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Outline

1 Why care about volatility?
2 Measurement/estimation of volatility

1 Implied Volatility
2 Realized Volatility
3 Ex Ante Volatility Garch Model and variants

3 Some empirical studies

Reading: Linton (2019), Chapter 11
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Risk/Volatility measurement is central to finance
I Asset pricing. Conditional CAPM

Et−1ri ,t − rf = βi ,tλt

βi ,t =
covt−1(ri ,t , rm,t )

vart−1(rm,t )

I Risk Management/Value at Risk

VaRt (α) = µ+

volatility forecast︷︸︸︷
σt ×

quantile of innovation︷︸︸︷
qα

I Portfolio Allocation

max
w∈Sd

w
ᵀ
Et−1(rt ) s.t. w

ᵀ
vart−1(rt )w = σ2

I Measuring market quality - highly volatile markets discourage
participation
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Implied Volatility from Option Prices

Bachelier (1900), Samuelson (1967). Suppose that stock prices P
follows a geometric Brownian motion

d logP(t) = µdt + σdB(t),

where B is Brownian motion, i.e., for all t, s

B(t + s)− B(t)

is normally distributed with mean zero and variance s with
independent increments. This is a continuous time model. Prices are
lognormally distributed.

Volatility is measured by the parameter σ or σ2
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Suppose you have a European (exercisable only at maturity) call
option on the stock with strike price X and time to maturity τ. Black
and Scholes (1973) showed that the option price C satisfies

C = PΦ(d1)− Xe−rτΦ(d2),

where r is the risk free rate, and:

d1 =
log(P/X ) + (r + σ2/2)τ

σ
√

τ
; d2 =

log(P/X ) + (r − σ2/2)τ
σ
√

τ
,

where Φ is the standard normal c.d.f. Value of option increases in
volatility.

Given observations on C , P, X , r , and τ, we can invert the relation
to obtain σ2. Called implied volatility. Can do this at every time
period where we have these observations thereby generating a time
series of σ2. In practice, some adjustments are made.
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VIX is the ticker symbol for the Chicago Board Options Exchange
Market Volatility Index, a popular measure of the implied volatility of
S&P 500 index options. Often referred to as the fear index or the
fear gauge, it represents one measure of the market’s expectation of
stock market volatility over the next 30 day period.

The VIX is quoted in percentage points and translates, roughly, to the
expected movement in the S&P 500 index over the next 30-day
period, which is then annualized. The VIX is calculated and
disseminated in real-time by the Chicago Board Options Exchange.

It is a weighted blend of prices for a range of options on the S&P 500
index. The formula uses a kernel-smoothed estimator that takes as
inputs the current market prices for all out-of-the-money calls and
puts for the front month and second month expirations.
http://www.cboe.com/micro/vix/vixwhite.pdf
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Very persistent
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Skewed distribution (measures on a log-log scale)
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This is a forward looking measure of volatility.

The interpretation of VIX as a volatility measure can be made precise
in that VIX 2t is the conditional variance of returns under the risk
neutral probability measure. Martin (2017) proposes an alternative
volatility measure called the SVIX, which is the conditional variance
of returns under the objective probability measure.
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Intra period volatility
Lets suppose that we are interested in monthly returns rt , but we also
have higher frequency data rtj , j = 1, ..., n, where n is the total
number of observations inside each period, assumed constant for
simplicity. We construct the volatility of stock at time t + 1, σ̂2t+1, as

σ̂2t+1 =
1
n

n
∑
j=1
r2tj −

(
1
n

n
∑
j=1
rtj

)2
.

This can be considered an ex-post measure of volatility, meaning it is
a measure of the volatility that happened in the period t, t + 1, and
not what was anticipated to happen at time t, i.e., it is not the
conditional variance of returns given past information.

