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The Population Linear Factor model
Assume that asset returns are generated by the linear factor model (LFM).
For asset i ∈ {1, ...,N},

Ri = αi +
K

∑
k=1

bik fk + εi

such that

f1, . . . , fK are random "common factors"

bik are factor loadings (sensitivity of the return on asset i to factor k)

εi are random shocks containing idiosyncratic risk (as opposed to
systematic risk of the economy-wide factors), and at least

E εi = 0 ; var(εi ) = σ2εi < ∞.

cov(fk , εi ) = 0.
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A (unit cost) portfolio is w1, . . . ,wN such that

N

∑
i=1
wi = 1 or w

ᵀ
i = 1

An (zero cost) arbitrage portfolio is w1, . . . ,wN such that

N

∑
i=1
wi = 0 or w

ᵀ
i = 0

A portfolio that is hedged against factor risk (e.g., market neutral) is such
that

N

∑
i=1
wibik = 0 for all k or w

ᵀ
B = 0

A well-diversified portfolio is such that

N

∑
i=1
w2i ≈ 0 (as N → ∞) w

ᵀ
w ' 0
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Arbitrage Pricing Theory

Ross (1976), Chamberlain and Rothschild (1983, Econometrica). Large N
economy.
Consider the well diversified, arbitrage portfolio p, that is hedged against
factor risk

Rp =
N

∑
i=1
wiRi

=
N

∑
i=1
wiαi +

K

∑
k=1

N

∑
i=1
wibik · fk +

N

∑
i=1
wi εi

≈
N

∑
i=1
wiαi

≈ 0

otherwise you make money for nothing.
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Let B = (bik ) be the N ×K matrix of factor loadings. An arbitrage
portfolio that is hedged against all factor risk satisfies

w
ᵀ
i = 0 and w

ᵀ
B = 0,

i.e., w is in the null space of (i ,B) (N × (K + 1) matrix). Many such
portfolios exist by standard linear algebra

Since the vector α is orthogonal to w it must lie in the space spanned
by (i ,B), (using (A⊥)⊥ = A).

Therefore for some constants ρ, θ1, . . . , θk we have

αi = ρ+
K

∑
k=1

bik θk , α = ρi + Bθ
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It follows that for any asset i

µi = E (Ri ) = αi +
K

∑
k=1

bikE (fk ) = ρ+
K

∑
k=1

bik (E (fk ) + θk )

i.e., µ = (µ1, . . . , µN )
ᵀ ∈ span(i ,B) - there exists constants

λ0,λ1, . . . ,λK such that

µi = λ0 +
K

∑
k=1

bikλk ,

where λk = E (fk ) + θk are risk premia associated with the k th factor.

In matrix notation
µ = λ0i + Bλ
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If the assets are traded factors and there is a risk free rate, then
λ0 = Rf and λk = E (fk )− Rf

µi − Rf =
K

∑
k=1

bik (E (fk )− Rf )

The CAPM corresponds to the case where K = 1 and f1 is the return
on the market portfolio.

The APT theory doesn’t say what the factors are.
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When does diversification work?
First, averaging reduces variance provided correlation is not perfect.
Consider a portfolio with return

Rw = wX + (1− w)Y , w ∈ R

V (w) = var(Rw ) = w2σ2X + (1− w)2σ2Y + 2w(1− w)ρXY σX σY .

Clearly (setting w = 0 or w = 1)

min
w
V (w) ≤ min{σ2X , σ2Y } ≤ max{σ2X , σ2Y } ≤ maxw V (w)

with strict inequality if and only if ρXY 6= +1.
Suppose that σ2X = σ2Y = 1, then (solving dV (w)/dw = 0) we have

wopt =
1
2

; V (wopt ) =
1
2
(1+ ρXY ) ≤ 1
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Suppose that factor model holds with

E (εε
ᵀ
) = Ωε ; Σf = E (ff

ᵀ
).

Portfolio variance is the sum of two terms

var(w
ᵀ
R) =

common︷ ︸︸ ︷
w
ᵀ
BΣf Bᵀw +

idiosyncratic︷ ︸︸ ︷
w
ᵀ
Ωεw .

