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Question 1

The model is

rt+1 = xt + εt+1

xt+1 = µ+ φxt + ξt+1

The innovations εt and ξt are i.i.d., mutually independent and mean zero. |φ| < 1. xt is a stationary

AR(1) pro
ess about a non-zero mean.

Moments:

E(rt) = E(xt) + E(εt) = E(xt)

but

E(xt+1) = µ+ φE(xt) + E(ξt+1) = µ+ φE(xt)

Sin
e xt is stationary E(xt) = E(xt+1) ⇒

E(rt) = E(xt) =
µ

1− φ

Varian
e:

V AR(rt) = V AR(xt) + V AR(εt+1) = V AR(xt) + σ2
ε sin
e εt and ξt are i.i.d.

but

V AR(xt+1) = V AR(µ+ φxt + ξt+1)

= V AR(φxt) + V AR(ξt+1) + 2COV (φxt, ξt+1)

= φ2V AR(xt) + σ2
ξ be
ause ξt+1 o

urs "after" xt

again stationarity of xt ⇒

V AR(xt) =
σ2
ξ

1− φ2
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so

V AR(rt) =
σ2
ξ

1− φ2
+ σ2

ε

Conditional Moments:

Et(rt|xt) = Et(xt|xt) + Et(εt+1|xt) = xt

V AR(rt|xt) = V AR(xt + εt+1|xt) = V AR(εt+1|xt) = σ2
ε

ACF:

COV (rt, rt−k) = COV (xt−1 + εt, xt−1−k + εt−k) = COV (xt, xt−k)

sin
e εt is i.i.d and independent of xt. Expand xt is terms of past innovations xt−k:

xt = µ+ φxt−1 + ξt

= 
onstant+ φ(φxt−2 + ξt−1) + ξt

= 
onstant+ φ2xt−2 + φξt−1 + ξt

.

.

. iterating k times

= 
onstant+ φkxt−k + φk−1ξt−k+1 + · · ·+ ξt

so

COV (rt, rt−k) = COV (xt, xt−k) = COV (
onstant+ φkxt−k + φk−1ξt−k+1 + · · ·+ ξt, xt−k)

the ξt−l terms all o

ur �after� xt−k so are independent and thus vanish ⇒

COV (rt, rt−k) = φkV AR(xt−k) = φk ·
σ2
ξ

1− φ2

dividing through by the varian
e yields

ρk = φk ·
σ2
ξ

σ2
ξ + (1− φ2)σ2

ε

When returns are slowly varying sho
ks die out slowly and φ ≈ 1 and

ρk ≈ φk

This is NOT 
onsistent with the empiri
al eviden
e of very small and often statisti
ally insigni�
ant

auto
orrelations.
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Question 2

The bubble pro
ess, whilst in e�e
t, has exponential growth at a rate of (1 +R)/π but 
ollapses ea
h

period with probability 1− π. The average duration of the bubble is (1− π)−1. As we saw in le
tures

this is not an irrational pro
ess whilst expe
tations of future growth at this rate persist.

Moments (we denote the information set at time t by Ft):

Et(Bt+1) = π · Et(
1 +R

π
Bt + ηt+1|Ft) + (1− π) · Et(ηt+1|Ft) = (1 +R)Bt

Et(B
2
t+1) = π · Et

[

(
1 +R

π
Bt + ηt+1)

2|Ft

]

+ (1− π) · Et

[

(ηt+1)
2|Ft

]

= πEt

[

(
1 +R

π
Bt)

2|Ft

]

+ πEt

[

2
1 +R

π
Btηt+1|Ft

]

+ πEt

[

η2t+1|Ft

]

+ (1 − π) ·Et

[

(ηt+1)
2|Ft

]

=
(1 +R)2

π
B2

t + 1

so

V ARt(Bt+1) = Et(B
2
t+1)− Et(Bt+1)

2

=
(1 +R)2

π
B2

t + 1− (1 +R)2B2
t

= 1 +
(1 − π)

π
(1 +R)2B2

t

This 
onditional varian
e is the varian
e from one period to the next given the 
urrent value of the

bubble Bt and is higher when the probability of 
ollapse (1 − π) is higher. This is be
ause, for that

one period, there is greater variability if the bubble does indeed 
ollapse.

The probability that the bubble lasts for more than 5 periods is the probability that the �rst 6

observations retain the bubble. This is analogous to tossing a biased 
oin 6 times in a row where the

probability of heads (or bubble) is π. The probability is of 
ourse π6.

Testing for the presen
e of a bubble. Noti
e:

△Pt = ut +△Bt

In the absen
e of a bubble △Pt = ut + ηt − ηt−1. This is a stationary series with zero auto
ovarian
e

at lags above 1 (and zero everywhere if V AR(ηt) = 0). Auto
orrelations 
an be tested in the usual

way. If the bubble is in operation pri
e returns are explosive and non-stationary. Stationarity 
an be

tested using the KPSS test (look this up on Wikipedia for more information). If non-stationary we

reje
t the NULL of no bubble.