In some cases people use σ̂2t+1 =
n
∑
j=1
r2tj/n , because mean daily

returns are small and so their square is even smaller and can be
ignored. In other cases they use an adjustment that allows for serial
correlation.
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The issue with this approach is that it relies on higher frequency data
and it is not clear how to interpret σ̂2t+1 in terms of plausible discrete
time models of r .
With ‘continuous record asymptotics’(or "infill asymptotics") it has
an interpretation, Foster and Nelson (1994). Suppose observe prices
(transaction prices or even midpoint quoted prices) within a day
(9am-4pm on NYSE)

Frequency n (returns)

Hourly 7
10 mins 42
5 mins 84
1 min 420
10 secs 2520
1 sec 25200
1 millisecond 25200000

Nowadays this is called realized volatility (so long as we multiply by n)
and there is a comprehensive theory about it, Barndorff Nielsen and
Shephard (2001).
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Definition
Suppose that we observe transactions at times tj , j = 0, 1, . . . , n and
rtj = logP(tj )− logP(tj−1). Define the realized volatility (RV)

σ̂2t+1 =
n
∑
j=1
r2tj .

Suppose that stock prices P follows a geometric Brownian motion

d logP(t) = µdt + σdB(t),

where B is standard Brownian motion. Suppose that tj = j/n

rtj ∼ N(µ/n, σ2/n) =
µ

n
+

σ√
n
zj

where zj are standard normal.
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We have

σ̂2t+1 =
n
∑
j=1
r2tj =

n
∑
j=1

(
µ

n
+

σ√
n
zj

)2
= σ2

1
n

n
∑
j=1
z2j +

µ2

n
+
1
n
2µ√
n

n
∑
j=1
zj ,

Theorem
Therefore, it follows that as n→ ∞,

σ̂2t+1 → σ2 wp1

√
n
(

σ̂2t+1 − σ2
)
=⇒ N(0, 2σ4)
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This result continues to hold under much more general conditions,
specifically for Diffusion process

dXt = µ(Xt )dt + σ(Xt )dWt

where (X = logP) the parameter of interest is the "quadratic
variation" of X , specifically

QVt ,t+1 =
∫ t+1

t
σ2(Xs )ds,

which is a stochastic quantity. Realized volatility consistently
estimates this quantity (drift not important). Asymptotic mixed
normality.
Also true for Stochastic volatility models such as

dXt = µtdt + σtdWt

dσt = mtdt + vtdWt

such as Heston model.
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Volatility Measures using only open, close, high and low

Yahoo, Bloomberg etc all report the daily opening price, closing price,
the intraday high price, and the intraday low price: PO ,PC ,PH ,PL.

Most authors work with the daily closing price and returns as we have
described them have been computed this way.

Definition
A simple measure of volatility is

V HLt =
PHt − PLt
PLt

.

Actually, can replace the denominator by PCt for example without
much change in the result. This also has an interpretation inside
continuous time models.
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Definition
The Parkinson (1980) estimator

V Pt =
(logPHt − logPLt )2

4 log 2

This consistently estimates the parameter σ2 of the Brownian motion
proces. But it is an ineffi cient estimator of σ2 under the model
assumption.
The Garman and Klass (1980), Rogers and Satchell (1991) estimators
provide some improvement in effi ciency and correct for a drift:

V GKt = 0.5
(
lnPHt − lnPLt

)2
− (2 ln 2− 1)

(
lnPCt − lnPOt

)2
V RSt = (lnPHt − lnPCt )(lnPHt − lnPOt )+ (lnPLt − lnPCt )(lnPLt − lnPOt )
Chou et al. (2009) for a discussion of range based volatility
estimators.
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Skewed, long right tail
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FTSE100 Top 20 Most Volatile days since 1984 (- means PC < PO , +
means PC > PO )

Date Volatility

19871020 0.131-
19871022 0.115-
20081010 0.112-
19971028 0.096-
20081024 0.096-
20081006 0.094-
20081008 0.094-
20080919 0.093+
20081124 0.090+
20081015 0.084-
19871019 0.081-
20020920 0.080+

20081013 0.076+
20010921 0.076-
20081029 0.075+
20110809 0.074+
20090114 0.074-
20080122 0.074+
20020715 0.071-
20081016 0.070-
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S&P500 Top 20 Most Volatile days since 1960

Date Volatility

19871019 0.257-
19871020 0.123+
20081010 0.107-
20081009 0.106-
20081113 0.104+
20081028 0.101+
20081015 0.100-
20081120 0.097-
20081013 0.094+
20080929 0.093-
19871026 0.092-
20100506 0.090-

20081201 0.089+
19620529 0.089+
19871021 0.087+
20081016 0.087+
20081006 0.085-
20081022 0.085-
20020724 0.081+
19980831 0.080-
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Both markets dominated by 2008 and 1987

US market a little more volatile than UK
I perhaps explained by more innovation? perhaps not?