Key result: Can show that with many assets, portfolio can have zero
(idiosyncratic) variance under some very weak conditions.
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Definition

We say that the idiosyncratic error is diversifiable if limN→∞ w
ᵀ
w = 0

implies that
lim
N→∞

w
ᵀ
Ωεw = 0.

We consider the diagonal case first. Suppose that
Ωε = diag{σ21, . . . , σ2N}. Then

var(w
ᵀ
ε) = wᵀΩεw =

N

∑
i=1
w2i σ2i .

We have
N

∑
i=1
w2i σ2i ≤ max

1≤i≤N
σ2i

N

∑
i=1
w2i ,

and it suffi ces that σ2i ≤ c < ∞ for all i .
So if all the variances are bounded then clearly diversification works for
well balanced portfolios.
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The assumption of uncorrelated errors is considered a bit strong and is
stronger than is needed for the diversification property to hold as we next
show.

Theorem
Suppose that

Ωε = D1/2ΨD1/2,

where D = diag{σ1, . . . , σN} is a diagonal matrix with bounded entries
and Ψ is a correlation matrix with λmax(Ψ) ≤ c < ∞ (as N → ∞). Then,
limN→∞ w

ᵀ
w = 0 implies that

lim
N→∞

wᵀΩεw = 0.

The proof of this result is immediate. Letting w̃ = D1/2w , we have

wᵀΩεw = w̃ᵀw̃
w̃ᵀΨw̃
w̃ᵀw̃

≤ λmax(Ψ)
N

∑
i=1
w2i σ2i → 0, as N → ∞.
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There are several models of cross sectional correlation that are in use.
First, Connor and Koraczyck (1983) assumed that there is some ordering
of the cross section such that the process εi is alpha mixing (Chapter 2).
Suppose that

cov(εi , εj ) = ρ|j−i |

for some ρ with |ρ| < 1. Then

Ωε =



1 ρ ρ2 · · · ρN−1

ρ 1
. . . . . .

ρ2
. . . 1 ρ ρ2

...
. . . ρ 1 ρ

ρN−1 · · · ρ2 ρ 1


,

which has bounded eigenvalues.
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In fact

1
N
i
ᵀ
Ωεi =

1
N

[
N + 2(N − 1)ρ+ 2(N − 2)ρ2 + . . .

]
→ 1+ 2

∞

∑
j=1

ρj

=
1+ ρ

1− ρ
.

So that the equally weighted portfolio (of ε) has zero variance for large N.
So diversification eliminates all (idiosyncratic) risk.
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In practice, the raw correlations are high. In Figure xx below we show the
distribution of |corr(Ri ,Rj )| of S&P500 daily returns over the period
2000-2010.
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By contrast the idiosyncratic errors have smaller correlations but they are
still significant. In Figure xx we show the |corr(εi , εj )| (market model
residuals)
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In conclusion, the diversification arguments can hold more generally
even in the presence of correlation between the error terms and large
variance terms.

If diversification works we obtain that the portfolio variance is
dominated by the common components, i.e.,

wᵀΩεw ≈ 0 =⇒ var(w
ᵀ
R) ≈

common︷ ︸︸ ︷
w
ᵀ
BΣf Bᵀw .

We next consider some empirical approaches to measuring
diversification.
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Solniks diversification curve
Given a set of assets the variance of the equally weighted portfolio is

var

(
1
N

N

∑
i=1
Ri

)
=
1
N

σ2i + σij

σ2i =
1
N

N

∑
i=1

var(Ri ) ; σij =
2

N(N − 1)
N

∑
j=i+1

N−1
∑
i=1

cov(Ri ,Rj )

Cross covariances more important than own variances when N is large.
How does this vary with N? Take a subsample of m assets, but which
subsample?

