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2014 A4

Lets start by trying to understand the objects in the factor equation:

Zit = µi +

K∑
j=1

bijfjt + εit (1)

This describes a factor model with k factors. This models attempts to explain the large covariance
matrix of the observed returns using a much smaller number of factors that dominate the variation.
Note that the market (β) model we studied in earlier problems is in fact a one factor model. However,
the market model not explain observed returns well at all whereas including a few more factors provides
a much better better �t to data. Equation 1 is perhaps easier to understand if we write it out in vector
notation. We are given that there are K factors. Suppose there are N stocks; Z1t

...
ZNt

 =

 µ1

...
µN

+ f1t ×

 b11

...
bN1

+ · · ·+ f1t ×

 b1K
...

bNK

+

 ε1t
...
εNt


Note that f1t, . . . , fKt are K univariate random variables that vary with time. bij is a N ×K constant
matrix describing the loading of the factors within the space of the N stocks. ε is a vector of shocks,
usually taken to be i.i.d. (in some versions contemporaneous correlations are allowed between stocks,
as long as the idiosyncratic risk associated with ε vanishes as the universe of stocks N gets large). Now
lets answer the question:

a) i)

When T is large and we do not observe factors or b, we treat b as �xed and f as stochastic. Estimates
for b and µ proceed by MLE. We impose ε as i.i.d. and de�ne the covariances as follows:

D = V AR(ε)

Σf = V AR(f)

Ω = V AR(Z) = bΣfb
T +D

Ω is the covariance of observed excess returns. We do not know Σf or b and so there is an identi�cation
issue in the model; we cannot untangle b from Σf - this is not surprising as the purpose of �tting this
model is to separate out the variance of returns into that caused by a small number of factors (bΣfb

T )

∗Comments and corrections to tja20@cam.ac.uk
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and an idiosyncratic part (D). Thus we set Σf = IK which allows unique identi�cation of b (up to
sign). The LogLikelihood is:

`(µ, b,D) = const− T

2
log
[
det(bbT +D)

]
− 1

2

T∑
t=1

(zt − µ)T (bbT +D)−1(zt − µ)

This is a nicely behaved function for µ and the M.L.E. yields the same expressions as OLS (because

to maximise the likelihood we minimise the ordinary square error term
∑T
t=1(zt − µ)TΩ(zt − µ));

µ̂ = arg max
µ

`(µ, b,D) = 0 ⇒ µ̂ = z

As in OLS the MLE for µ is the sample average of the means. Write also:

Ω̃ =
1

T

T∑
t=1

(z − µ̂)(z − µ̂)T

We can substitute µ̂ (and the expression Ω̃) back into the LogLikelihood to form a likelihood for b and
D (this process is called concentrating out µ):

`(µ̂, b,D) = const−T
2
log
[
det(bbT +D)

]
− 1

2
tr(Ω̃(bbT +D)−1) using tr(ABC) = tr(CAB)

This is a horrendous non-linear equation in b and D and the maximum has to be found using a
numerical procedure. Once b̂ and D̂ have been obtained estimates for f̂t can be found by cross-
sectional regression. Note that all factors must be pervasive (bT b → ∞) for these estimates to be
consistent. Due to the errors-in-variables issue caused by the use of an estimate for b, we are not able
to �nd correct standard errors.

a) ii)

When T is small compared with N estimation is conducted by Asymptotic Principle Components. We
now assume that the realisation of the factors fjt are �xed and consider the TxK matrix F where
Ftj = fjt. b is treated as the stochastic variable having a realisation for each stock i. bi is a vector of
length K (ie the loadings of the factors for stock i) and has variance Σb. The model is now written for
each stock i as

Zi = µiiT + Fbi + εi i = 1, . . . , n

Written explicitly as vectors:

 Zi1
...

ZiT

 = µi

 1
...
1

+

 f11 · · · f1K

...
. . .

