 σ (r)−2dr

M(K )−1Γ (K )M(K )−1

)
,

and

√
Th
[
m̂(x) − m(x) − hp+1b(x)

]
H⇒ N

(
0,

1

fX (x)
∫ 1
0 σ (r)−2dr

ω2

)
.

Next we prove (21). Notice that

ŵt =
K ((x − Xt) /h)

σ̂ 2
t

,

following a similar argument as the previous theorems, we only need to show the following results hold for the locally
varying volatility model:

RT1 =
1

√
Th

T∑
t=1

(ŵt − wt)XtYt = op(1),

RT2 =

(
1

√
Th

T∑
t=1

(ŵt − wt)XtX
⊺

t

)
= op(1).

Notice that RT1 = RT11 + RT12, where

RT11 =
1

√
Th

T∑
t=1

(ŵt − wt)Xtm(Xt ), RT12 =
1

√
Th

T∑
t=1

(ŵt − wt)Xtut .

We first consider RT12. Let

Wts =
G (((s − t) /T ) /hσ )∑T
i=1 G (((i − t) /T ) /hσ )

then RT12 = RT12A + RT12B + RT12C , where

RT12A =
1

√
Th

T∑
t=1

K ((Xt − x0) /h)
[

1
σ̂ 2
t

−
1
σ̃ 2
t

]
Xtut ,

RT12B =
1

√
Th

T∑
t=1

K ((Xt − x0) /h)
[

1
σ̃ 2
t

−
1
σ 2

t

]
Xtut ,

RT12C =
1

√
Th

T∑
t=1

K ((Xt − x0) /h)
[

1
σ 2

t
−

1
σ 2
t

]
Xtut .
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and

σ̂ 2
t =

T∑
s=1

Wtŝu2
s , σ̃

2
t =

T∑
s=1

Wtsu2
s , σ

2
t =

T∑
s=1

Wtsσ
2
s .

We can show each of these terms is op(1). For RT12A, notice that, under Assumption A1′′, we have

0 < cL ≤ min
t

σ 2
t ≤ min

t
σ̃ 2
t + max

t

⏐⏐σ̃ 2
t − σ 2

t

⏐⏐ = min
t

σ̃ 2
t + op(1)

and

0 < cL ≤ min
t

σ̃ 2
t ≤ min

t
σ̂ 2
t + max

t

⏐⏐σ̃ 2
t − σ̂ 2

t

⏐⏐ = min
t

σ̂ 2
t + op(1)

In addition,
∑T

t=1

(
σ̃ 2
t − σ̂ 2

t

)2 is bounded by

C1

T∑
t=1

(
T∑

s=1

Wts (̂us − us) us

)2

+ C2

T∑
t=1

(
T∑

s=1

Wts (̂us − us)
2

)2

,

where C1 and C2 are constants. It can be verified that

T∑
s=1

W 2
tsu

2
s ≤ max |Wts|

T∑
s=1

Wtsu2
s = O

(
1

Thσ

)
.

Denote C to be a generic constant term, then

T∑
t=1

(
T∑

s=1

Wts (̂us − us) us

)2

≤ C
T∑

t=1

((
max

t
|̂us − us|

)2
·

T∑
s=1

W 2
tsu

2
s

)
= Op

(
h2q
1 h−1

σ + T−1h−1
1 h−1

σ log(T )
)

= op (1) .

The other term can be analyzed similarly. Thus,
∑T

t=1

(
σ̃ 2
t − σ̂ 2

t

)2
= op (1).

For any j = 0, 1, . . . , p,⏐⏐⏐⏐⏐ 1
√
Th

T∑
t=1

[
σ̃ 2
t − σ̂ 2

t

σ̂ 2
t σ̃ 2

t

]
K ((Xt − x0) /h)

(
Xt − x

h

)j

ut

⏐⏐⏐⏐⏐
≤

[
1(

mint σ̂
2
t
) (

mint σ̃
2
t
)][ T∑

t=1

(
σ̃ 2
t − σ̂ 2

t

)2]1/2 [
1
Th

T∑
t=1

K ((Xt − x0) /h)2
(
Xt − x

h

)2j

u2
t

]1/2

→ 0

thus, RT12A → 0.
The second term RT12B,

RT12B =
1

√
Th

T∑
t=1

K ((Xt − x0) /h)
[
σ 2

t − σ̃ 2
t

]
σ−4

t Xtut

+
1

√
Th

T∑
t=1

K ((Xt − x0) /h)
[
σ 2

t − σ̃ 2
t

]2
σ̃−2
t σ−4

t Xtut

It can be verified that both of these two terms are op(1).
For RT12C ,

RT12C = −
1

√
Th

T∑
t=1

K ((Xt − x0) /h)
[

σ 2
t − σ 2

t

σ 2
t σ

2
t

]
Xtut ,
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notice that σ 2
t and σ 2

t are deterministic functions of t , for j = 0, . . . , p, K ((Xt − x0) /h)
[

σ2
t −σ2

t
σ2
t σ2

t

] ( Xt−x
h

)j
ut are martingales,

and

E

⏐⏐⏐⏐⏐ C
√
Th

T∑
t=1

K ((Xt − x0) /h)
[
σ 2

t − σ 2
t

] (Xt − x
h

)j

ut

⏐⏐⏐⏐⏐
2

= O
(
h2

σ

)
→ 0,

thus RT12C → 0. Consequently, RT12 = RT12A + RT12B + RT12C → 0.
The proofs for RT11 and RT2 are similar.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.01.016.
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