Definition
(Solnik) Sample variance S(m) of a randomly selected equally weighted
portfolio of m assets for m = 1, 2, . . . ,N

Can show that

S(m) =
1
m

σ2i +

(
1− 1

m

)
σij → σij as m→ ∞
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(Log of) Solniks curve for 5 subperiods
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Global Minimum Variance portfolio

Suppose that Σ is the covariance matrix of returns. For weights wGMV
with i = (1, . . . , 1)

ᵀ ∈ Rm we have

wGMV =
Σ−1i
i ᵀΣ−1i

and we achieve variance

σ2GMV (m) =
1

i ᵀΣ−1i

Compute this for assets R1, . . . ,RL with L = 2, . . . ,N
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Log of σ2GMV for five different subperiods
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When are factors Pervasive?

A key assumption in the sequel is that all the included factors are
pervasive, which is to say they each affect many assets returns. It is
saying that all the factors play an important role in explaining the
returns of the assets, essentially, nearly all assets are affected in some
way by the factors.

I For example when K = 1 we might just require that the number of
bi 6= 0, denoted r , is a large fraction of the sample.

We next give a formal definition of pervasiveness. wlog set Σf = IK
in the sequel
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Definition
We say that the factors are strongly influential or pervasive when

1
N
B
ᵀ
B → M,

where M is a finite and strictly positive definite matrix.

We have the following result

Theorem

For all weighting sequences w such that B
ᵀ
w 6= 0 and such that i ᵀw = 1,

we have as N → ∞

w
ᵀ
BB

ᵀ
w ≥ wᵀw × λmin(BᵀB) ≥ λmin(M) > 0.
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If the diversification condition is also satisfied, then this says that for
such portfolios, the variance of returns is dominated by the common
factor, and this term cannot be eliminated. The common component
is not diversifiable.

Of course there are also portfolios for which B
ᵀ
w = 0, and these have

already been introduced in Chapter xx, and are called hedge
portfolios. It is a classical result in linear algebra that the subspace of
RN of hedge portfolios is of dimension N −K , and so its complement
is of dimension K .

The APT tells us that those well diversified hedge portfolios do not
make any money over their cost.
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There are some concerns about whether the condition holds or at
least whether all factors are pervasive, when there are multiple factors
(factor zoo). If this condition is not satisfied, then some of the
approximations we employ below are no longer valid.

Definition
(Onatskiy (2012)) We say that the factors are weakly influential when

B
ᵀ
B → D,

where D is a diagonal matrix.

Under this condition, the contribution of the common components to
the variance of the portfolio is of the same magnitude as that of the
idiosyncratic components. This will affect some econometric testing
and estimation discussed below.
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For example, suppose that B are actually observed (see characteristic
based factor model section below) and ft are estimated by a cross
sectional regression of returns on B, then the necessary condition for
consistency (under iid errors ref) is that as N → ∞

λmin(B
ᵀ
B)→ ∞,

which is intermediate between strong and weak.

We may find that some factors are strongly influential, whereas others
are not, so that in the multifactor case the matrix B may be rank
deficient.

One way of modelling this is to say that B = (B1,B2), where B1 are
strong factors, whereas B2 are weakish factors that are small in the
sense that

√
TB2 satisfies the strong factor condition but B2 does

not, Bryzgalova (2015).
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The Econometric Model

We suppose we observe the panel of returns {Zit , i = 1, . . . ,N,
t = 1, . . . ,T}.
The K -factor model (for returns or excess returns) is

Zit = αi +
K

∑
j=1
bij fjt + εit

Zt = α+ Bft + εt ,

where εit is an idiosyncratic error term with

E (εt |f1, . . . , fT ) = 0 ; E (εt ε
ᵀ
t |f1, . . . , fT ) = Ωε

Can be justified from multivariate normality of returns and the factors.
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Different types of Factor Models

There are three different types of factor models

1 Observable factor models (ft are observed, bij are unknown quantities)

1 The factors are returns to traded portfolios (specifically, the returns on
portfolios formed on the basis of security characteristic such as size,
B/M).