Question 3

Mathemati
s aside, the point of this question is to 
ontrast the properties of an MA(1) pro
ess with

that of an AR(1) pro
ess, parti
ularly in terms of the auto
orrelation fun
tion of the squares of the

return. The pro
ess is:
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rt = εt + θεt−1 εt ∼ NID(0, σ2
ε) |θ| < 1

COV (r2t , r
2
t−1) = COV (ε2t + 2θεtεt−1 + θ2ε2t−1, ε

2
t−1 + 2θεt−1εt−2 + θ2ε2t−2)

= θ2V AR(ε2t−1) + COV (2θεtεt−1, ε
2
t−1)+

COV (2θεtεt−1, 2θεt−1εt−2) + COV (θ2ε2t−1, 2θεt−1εt−2) (1)

sin
e εt is i.i.d. and we 
an ignore 
ovarian
es whi
h do not share the same εt−s type terms. Also

COV (εtεt−1, ε
2
t−1) = E(εtε

3
t−1)− E(εtεt−1)E(ε2t−1) = E(εt)E(ε3t−1)− E(εt)E(εt−1)E(ε2t−1) = 0

Similarly all terms ex
ept V AR(ε2t−1) in equation 1 vanish as expe
tations fa
torise into a E(εt−s)
type term whi
h is zero. For a normal distribution V AR(ε2t ) = 2V AR(εt)

2 = 2σ4
ε so

COV (r2t , r
2
t−1) = 2θ2σ4

ε

For the varian
e note rt is the sum of 2 un
orrelated normal distributed random variables (εt and

εt−1) so it itself normal. It has varian
e (1 + θ2)σ2
ε . Thus

V AR(r2t ) = 2V AR(rt)
2 = 2(1 + θ2)2σ4

ε

Noting that COV (r2t , r
2
t−s) = 0 ∀ s > 1 sin
e then r2t and r2t−s share no similar εt terms. Then the

result is:

CORR(r2t , r
2
t−k) =

{

θ2

(1+θ2)2 k = 1

0 k > 1

as required.

For the AR(1) pro
ess the ACF of returns die of at a rate of ρ whereas the ACF of r2t die of at the faster
rate of ρ2. The ACF for the MA(1) model is

θ
(1+θ2) at lag 1 and zero elswhere. The ACF of r2t is also

non-zero only at lag one. However, sin
e θ < 1 the magnitude of CORR(r2t , r
2
t−1) =

θ2

2(1+θ2)2 < θ
(1+θ2)

is also smaller than that of the ACF of rt. Thus the MA(1) model does not solve the issues that AR(1)

has, it just limits the signi�
ant part of the ACFs to lag 1. A better des
ription of the ACFs observed

in �nan
ial time series (statisti
ally signi�
ant positive serial 
orrelation in squared returns with little

or no serial 
orrelation in return) is given by the GARCH model (Question 5).

Question 4

This question 
on
erns the estimation of 
ontemporaneous 
orrelation between sto
ks that trade at

di�erent times - the parameter of interest is the 
ovarian
e γ (or in pra
ti
e, 3×γ for the 24 hour

measure). The trading day is split into thirds and we observe only one pri
e per day for the 2 assets

(whi
h are at di�erent times of the day). The assumptions are that the sto
ks are 
ontemporaneously


orrelated and have i.i.d. returns. For the purposes of answering this question this means that returns

from one 1/3 of a day to the next are independent. This also implies that the return from sto
k

i is independent from the return from sto
k j during di�erent non-overlapping periods. Assuming

otherwise would 
ontradi
t the i.i.d. of the individual sto
k returns.
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Pro
eed by splitting up the relevant daily pri
e di�eren
es into intra-period pri
e di�eren
es:

COV (pi4 − pi1, pj5 − pj2) = COV (pi4 − pi1, pj5 − pj2)

= COV ( (pi4 − pi2) + (pi2 − pi1) , (pj5 − pj4) + (pj4 − pj2) )

= COV ((pi4 − pi2), (pj4 − pj2))

using the fa
t that non-overlapping returns are independent. Continuing:

COV (pi4 − pi1, pj5 − pj2) = COV (pi4 − pi2, pj4 − pj2)

= COV ( (pi4 − pi3) + (pi3 − pi2) , (pj4 − pj3) + (pj3 − pj2) )

= COV (pi4 − pi3, pj4 − pj3) + COV (pi3 − pi2, pj3 − pj2)

= 2COV (pi2 − pi1, pj2 − pj1)

= 2γ (2)

be
ause the 
ovarian
es are stationary and do not very from one 8 hour period to the next.

