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Question 1
The model is

T4l = Tt + €¢41
Tip1 = b+ Oxs + &1

The innovations &; and &; are i.i.d., mutually independent and mean zero. |¢| < 1. x; is a stationary
AR(1) process about a non-zero mean.

Moments:

E(’I”t) = E(It) + E(Et) = E(It)

but
E(@i41) = p+ 0E(xt) + E(§41) = 1+ ¢E(x4)

Since z; is stationary E(z;) = E(zi41) =

E(r) = E(zy) = ﬁ

Variance:

VAR(r;) = VAR(z¢) + VAR(e111) = VAR(z) + 02 since & and & are i.i.d.

but

VAR(x411) = VAR(p + ¢m¢ + §41)
— VAR(b2:) + VAR(Eri1) + 200V (61, E141)

= ¢2VAR(CE,5) + 052 because & 41 occurs "after" x;

again stationarity of z; =

9¢

*Comments and corrections to tja20@Qcam.ac.uk



SO

g
VAR(r) = —5 + 02

Conditional Moments:

Ei(ri|ze) = Ey(xe|ze) + Br(eppr|ze) = o4
VAR(Tt|$t) = VAR(!Et + Et+1|!Et) = VAR(€t+1|{Et) = 0'?

ACF:

OOV(Tt, ’I”tfk) = OOV(ZEt71 + &, T—1—k + Etfk) = COV(.It,.It,k)

since & is i.i.d and independent of z;. Expand z; is terms of past innovations x;_:

Ty =p+ore 1+ &
= constant + ¢(¢xi—2 + &—1) + &
= constant + ¢>x,_o + A&_1 + &

iterating k times

= constant + ¢z + ki1 + -+ &

SO

COV (ry,ri—) = COV (4, 24—1) = COV (constant + Fxy_y + ¢k_1§t7k+1 +o 4+ & mg)

the &_; terms all occur “after” x;_ so are independent and thus vanish =

o2
COV (ry,r—i) = 6"V AR(z_p) = ¢* - ﬁ
dividing through by the variance yields
2
T S
A N
When returns are slowly varying shocks die out slowly and ¢ ~ 1 and

P~ ¢F

This is NOT consistent with the empirical evidence of very small and often statistically insignificant
autocorrelations.



Question 2

The bubble process, whilst in effect, has exponential growth at a rate of (1 + R)/w but collapses each
period with probability 1 — . The average duration of the bubble is (1 — 7)~1. As we saw in lectures
this is not an irrational process whilst expectations of future growth at this rate persist.

Moments (we denote the information set at time ¢ by Fy):

1+R
Ey(Biy1) =7 Ey( By + ne1| Fe) + (1= 7) - Ee(nesa|Fe) = (14 R) By

™

1+R
E(B},,) =7 E {(TBt + 77t+1)2|ft] + (1 =) - By [(m41)?| 7]
1+R
v

— b

1+ R)?
_ A+ RS +7T)B§+1

1+ R
Bt)2|Ft:| + 7TEt |:2TBt77t+1|‘Ft + 7TEt [77?+1|]:t} + (1 — 7T) . Et [(nt+1)2|Ft]

SO

VAR (Bis1) = E(BEy1) — Ey(Biyr)?

1+ R)?
_ L+ R)P )B§+1—(1+R)2B§
™
1_
:1+%(1+R>2B§

This conditional variance is the variance from one period to the next given the current value of the
bubble B; and is higher when the probability of collapse (1 — 7) is higher. This is because, for that
one period, there is greater variability if the bubble does indeed collapse.

The probability that the bubble lasts for more than 5 periods is the probability that the first 6
observations retain the bubble. This is analogous to tossing a biased coin 6 times in a row where the

probability of heads (or bubble) is 7. The probability is of course 7°.