2 The factors are macro variables such as yield spread etc.

2 Statistical factor models (fjt and bij are unknown quantities)
3 Characteristic based models (bij are observed characteristics such as
industry or country and fjt are unknown quantities)

In each case there are slight differences in cases where there is a risk free
asset and in cases where there are not.
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Multivariate Tests of the Multibeta Pricing Model with
Observable Traded factors and Risk Free Rate

Multivariate tests are very similar to those for the CAPM, but with β
replaced with the matrix B. First suppose that there is a risk-free asset
and that the factor returns F are observable. The log likelihood function

of the data Z1, . . . ,ZT conditional on ZK 1, . . . ,ZKT is

`(α,B,Ωε) = c − T
2
log detΩε

−1
2

T

∑
t=1
(Zt − α− BZKt )

ᵀ
Ω−1ε (Zt − α− BZKt ).
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Letting

µ̂f =
1
T

T

∑
t=1
ZKt ; µ̂ =

1
T

T

∑
t=1
Zt

Σ̂f =
1
T

T

∑
t=1
(ZKt − µ̂f ) (ZKt − µ̂f )

ᵀ

Σ̂Zf =
1
T

T

∑
t=1
(Zt − µ̂) (ZKt − µ̂K )

ᵀ

The unrestricted MLE of α,B are the equation by equation OLS, and Ωε

is the covariance matrix of residuals:

α̂ = µ̂− B̂ µ̂f ; B̂ = Σ̂Zf Σ̂−1f .

Ω̂ε =
1
T

T

∑
t=1
(Zt − α̂− B̂ZKt )(Zt − α̂− B̂ZKt )

ᵀ

Oliver Linton obl20@cam.ac.uk () F500 Empirical Finance Lecture 6: Multifactor Pricing ModelsJune 25, 2019 30 / 62



The multivariate tests of α = 0 (the APT restrictions in this case) are
similar to those for the CAPM. The F test

F =
(T −N −K )

N
(1+ µ̂

ᵀ
f Σ̂−1f µ̂f )

−1 α̂
ᵀ
Ω̂−1ε α̂

is exactly distributed as F (N,T −N −K ) under the normality
assumption.

In the absence of normality the statistic is asymptotically (sample size
T gets large) chi-squared with N degrees of freedom.

Version without risk free rate, use LR test and compare with
χ2(N − 1)
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Multifactor Pricing Tests with Macro Factors and Risk free
rate

Suppose instead that the observed factors are macroeconomic shocks
rather than portfolio returns. Then the expected returns associated
with the factors have to be estimated as additional free parameters
rather like the mean of the zero beta portfolio.

In this case, the APT restrictions are

α = Bγ, for some γ ∈ RK

There are N −K restrictions. Likelihood ratio test easiest here.

Oliver Linton obl20@cam.ac.uk () F500 Empirical Finance Lecture 6: Multifactor Pricing ModelsJune 25, 2019 32 / 62



Macroeconomics factors
(Chan et al. (1985) and Chen et al. (1986)).

Rit = αi + b
ᵀ
i ft + εit

ft = mt − Et−1mt or ft = mt −mt−1,
where mt are (nonstationary) macroeconomic variables and ft are
"surprises" or differences. Monthly data. 1958-1984

1 The percentage change in industrial production (led by one period)
2 A measure of unexpected inflation
3 The change in expected inflation
4 The difference in returns on low-grade (Baa and under) corporate
bonds and long term government bonds (junk spread)

5 The difference in returns on long-term government bonds and short
term Tbills (Term spread)
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They estimate bi by time series regressions and then do cross
sectional regressions on b̂i to estimate factor risk premia; 20 portfolios
are used on the basis of firm size at the beginning of the period

They find that average factor risk premia are statistically significant
over the entire sample period for industrial production, unexpected
inflation, and junk. They also include a market return but find it is
not significant

Recent developments: Macroeconomic policy endogeneity to level of
asset prices. Event study approach.
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Fama and French Factors

Fama and French (1993) "measure" f directly. They construct (6)
double sorted portfolios formed on 2 size and 3 book to market.

I That is, first sort the stocks according to their size (at the given date)
and divide into two: large size and small size.

I Then sort each of these groups according to the BTM and divide each
into three further groups. The sorting could equally be done the other
way round, and in both ways one obtains six groups of stocks

BTM/Size 1 2

1 high/large high/small
2 medium/large medium/small
3 low/large low/small
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These are then equally weighted in within each group to produce a
portfolio that measures large size and high BTM (denoted (1,1)), etc.