...
fT1 · · · fTK


 bi1

...
biK

+

 εi1
...
εiT

 i = 1, . . . , n

In contrast to the method above when T is large, the procedure aims to separate the excess return
variance across stocks as opposed to across time. Again there is a separation in variance caused by
the factors (Fbi) as well as a idiosyncratic part (εi). The identi�cation arises and this is solved here
by making Σb diagonal, with the K diagonal elements ordered by decreasing size. The procedure for
�tting is outlined in lectures and the steps are summarised as:
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1. Set the columns of F equal to the K largest eigenvectors of the estimate of the sample covariance
matrix of excess returns across stocks; Ψ̂ts = 1

N

∑n
i=1(Zit − Zt)(Zis − Zs)

2. Given F̂ , estimate the factor loadings b̂i by times-series regression

The above approach assumes ε is homoskedastic in the time dimension. This can be overcome by
estimating σ̂2

1 , . . . , σ̂
2
T iteratively (σt = var(εit)). Estimates of the heteroskedasticity are used in

subsequent time-series regressions which themselves can be then used to update σ̂2
1 , . . . , σ̂

2
T . You

should have seen a similar approach when performing FGLS in the Econometrics course.

b)

When factor returns f are observed, the test of APT is analogous to the test of the single factor CAPM
(which we discussed in problem set 2). In both cases theory implies that the intercept µ = 0. The
MLE is the same as the that provided by equation by equation OLS. As in the CAPM test the (large
T asymptotic) test is conducted by a Chi Squared test on the restriction µ = 0.

2014 B1

As usual using lower case variables to represent log quantities:

"Return" = "Captial Gains" + "Dividends"

Rt+1 =
Pt+1 − Pt

Pt
+
Dt+1

Pt
rt+1 = log(1 +Rt+1)

= log

(
Pt
Pt

+
Pt+1 − Pt +Dt+1

Pt

)
= log(Pt+1 +Dt+1)− log(Pt) ∵ log(A/B) = log(A)× log(B−1) = log(A)− log(B)

= log

(
Pt+1

[
1 +

Dt+1

Pt+1

])
− log(Pt)

= log(Pt+1)− log(Pt) + log

(
1 +

Dt+1

Pt+1

)
= log(Pt+1)− log(Pt) + log

(
1 + exp

[
log

(
Dt+1

Pt+1

)])
∵ exp(log(x)) = x ∀x

= log(Pt+1)− log(Pt) + log(1 + exp(log(Dt+1)− log(Pt+1)))

= pt+1 − pt + log(1 + exp(dt+1 − pt+1)) (2)

The approximation in Campbell's model comes from using a �rst order approximation to

f(·) = log(1 + exp(·))

and expanding about the average values of the dividend and price ratios. Note that:

d

dx
f(x) =

exp(x)

1 + exp(x)
=

1

1 + exp(−x)

So (using Taylor's approximation)

f(x) = f(x̄) + f ′(x̄)(x− x̄) + o(x− x̄).(x− x̄)
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Substituting x = dt+1 − pt+1 and x̄ = d̄− p̄ into above

log(1 + exp(dt+1 − pt+1)) ≈ log(1 + exp(d̄− p̄)) +
dt+1 − pt+1 − d̄+ p̄

1 + exp(p̄− d̄)

= log(1 + exp(d̄− p̄)) +
p̄− d̄

1 + exp(p̄− d̄)
+

dt+1 − pt+1

1 + exp(p̄− d̄)

= k + (1− ρ). (dt+1 − pt+1)

where

(1− ρ) =
1

1 + exp(p̄− d̄)
(3)

ρ = 1− 1

1 + exp(p̄− d̄)

=
exp(p̄− d̄)

1 + exp(p̄− d̄)

=
1

1 + exp(d̄− p̄)

and

k = log(1 + exp(d̄− p̄)) +
p̄− d̄

1 + exp(p̄− d̄)

= log(ρ−1) + (1− ρ). (p̄− d̄)

= −log(ρ) + (1− ρ). (p̄− d̄)

note from equation 3

1 + exp(p̄− d̄) =
1

1− ρ
exp(p̄− d̄) =

ρ

1− ρ

p̄− d̄ = log

(
ρ

1− ρ

)

so

k = −log(ρ) + (1− ρ). log

(
ρ

1− ρ

)
Substituting these expressions into equation 2 above yields the result from lectures:

rt+1 ≈ k + pt+1 − pt + (1− ρ). (dt+1 − pt+1)

= k + (1− ρ)dt+1 + ρ. pt+1 − pt

Rearranging, taking expectations at time t, and iterating forward:
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pt = k + (1− ρ)Etdt+1 − Etrt+1 + ρEtpt+1

= k + (1− ρ)Etdt+1 − Etrt+1 + ρ (k + (1− ρ)Etdt+2 − Etrt+2 + ρEtpt+2)