Circuit breakers now limit the worst case, or perhaps spread it out
over several days
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Time Series GARCH Models

Empirically, squared high-frequency returns have strong positive
autocorrelation

Interested in ex ante measures of volatility

Investors wish to trade-off risk versus return based on current
knowledge.
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Definition
Engle (1982), Bollerslev (1986) Generalized AutoRegressive Conditional
Heteroskedasticity GARCH(1,1) model

rt = σt εt

σ2t = ω+ βσ2t−1 + γr2t−1,

where εt is i.i.d normal with mean zero and variance one.

Provided ω > 0 and β,γ ≥ 0, then σ2t > 0 with probability one and

σ2t = var(rt |Ft−1 ),
where Ft−1 is past information. Proper variance
Provided

β+ γ < 1

the process rt is weakly stationary and has finite unconditional
variance

σ2 = E (σ2t ) =
ω

1− β− γ
.
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Can write

σ2t = ω+ βσ2t−1 + γr2t−1
= ω+ βω+ γr2t−1 + βγr2t−2 + β2σ2t−2

=
ω

1− β
+ γ

∞

∑
j=1

βj−1r2t−j .

σ2t depends on all past squared returns. The weighting βj−1 of each
lagged squared return declines geometrically fast
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Dependence of the process

We can write the process as an ARMA(1,1) in r2t . Specifically, note
that

r2t = σ2t + σ2t (ε
2
t − 1)

= ω+ βσ2t−1 + γr2t−1 + σ2t (ε
2
t − 1)

= ω+ (β+ γ)r2t−1 + ηt + βηt−1,

where ηt = r
2
t − σ2t = σ2t (ε

2
t − 1) is a mean zero innovation

uncorrelated with its past, albeit heteroskedastic, i.e., an MDS . This
guarantees some dependence in r2t .

We have positive dependence, i.e.,

cov(r2t , r
2
t−j ) > 0

for all j . This can be observed in the data. Also cov(σ2t , σ2t−j ) > 0
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Persistence of shocks to volatility is measured by β+ γ

In practice, estimated parameters lie close to the boundary of this
region i.e., β+ γ ∼ 1.
The IGARCH model has

β+ γ = 1.

In this case, the process rt is strongly stationary but is not covariance
stationary [the unconditional variance is infinite].
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We can see that the correlogram of r2t supports this hypothesis for many
financial time series
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Theorem
The marginal distribution of rt will be heavy tailed even if εt is standard
normal. Suppose that εt is standard normal, then

E
(
ε4t
)

(E (ε2t ))2
= 3.

Furthermore, lets suppose that the kurtosis and all fourth order moments
are well defined and time invariant (the process rt is stationary). Then we
have (provided β+ γ < 1)

Er4t
(Er2t )2

=
3(1− (β+ γ)2)

1− 2γ2 − (β+ γ)2
> 3

Example S&P500 daily stock index return series from 1955-2002; Eviews.
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Parametric Estimation from EVIEWS
Daily Weekly Monthly

ρ1 0.134457
(0.009531)

0.002871
(0.021709)

0.020311
(0.049513)

ρ2 −0.027715
(0.009327)

0.032247
(0.022462)

−0.058747
(0.045839)

ω 6.46E − 07
(7.28E−08)

1.14E − 05
(2.50E−06)

0.000103
(4.63E−05)

β 0.913948
(0.002366)

0.845708
(0.014920)

0.870139
(0.040540)

γ 0.082395
(0.001757)

0.131007
(0.012950)

0.074298
(0.027528)

Note: Standard errors in parentheses. These estimates are for the raw data series
and refer to the AR(2)-GARCH(1,1) model

rt = c + ρ1rt−1 + ρ2rt−2 +
ut︷︸︸︷

εtσt
σ2t = ω+ βσ2t−1 + γu2t−1
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Leverage Effect and Asymmetric GARCH

Garch linear-quadratic formulation is theoretically arbitrary, and it misses
some empirical patterns:

Larger responses to negative shocks

Less than quadratic responses to very large shocks

We consider only the first one. We expect that when rt−1 < 0 the effect
on subsequent volatility is great than when rt−1 > 0 holding constant the
magnitude, i.e., the sign of returns matter

Definition
Leverage hypothesis is that negative returns lower equity price thereby
increasing corporate leverage, thereby increasing equity return volatility
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We have r = |r | × sign(r). Therefore, we could measure leverage by
cov(σ2t , sign(rt−j )); equivalently cov(σ2t , rt−j )
In a pure GARCH model with mean zero returns

cov(σ2t , rt−j ) = γ
∞

∑
k=1

βk−1cov(r2t−k , rt−j )

= γ
∞

∑
k=1

βk−1E (σ2t−kσt−j )E (ε2t−k εt−j ) = 0.