The size factor return is proxied by the difference in return between a
portfolio of low-capitalization stocks and a portfolio of
high-capitalization stocks, adjusted to have roughly equal
book-to-price ratios (SMB)

1
3
{(1, 1)− (1, 2) + (2, 1)− (2, 2) + (3, 1)− (3, 2)}.

They are zero net investment portfolios.

Oliver Linton obl20@cam.ac.uk () F500 Empirical Finance Lecture 6: Multifactor Pricing ModelsJune 25, 2019 36 / 62



The value factor is proxied by the difference in return between a
portfolio of high book-to-market stocks and a portfolio of low
book-to-market stocks, adjusted to have roughly equal capitalization
(HML)

The market factor return is proxied by the excess return to a
value-weighted market index (MKT )

Data on the factors is available from Ken French web site
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Then form 25 portfolios (on size and value characteristics too!)

Zpt = αp + bp,SMBSMBt + bp,HMLHMLt + bp,MKTMKTt + εpt ,

where p = 1, . . . , 25 and t = 1, . . . , 60.
I They do not reject the APT restrictions in their sample (although they
do reject CAPM where SMB and HML are dropped).

I They explain well the size and value anomalies of the CAPM.

Subsequently, it all went pear shaped and APT rejected. Additional
factors have been proposed in the literature

I Momentum factor, Carhart (1997).
I Own-volatility factor, Goyal and Santa Clara (2003).
I Liquidity, Amihud and Mendelson (1986), Pastor and Stambaugh
(2003)

I Fama and French 5 factor model (2015). RMW (Robust Minus Weak)
and CMA (Conservative Minus Aggressive)

I Factor zoo
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Explicit Characteristics-Based Models
Rosenberg (1974) considered the multifactor regression model where
ft are unknown "parameters" and B is related to observable (time
invariant) stock characteristics such as: industry/country (dummy
variables). Other possible characteristics include: size and value.
Suppose that

αi = d
ᵀ
αxi , bi = Dbxi , i = 1, . . . ,N

where xi is an observed J × 1 vector of characteristics, and Db is a
K × J matrix of unknown parameters.
Substituting into the return equation we obtain

Zit = αi + b
ᵀ
i ft + εit = x

ᵀ
i

(
dα +D

ᵀ
b ft
)
+ εit = x

ᵀ
i f
∗
t + εit ,

where f ∗t = dα +D
ᵀ
b ft is a J × 1 vector of characteristic specific

factors for t = 1, . . . ,T .
For each t estimate f ∗t by the cross-sectional regression
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We can write
Zt = Xf ∗t + εt

It follows that

E (Zt |X ) = Xµf ∗

var (Zt |X ) = XΣf ∗X +Ωε,

where X is the N × J matrix of observed characteristics and µf ∗ and Σf ∗
are the mean and variance of the factors.
Can do mean/variance portfolio choice conditional on characteristics
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Statistical Factor Models: Identifying the Factors in Asset
Returns

Definition
The statistical factor model for observed returns where neither B nor F are
observed. For each time period write

Zt = α+ Bft + εt ,

Definition
Strict factor structure - idiosyncratic error is cross-sectionally uncorrelated
so

E εt ε
ᵀ
t = Ωε = D,

where D is a diagonal matrix (containing the idiosyncratic variances).
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We treat B as fixed quantities and ft as random variables where
E (ft ) = 0 without loss of generality. We also assume cov(ft , εt ) = 0.
Then the population covariance matrix satisfies

ΣN×N = var(Zt ) = BΣf Bᵀ +D,

where Σf = var(ft ).
The RHS has NK +K (K + 1)/2+N parameters which is less than
N(N + 1)/2 on LHS. A big reduction in dimensionality
However, in this case where factors are unknown there is an
identification issue. Can’t uniquely identify (B,Σf ) or (B, ft )
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Identification Issue

One can write for any nonsingular matrix L,

f ∗t = Lft ; Σf ∗ = LΣf L
ᵀ

so that
Bft = BL−1Lft = B∗f ∗t

BΣf Bᵀ = B∗Σf ∗B∗ᵀ

One solution is to restrict Σf = IK . In this case,

Σ = Σ(B,D) = BBᵀ +D.