= k(1 + ρ) + (1− ρ)Et(dt+1 + ρdt+2)− Et(rt+1 + ρrt+2) + ρ2Etpt+2

... iterating s times

= k

n∑
j=0

ρj + (1− ρ)

n∑
j=0

ρjEtdt+j+1 −
n∑
j=0

ρjEtrt+j+1 + ρnEtpt+n

=
k

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEtdt+j+1 −
∞∑
j=0

ρjEtrt+j+1 + limn→∞ρ
nEtpt+n

=
k

1− ρ
+ (1− ρ)

∞∑
j=0

ρjEtdt+j+1 −
∞∑
j=0

ρjEtrt+j+1 assuming the usual no-bubble condition

As required. Noting also

ρ =
1

1 + exp(d̄− p̄)
≈ 1

1 + D̄
P̄

∵ exp(log(D)) ≈ exp(log(D)) = D̄, and similarly for P

shows ρ is approximately the discount factor associated with a discount rate of approximately the
average dividend yield ratio. Campbell's model can also be explained as

pt = constant + (1− ρ)×D −R

where

D =

∞∑
j=0

ρjEtdt+j+1 = "Expected future dividends discounted at rate ρ"

R =

∞∑
j=0

ρjEtrt+j+1 = "Expected future returns discounted at rate ρ"

Whereas with, say, bond pricing, future cash�ows are discounted by the bond yield, Campbell's model
has expected future dividends and returns being approximately discounted at the average dividend
yield rate ρ. This makes some appealing intuitive sense.

Campbell's model is an improvement on earlier fundamental models of stock prices, such as the Gordon
Growth model, that use constant expected returns. The preceding class of models predict much lower
variability of prices than that observed. In those models prices only vary with changes in expected
dividends. These simply do not vary enough. However in Campbell's model, expectations of returns
may vary which can explain much higher volatility of prices. In particular when returns are slowly
varying, for example with a constant plus an AR(1) process with a coe�cient close to unity, prices
become very sensitive to changes in expected returns.

VAR modeling can be performed when fundamental data is available as a time series. For exam-
ple, If x1, . . . , xk are available fundamental data then the following VAR(1) model can be estimated
consistently by OLS:
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rt
x1t

...
xkt

 = Φ


rt−1

x1,t−1

...
xk,t−1

+ ε

Given the estimate of the k + 1 squared matrix Φ̂, expectations for future returns at time t can be
found via:

̂Et(rt+k+1) = Φ̂k


rt
x1t

...
xkt


2015 A2

The model in this question is a particular type of ARCH(5) model (Note GARCH includes lags of the
conditional variance in the dynamic equation whereas ARCH does not). In the below model, today,
conditional variance depends on the squared return from 5 days ago:

rt = σtεt

σ2
t = ω + γr2

t−5

εt ∼ NID(0, 1)

Not given in the question are the stationarity conditions ω ≥ 0, 0 ≤ γ < 1.

a)

Simple answer: Yes. Returns do not depend on any public information in this model and knowing it
does not help you make money (price-information is also fully re�ected - see the next part).
My preferred answer: This model does not say anything about Semi-Strong Market E�ciency. Fun-
damental information may or may not be transmitted to the price via the shocks εt.
Note, the �simple answer� is probably the answer the lecturer was expecting. The question is not
asking �is this a good model for �nancial assets� it is stating that if �nancial assets abide by this model
does semi-strong market e�ciency hold. Neither answer is incorrect.

b)

This model is consistent with weak form e�ciency as returns are a martingale di�erence (ie it obeys
RW 2.5). Speci�cally E(rt|rt−1, rt−2, . . .) = 0 ∵ rt|rt−1, rt−2, . . . ∼ N(0, ω+γr2

t−5). Past information
may e�ect higher moments of the distribution of returns (speci�cally the variance) but the conditional
expectation is always zero no matter what. An investor cannot make abnormal returns systematically
in this model.

c)

This model is not consistent with the stylized empirical fact of strictly positive serial correlation of
squared returns. As in lectures, the most straightforward way of �nding the ACF of r2

t is to eliminate
σ2
t from the dynamic equation using a Martingale Di�erence (MD) innovation that depends on r2

t :
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r2
t = σ2

t + σ2
t (ε2t − 1)

= ω + γr2
t−5 + ηt (4)

ηt = σ2
t (ε2t − 1)

ηt is the MD as E(η2
t |"the world at t-1") = 0 ∵ εt is i.i.d. You should notice that r2

t follows a
particular type of AR(5) process which would produce an ACF at lags of multiples of 5 only. I will
use a slightly more sophisticated method of proving this:

(1− γL5)r2
t = ω + ηt

r2
t =

ω

1− γ
+

ηt
(1− γL5)