This is zero because
E (ε2t−k εt−j ) = 0

for all k, j . If k 6= j this is true by independence of εs over s, when
j = k this is true if εt is symmetrically distributed about zero, e.g.,
normal distribution).

Therefore, the classic GARCH models rule out leverage effect.
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Evidence for leverage effect S&P500 Daily return cross autocovariance
cov(r2t , rt−j ), j = −10, . . . , 10.
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We write

x2 =

good news︷ ︸︸ ︷
x21(x > 0) +

bad news︷ ︸︸ ︷
x21(x ≤ 0)

Glosten, Jeganathan and Runkle (1994)

σ2t = ω+ βσ2t−1 + γr2t−1 + δr2t−11(rt−1 < 0)

= ω+ βσ2t−1 + ψ+r
2
t−11(rt−1 ≥ 0) + ψ−r

2
t−11(rt−1 < 0),

where γ = ψ+ + ψ− and δ = ψ−. Equivalent parameterizations.
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Parametric Estimation from EVIEWS
Daily Weekly Monthly

ρ1 0.138788
(0.009524)

0.007065
(0.022000)

0.014661
(0.045131)

ρ2 −0.01906
(0.009449)

0.051815
(0.022044)

−0.018694
(0.045083)

ω(×1000) 0.0000721
(0.0000064)

0.00130
(0.000242)

0.862000
(0.249000)

β 0.920489
(0.002243)

0.850348
(0.015580)

0.442481
(0.176365)

γ 0.034018
(0.002613)

0.047885
(0.013504)

−0.076662
(0.042047)

δ 0.078782
(0.003302)

0.140013
(0.020349)

0.266916
(0.094669)

Note: Standard errors in parentheses. These estimates are for the raw S&P500
data series and refer to the AR(2)-AGARCH(1,1) model

rt = c + ρ1rt−1 + ρ2rt−2 +
ut︷︸︸︷

εtσt
σ2t = ω+ βσ2t−1 + γu2t−1 + δu2t−11(ut−1 < 0)
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Computing GARCH Estimates

The log-likelihood for a general-variant Garch model given normal εt
has a simple form

`T (ω, β,γ) = c −
1
2

T

∑
t=1

r2t
σ2t (ω, β,γ)

− 1
2

T

∑
t=1
log σ2t (ω, β,γ)

Use numerical techniques to minimize minus the summed log
likelihood of the sample

The oft-observed near-flatness of the Garch likelihood surface means
that T must be large for reliable estimates
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Multivariate volatility models

Multivariate models treat the whole covariance matrix as
time-varying. Define

Σt = E (rt r
>
t |Ft−1) = (covt−1(rit , rjt ))i ,j ,

for some n× 1 vector of mean zero series rt . Bollerslev et al. (1988)

ht = vech(Σt ) = A+ Bht−1 + Cvech(rt−1r
>
t−1),

where A is an n(n+ 1)/2× 1 vector, while B,C are
n(n+ 1)/2× n(n+ 1)/2 matrices.
The cross-section is naturally large with asset returns data. Naive
Garch extension has n

2(n+1)2

2 + n(n+1)
2 so with modest n = 1000 this

requires estimating five hundred billion (5 ∗ 1011) parameters!
Relatively flat Garch log likelihood function requires T

#parameters to be
large for reliable estimation
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Parsimony in Multivariate GARCH Models
Factor GARCH model where the factors ft are observed (centred and
orthogonal) portfolios or macrovariables

rit = b
ᵀ
i ft + εit

fkt = σk ,tekt , k = 1, . . . ,K

σ2k ,t = ωk + βkσ2k ,t−1 + γk f
2
k ,t−1,

where ekt are iid with mean zero and variance one and mutually
independent.
Then

cov(rit , rjt |Ft−1) = σij ,t = b
ᵀ
i diag{σ21,t , . . . , σ2K ,t}bj + sij

Strict factor model has sij = cov(εit , εjt ) = 0 if i 6= j
If the factors are observed, then estimate bi by time series regression.
Estimate GARCH(1,1) parameters using the factor time series one by
one
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CCC Model
Definition
For i , j = 1, . . . , n

rit = σi ,t εit

σ2i ,t = ωii + βiσ
2
i ,t−1 + γi r

2
i ,t−1

εit iid with E εit = 0, E ε2it = 1, E εit εjt = ρij ,

σij ,t = ρij (σ
2
i ,tσ

2
j ,t )