Then B,D are unique (B upto sign and orthonormal transformations)
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Estimation
Can be estimated by maximum likelihood factor analysis provided
N << T (small N and large T ).

`(α,B,D) = c − T
2
log detΣ(B,D)− 1

2

T

∑
t=1
(Zt − α)

ᵀ
Σ(B,D)−1(Zt − α).

The MLE for α is still the sample average

α̂ =
1
T

T

∑
t=1
Zt .

We then substitute in to obtain

`(α̂,B,D) = c − T
2
log detΣ(B,D)− 1

2
tr
(

Σ̂Σ(B,D)−1
)

Σ̂ =
1
T

T

∑
t=1
(Zt − α̂)(Zt − α̂)

ᵀ
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Total of NK +N parameters in Σ(B,D). Solve nonlinear first order
conditions (for i = 1, . . . ,N and k = 1, . . . ,K )

∂`

∂bik
(α̂, B̂, D̂) = 0

∂`

∂σ2εi
(α̂, B̂, D̂) = 0

Iterative nonlinear procedure such as Newton Raphson
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Given B̂, D̂, the period by period factor realizations can be estimated
by cross-sectional regression, i.e., OLS or GLS

f̂t = (B̂
ᵀ
B̂)−1B̂

ᵀ
(Zt − α̂)

f̂t = (B̂
ᵀ
D̂−1B̂)−1B̂

ᵀ
D̂−1 (Zt − α̂)

Consistency requires B̂
ᵀ
B̂ → ∞ (pervasive factors).

Estimated factors. Replacing B with B̂ creates an errors in variables
problem, affects standard errors at least
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Factor Models and Portfolio Choice

A value of the factor model is in dimensionality reduction. It is
important in portfolio choice and asset allocation, which usually
involves an inverse covariance matrix that has to be estimated.

Note that when
Σ = BBᵀ +D,

we have by the Sherman, Morrison, Woodbury formula

Σ−1 = D−1 −D−1B(IK + B
ᵀ
D−1B)−1B

ᵀ
D−1,

which only involves inverting the K ×K matrix IK + B
ᵀ
D−1B and

the elements of the diagonal matrix D.
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Portfolios that hedge or mimic the factors are the basic components
of various portfolio strategies

I The mimicking portfolio for a given factor is the portfolio with the
maximum correlation with the factor

I The hedge portfolio is the one that is orthogonal to the loadings of the
factor

If all assets are correctly priced, then each investor’s portfolio should
be some combination of cash and the mimicking portfolios.
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We can write
f̂jt = ŵ

ᵀ
j (Zt − α̂) ,

where ŵj = ((B̂
ᵀ
B̂)−1B̂

ᵀ
)j or ŵj = ((B̂

ᵀ
D̂−1B̂)−1B̂

ᵀ
D̂−1)j .

Can show that these portfolio weights solve the following problem
(taking Ω = D̂ or Ω = I )

min
wj
wᵀj Ω wj

subject to
wᵀj b̂h = 0 h 6= j ; wᵀj b̂j = 1

The set of portfolios that are hedged against factors h, h 6= j and
have unit exposure to factor j is of dimension N −K . We are finding
the one with smallest idiosyncratic variance. Can normalize the
weights ŵj to sum to one, so that they are portfolio weights.
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Asymptotic Principal Components
An alternative to maximum likelihood factor analysis is asymptotic
principal components (small T and large N). In the population we
can write the T × 1 excess return vector Zi as

Zi = αi iT + Fbi + εi ,

where F is T ×K , εi is T × 1, and bi is K × 1.
Assume that F is a fixed matrix (or if random we can condition on its
realization) and that bi are random variables from a common
distribution with E (bi ) = 0 and

E (bib
ᵀ
i ) = Σb .

Let

σ2 =
1
N

N

∑
i=1

σ2εi
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It follows that

Ψ =
1
N

N

∑
i=1
E
[
(Zi − E (Zi )) (Zi − E (Zi ))

ᵀ
|F
]

= F

Σb (N )︷ ︸︸ ︷(
1
N

N

∑
i=1
E (bib

ᵀ
i )

)
F
ᵀ
+

σ2(N )︷ ︸︸ ︷(
1
N

N

∑
i=1

σ2εi

)
IT ,

= FΣbF
ᵀ
+ σ2IT .