∵ L has no e�ect on the constant ω

=
ω

1− γ
+
∑
s≥0

(γL5)sηt ∵ |γ| < 1,
1

1− x
=
∑
s≥0

xs ∀ |x| < 1

=
ω

1− γ
+
∑
s≥0

γsηt−5s

So r2
t is equal to the unconditional mean ( ω

1−γ ) plus a linear combination of past shocks of the MD ηt
separated in time by multiples of 5. This shows that if k is not a multiple of 5 then r2

t and r2
t−k will

share no ηt terms and thus have zero covariance. This ACF does not describe the expected shape of a
�nancial asset which would be positive at all lags and decaying. This model also does not makes much
intuitive sense; why would the volatility depend of the market move from one week ago only, rather
than yesterday?

d)

This is the leverage assumption written in a di�erent way. GARCH models (of which ARCH is a
special case) do *not* have this property. Proving this follows from the fact that there is a rt−k linear
term in the covariance which has zero expectation:

Cov(r2
t , rt−k) = E(r2

t rt−k) since E(rt−k) = 0

= E(σ2
t σt−kε

2
t εt−k)

= Eσt,σt−k

[
E(σ2

t σt−kε
2
t εt−k|σt, σt−k)

]
Using L.I.E.

= Eσt,σt−k

[
σ2
t σt−kE(ε2t εt−k|σt, σt−k)

]
= Eσt,σt−k

[
σ2
t σt−kE(ε2t )E(εt−k)

]
∵ εt is i.i.d.

= Eσt,σt−k

[
σ2
t σt−k × 1× 0

]
= 0

2016 A3

Returns depend on fundamentals xt which are themselves are serialling correlated. Essentially the
question is asking us to show that the ACF of returns is small when β is signi�cant despite the fact
that the fundamentals have persistence. The key is the fact that error terms in the price equation
and the dynamic AR(1) equation are contemporaneously correlated (but not serially correlated). First
note that xt is an AR(1) process and is thus a linear combination of past shocks of ηt. This means
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that xt is independent of future shocks of both εt+k and ηt+k. Start by writing down some properties
of this AR(1) process:

E(x2
t ) =

σηη
1− ρ2

The usual AR(1) unconditional variance covered previously

E(xtxt−k) = ρkE(x2
t ) The usual covariance (5)

(1− ρL)xt = ηt+1

xt =
1

1− ρL
ηt+1

=
∑
s≥0

(ρL)sηt+1 Expanding as a geometric sum as in previous questions

=
∑
s≥0

ρsηt+1−s (6)

Consider the covariance of returns at lag 1:

COV (rt+1, rt) = E(rt+1rt) ∵ E(rt) = E(xt−1) = 0

= E [(βxt + εt+1)× (βxt−1 + εt)]

= E [(βρxt−1 + ηt + εt+1)× (βxt−1 + εt)]

= E
[
β2ρx2

t−1 + βηtεt
]

because there is no serial correlation of shocks and xt−1 is independent of ηt, εt and εt+1. So

COV (rt+1, rt) = β2ρV AR(xt) + βσηε

=
β2ρσηη
1− ρ2

+ βσηε

Calculate the covariance for higher lags by forming an iterative relationship:

COV (rt, rt−k) = E [(βxt−1 + εt)× (βxt−1−k + εt−k)]

= E [(βρxt−2 + βηt−1 + εt)× (βxt−1−k + εt−k)]

= E [(ρ(βxt−2 + εt−1) + βηt−1 + εt − ρεt−1)× (βxt−1−k + εt−k)]

= E [ρrt−1rt−k] + E [(βηt−1 + εt − ρεt−1)× (βxt−1−k + εt−k)]

= ρ. COV (rt, rt−k−1) ∀ k > 1

since everything in the second expectation term vanishes if there are no shared shocks and if the shocks
ηt−1 + εt − εt−1 occur �after� xt−1−k, which they do for k > 1. Thus

COV (rt, rt−k) = ρk−1COV (rt, rt−1)

= ρk−1β

[
βρσηη
1− ρ2

+ σηε

]
Thus

σηε
σηη
≈ −βρσηη

1− ρ2
⇒ COV (rt, rt−k) ≈ 0

Thus if dividend price ratios are negatively correlated to shocks in returns, which makes sense, and the
correlation is just the right size, large βs are indeed possible without the persistence in the fundamentals
causing serial correlation in observed returns. (Stambaugh 1999).
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