1/2

Estimate univariate Garch models using maximum likelihood, then
calculate the sample correlation matrix of the standardised outcomes
DCC model of Engle and Sheppard (2002), see corrected version
cDCC papers.ssrn.com/sol3/papers.cfm?abstract_id=1507743
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GARCH in Mean

In intertemporal general equilibrium, the risk premium associated with
equities might increase when volatility increases

The Garch-M model assumes that the risk premium is linear in known
function of volatility

µt = E (rt |Ft−1) = α0 + α1g(σ2t ), g(x) = x ,
√
x , ln x

σ2t = var(rt |Ft−1) = σ2t = ω+ βσ2t−1 + γ(rt−1 − µt−1)
2
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Parametric Estimation from EVIEWS
Daily Weekly Monthly

α 0.081504
(0.029699)

0.121757
(0.076905)

0.415873
(0.327167)

ω 6.49E − 07
(7.48E−08)

1.13E − 05
(2.53E−06)

0.000125
(0.072803)

β 0.916160
(0.002356)

0.846601
(0.014707)

0.858988
(0.044015)

γ 0.079801
(0.001737)

0.130387
(0.012697)

0.072803
(0.027614)

Note: Standard errors in parentheses. These estimates are for the raw S&P500
data series and refer to the GARCH(1,1) in mean model

rt = c + ασt + εtσt
σ2t = ω+ βσ2t−1 + γu2t−1
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Nonstationarity

Recently, a criticism of GARCH processes has come to the fore,
namely their usual assumption of stationarity.

By taking β+ γ ≥ 1 one can have nonstationary processes, but at
the cost of non-existence of unconditional variance.

Instead, maybe the coeffi cients change over time, thus

σ2t = ωt + βtσ
2
t−1 + γt r

2
t−1

with βt + γt < 1
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50-60 60-70 70-80 80-90 90-00 00-09

c 0.0213 0.0019 -0.0106 0.0111 0.0043 -0.0234
ρ1 0.1584 0.2229 0.2429 0.0635 0.0603 -0.0814
ρ2 -0.0977 -0.0288 -0.0563 -0.0033 0.0120 -0.0445
ω 0.0425 0.0166 0.0039 0.0605 0.0132 0.0121
β 0.8330 0.8086 0.9543 0.8620 0.9230 0.9416
γ 0.0584 0.0574 0.0073 0.0362 0.0016 -0.0179
δ 0.0692 0.2031 0.0691 0.0980 0.1264 0.1278
R2 0.0165 0.0320 0.0515 0.0025 0.0000 0.0171
mper 0.0607 0.1941 0.1866 0.0602 0.0723 -0.1259
vper 0.9260 0.9676 0.9962 0.9472 0.9878 0.9876
µyear 0.1199 0.0714 0.0346 0.0939 0.0768 0.0161
σyear 0.1144 0.1080 0.1520 0.1616 0.1571 0.1492

rt = c + ρ1rt−1 + ρ2rt−2 + εtσt
σ2t = ω+ βσ2t−1 + γu2t−1 + δu2t−11(ut−1 < 0)
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Volatility and EMH

We have seen substantial evidence that volatility of asset returns
varies over time in a way that can be partially predicted. Does this
violate market effi ciency?

The answer is no unless a trading strategy could be designed that
would use this information in the options markets to identify under-
and over-valued options. If options markets are effi cient, option prices
should incorporate the best volatility forecasts at all points in time
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Schwert (1989,2010)

He examines monthly US volatility computed as sum of squared daily
returns for 1885-1987 and a regression model approach like GARCH
for 1857-1985.