The right hand side has TK +K (K + 1)/2+ 1 parameters, which is
less than LHS which has T (T + 1)/2.
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Identification problem

There is an identification problem: for any nonsingular matrix L

Fbi = FLL−1bi = F ∗b∗i

In this case, assume that (with γ1 ≥ . . . ≥ γK )

Σb = diag{γ1, . . . ,γK } = Γ ; F
ᵀ
F = IK .

Ψ = FΓF
ᵀ
+ σ2IT ,

Then F , Γ, σ2 are unique (F upto sign)
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For any symmetric T × T matrix Ψ we have the unique
eigendecomposition

Ψ = QΛQ
ᵀ
=

T

∑
t=1

λtqtq
ᵀ
t

where eigenvectors Q satisfy

QQ
ᵀ
= Q

ᵀ
Q = IT

and eigenvalues
Λ = diag{λ1, . . . ,λT }

ordered from largest to smallest.

This means that for λt , qt(
FΓF

ᵀ
+ σ2IT

)
qt = λtqt
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In fact F satisfies this equation(
FΓF

ᵀ
+ σ2IT

)
F = F

(
Γ+ σ2IK

)
,

which means that F contains the K eigenvectors corresponding to the
eigenvalues, the diagonal elements of Γ+ σ2IK .

The remaining T −K eigenvectors G are contained in a T × T −K
matrix such that F ᵀG = 0 with eigenvalues σ2, i.e.,(

FΓF
ᵀ
+ σ2IT

)
G = σ2G .
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In conclusion,
I the eigenvalues of Ψ are

γ1 + σ2 ≥ . . . ≥

spike︷ ︸︸ ︷
γK + σ2 > σ2 = . . . = σ2.

I F are the eigenvectors corresponding to the K largest eigenvalues of Ψ

F = eigvecK [Ψ]

This shows unique identification of F . The Γ, σ2 are also uniquely
identified by this.
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APC estimates (in the first pass) factor returns rather than factor betas
using the above identification argument

1 The sample covariance matrix

Ψ̂ =

(
1
N

N

∑
i=1
(Zit − Z t )(Zis − Z s )

)T
s ,t=1

, Z t =
1
N

N

∑
i=1
Zit

which is a T × T matrix of excess return cross-products.
2 Do the empirical eigendecomposition and take

F̂ = eigvecK [Ψ̂]

3 Given this estimate of F , the factor betas can be estimated by
time-series OLS regression

b̂i = (F̂
ᵀ
F̂ )−1F̂

ᵀ
(Zi − α̂i iT )
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The main problem with this approach is that it assumes time series
homoskedasticity for the idiosyncratic error, which is not a good
assumption.

Jones (2001, JFE) has extended the estimation problem to allow for
time varying average idiosyncratic variance.

Ψ = FΓF
ᵀ
+D, D = diag{σ21, . . . , σ2T }

Iterative application of APC (like Factor MLE). That is, given first
round estimates, calculate the time series heterosekdasticity

D̂ = diag{σ̂21, . . . , σ̂2T }

and then recompute the factors

F̂ = eigvecK [Ψ̂− D̂ ]

and loadings likewise and iterate
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Eigenvalues of Ω̂T for daily SP500 returns (N = 441, T = 2732)
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Eigenvalues of Ψ̂N for Monthly SP500 returns (N = 441,T = 124)
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The case where both N and T are large can yield further results

Definition
Bai and Ng (2002). Solve the following

min
B ,F

T

∑
t=1

N

∑
i=1

{
Zit − b

ᵀ
i ft
}2

subject to the identification constraint either that B
ᵀ
B/N = IK or

F
ᵀ
F/T = IK

The procedure can be understood as iterative least squares
(cross-section regression then time series regression then etc).
Equivalent (upto normalization) to APC when T is fixed
They show consistency of this procedure when N and T are large
They also propose model selection method to determine the number
of factors K
Large literature now on estimating large covariance matrices with
shrinkage
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