Sin
e i trades for the �rst third of the day and j trades for the se
ond half of the day, daily returns

for day t are de�ned as follows:

rit = pi,3t+1 − pi,3t−2

rjt = pj,3t+2 − pj,3t−1

So (generalizing the result in equation 2 above)

COV (rit, rjt) = COV (pi,3t+1 − pi,3t−2, pj,3t+2 − pj,3t−1)

= 2γ

Cal
ulating COV (rit, rj,t−1) by again splitting up into overlapping returns and ignoring terms involving

non-overlapping periods:

COV (rit, rj,t−1) = COV (pi,3t+1 − pi,3t−2, pj,3t−1 − pj,3t−4)

= COV (pi,3t−1 − pi,3t−2, pj,3t−1 − pj,3t−2)

= γ

So the observed daily return of sto
k i is both 
orrelated with the daily return of sto
k j as well as

the previous day's return of that sto
k. Either of

1
2 ĈOV (rit, rjt) or ĈOV (rit, rj,t−1) are 
onsistent

estimators of the 8 hour 
ontemporaneous 
orrelation γ of the sto
ks but the estimator:

γ̂ =
1

3
ĈOV (rit, rjt) +

1

3
ĈOV (rit, rj,t−1)

is more e�
ient as it uses both information from the 
orrelation of same day sto
k returns as well as

that from j's one day lagged return.
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Question 5

The GARCH model was developed to explain both the fat tails of the un
onditional return distribution

and serial 
orrelation in squared returns observed in �nan
ial time series.

rt = h
1/2
t ηt

ht = ω + βht−1 + γr2t−1

First noti
e

E(r2t |ht) = ht

so ht is of 
ourse the 
onditional varian
e. Expanding:

ht = ω + γr2t−1 + βht−1

= ω + γr2t−1 + β(ω + γr2t−2 + βht−2)

= ω(1 + β) + γ(r2t−1 + βr2t−2) + β2ht−2

.

.

. iterating s times

= ω
n
∑

s=1

βs + γ
n
∑

s=1

βs−1r2t−s + βnht−n

=
ω

1− β
+ γ

n
∑

s=1

βs−1r2t−s + limn→∞βnht−n

=
ω

1− β
+ γ

n
∑

s=1

βs−1r2t−s if |β| < 1

As in le
tures ht 
an be expanded as an EMA of past squared returns with de
ay fa
tor β plus a level

(

ω
1−β ). This gives an intuitive explanation as to why volatility in this model 
lusters as well as the fa
t

that varian
e is expe
ted to be higher after a �big move�.

a) We require ht to be stationary for the varian
e to exist. We also need to ensure that ht is non-

negative with probability 1. The latter requires that ω, β, γ ≥ 0 (assuming general support for ηt).
From the above expansion of ht as an EMA of past squared returns it is apparent that β<1 is a


ondition of stationarity. The stronger 
ondition β + γ < 1 is also required to ensure stationarity.

This 
an be demonstrated by expanding future expe
tations in terms of today's squared return and


onditional volatility:
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Et(ht+k|rt, ht) = Et

(

ω + γr2t+k−1 + βht+k−1 |rt, ht

)

= Et (ω + (γ + β)ht+k−1 |rt, ht ) ∵ Et(r
2
t+k−1) = Et(ht+k−1)

= Et

(

ω + (γ + β). (ω + γr2t+k−2 + βht+k−2) |rt, ht

)

= Et

(

ω(1 + γ + β) + (γ + β)2. ht+k−1) |rt, ht

)

∵ Et(r
2
t+k−2) = Et(ht+k−2) k > 2

.

.

. iterating k times

= Et

[

ω

(

k
∑

s=0

(γ + β)s

)

+
(

(γ + β)k−1. (γr2t + βht)
)

|rt, ht

]

= ω

(

1− (γ + β)k+1

1− γ − β

)

+
(

(γ + β)k−1. (γr2t + βht)
)

using

r=k
∑

r=0

xr =
1− xk+1

1− x

(3)

So if γ + β ≥ 1 today observed squared returns will have an explosive and persistent impa
t on future

volatility. This explains the stationarity 
ondition.

b)

E(ht) = E(ω + βht−1 + γr2t−1)

= ω + βE(ht−1) + γE(r2t−1)

= ω + βE(ht) + γE(ht) E(r2t−1) = E(ht−1) = E(ht)

so

E(ht) =
ω

1− β − γ


)

ω a�e
ts the long run level of the varian
e but does not a�e
t the persisten
e of any return sho
k.

From equation 3 we see that the sum γ + β is the rate of de
ay of the e�e
t of r2t sho
ks on future

expe
tations of volatility. γ has a greater e�e
t on the level than β as

Et(ht+k|rt, ht) = · · ·+ γ × (γ + β)k−1 × r2t + · · ·
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