Main findings
I The average level of volatility is higher during (NBER dated) recessions
I The level of volatility during the great Depression was very high
I The effect of financial leverage on volatility is small
I There is weak evidence that macroeconomic volatility can help to
predict financial asset volatility and stronger evidence for the reverse
prediction

I The number of trading days in the month is positively related to stock
volatility (Trading days per year NYSE 252, LSE 255 (but 24 Dec is
half day))

I Share trading volume growth is positively related to stock volatility
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French and Roll (1986) Volatility over weekend and
holidays

Calendar time hypothesis: Variance is proportional to calendar time
Trading time hypothesis: Variance is proportional only to the trading
time

Typical trading day may be 8 hours long out of 24 hours (say 8-4).
Weekend, Friday close to Monday open contains 64 hours.
Suppose that hourly stock returns satisfy

rt ∼ µh, σ
2
h

Then daily returns (open to close) satisfy

rt ∼ 8µh, 8σ2h

Monday open from friday close returns satisfy

rt ∼
{
64µh, 64σ2h Calendar time

0 Trading Time
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They calculate variance as the average of squared returns over stocks
and over the relevant period

varperhourmonday =
1

nmonday
∑

mondays

(pmclose − pmopen)2

8

varperhourweekend =
1

nweekend
∑

weekends

(pmopen − pfclose )2

64

They find that per hour return variance is 70 times larger during a
trading hour than during a weekend hour
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Is this because:

1 Volatility is caused by public information which is more likely to arrive
during normal business hours

2 Volatility is caused by private information which affects prices when
informed investors trade

3 Volatility is caused by pricing errors that occur during trading

They find:

There are some pricing errors (evidenced from autocorrelation) due to
microstructure and misspricing issues but most is caused by
information release

To distinguish between public and private information (explanations 1
and 2) they use the fact that in 1968, NYSE was closed every
wednesday because of "paperwork crisis", but otherwise was a regular
business day. Explanation 2 is their main story.
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Is volatility trending upwards?

Shows rolling window annual median of daily RS volatility estimator for
S&P500 with trend line
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Valid cases: 14261 Dependent variable: Y
Missing cases: 0 Deletion method: None
Total SS: 102.907 Degrees of freedom: 14259
R-squared: 0.283 Rbar-squared: 0.283
Residual SS: 73.767 Std error of est: 0.072
F(1,14259): 5632.752 Probability of F: 0.000
Standard Prob Standardized Cor with
Variable Estimate Error t-value >|t| Estimate Dep Var
– – – – – – – – – – – – – – – – – – – – – – – – – – -
CONSTANT 0.280094 0.001205 232.509159 0.000 – –
X1 -0.000011 0.000000 -75.051662 0.000 -0.532137 -0.532137
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Conclusions

Different ways of measuring volatility, ex post and ex ante

Applications
I Risk management. Value at risk
I Asset pricing
I Permanent/transitory volatility
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Annualized std, and idiosyncratic std

σ σε

Alcoa Inc. 0.2151 0.1676
AmEx 0.1851 0.1160
Boeing 0.2350 0.1717
Bank of America 0.1540 0.1191
Caterpillar 0.1595 0.1168
Cisco Systems 0.1103 0.0923
Chevron 0.2151 0.1695
du Pont 0.1504 0.1251
Walt Disney 0.1408 0.0980
General Electric 0.2267 0.2007
Home Depot 0.2200 0.1862
HP 0.1937 0.1614
IBM 0.2014 0.1686
Intel 0.1318 0.0978
Johnson2 0.2268 0.1880

σ σε

JP Morgan 0.0991 0.0806
Coke 0.2234 0.1591
McD 0.1491 0.1367
MMM 0.1458 0.1217
Merck 0.1972 0.1811
MSFT 0.2092 0.1818
Pfizer 0.2057 0.1901
P & Gamble 0.1045 0.0872
AT&T 0.1327 0.1058
Travelers 0.1703 0.1402
United Health 0.2132 0.1968
United Tech 0.1852 0.1578
Verizon 0.1280 0.1034
Wall Mart 0.1268 0.1022
Exxon Mobil 0.1470 0.1218
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Cross-sectional volatility σ̂t =
√
252 ∗∑n

i=1(rit − r t )2/(n− 1) Relatively
low around 2000 but very high 2008

Oliver Linton obl20@cam.ac.uk () F500: Empirical Finance Lecture 8: Volatility Measurement and ModellingJune 25, 2019 57 / 58



Rolling Monthly version
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