Testing for the presence of a bubble. Notice:

APt:Ut—FABt

In the absence of a bubble AP, = us +n — n:—1. This is a stationary series with zero autocovariance
at lags above 1 (and zero everywhere if VAR(n,) = 0). Autocorrelations can be tested in the usual
way. If the bubble is in operation price returns are explosive and non-stationary. Stationarity can be
tested using the KPSS test (look this up on Wikipedia for more information). If non-stationary we
reject the NULL of no bubble.

Question 3

Mathematics aside, the point of this question is to contrast the properties of an MA(1) process with
that of an AR(1) process, particularly in terms of the autocorrelation function of the squares of the
return. The process is:



re = &4+ 041 EtNNID(O,Ug) |9| <1

COV(r2,r? ) = COV (2 4+ 20eses 1 + 072, e2 | +20c; 164 o + 072 )
= 0*VAR(e?_|) + COV (205,441,672 )+
COV (20c4e¢_1,20c;_16¢_9) + COV (072,20 164 2) (1)

since g¢ is i.i.d. and we can ignore covariances which do not share the same €;_; type terms. Also
COV(eter-1,67-1) = E(ere;_y) — E(eer-1)E(e;_1) = E(e) E(e}_1) — E(et)E(e1-1)E(e_,) = 0

Similarly all terms except VAR(e?_;) in equation 1 vanish as expectations factorise into a E(g;_s)
type term which is zero. For a normal distribution VAR(e?) = 2V AR(e;)? = 202 so

COV (r?,r? ) = 20%02

For the variance note r; is the sum of 2 uncorrelated normal distributed random variables (¢; and
g:—1) so it itself normal. It has variance (1 + 6?)02. Thus

VAR(r?) = 2VAR(r)* = 2(1 + 6*)%c?

Noting that COV (r?,r?_.) = 0 Vs > 1 since then 7 and r?__ share no similar e; terms. Then the
result is:

2

s k=1
CORR(ri,rf ;) = {g+92>2 el

as required.

For the AR(1) process the ACF of returns die of at a rate of p whereas the ACF of 77 die of at the faster

rate of p2. The ACF for the MA(1) model is ﬁ at lag 1 and zero elswhere. The ACF of 77 is also

non-zero only at lag one. However, since 6 < 1 the magnitude of CORR(r?,r?_,) = 2(1_%2)2 < (Hf)OQ)
is also smaller than that of the ACF of ;. Thus the MA(1) model does not solve the issues that AR(1)
has, it just limits the significant part of the ACFs to lag 1. A better description of the ACFs observed
in financial time series (statistically significant positive serial correlation in squared returns with little
or no serial correlation in return) is given by the GARCH model (Question 5).

Question 4

This question concerns the estimation of contemporaneous correlation between stocks that trade at
different times - the parameter of interest is the covariance 7 (or in practice, 3x~ for the 24 hour
measure). The trading day is split into thirds and we observe only one price per day for the 2 assets
(which are at different times of the day). The assumptions are that the stocks are contemporaneously
correlated and have i.i.d. returns. For the purposes of answering this question this means that returns
from one 1/3 of a day to the next are independent. This also implies that the return from stock
i is independent from the return from stock j during different non-overlapping periods. Assuming
otherwise would contradict the i.i.d. of the individual stock returns.



Proceed by splitting up the relevant daily price differences into intra-period price differences:

COV (pia — pi1,pjs — pj2) = COV (pia — pi1,Pjs5 — Dj2)
= COV ((pis — pi2) + (pi2 — pin) , (Pjs — pja) + (Pja — Pj2))
= COV ((pia — pi2), (Pja — pj2))

using the fact that non-overlapping returns are independent. Continuing:

COV (pia — pi1, pjs — pj2) = COV (pia — piz, ja — j2)
= COV ((pia — pi3) + (piz — piz) , (Pja — pj3) + (Pj3 — pj2) )
= COV (pia — pi3, pja — pj3) + COV (piz — pi2, pj3 — j2)
=2COV (pi2 — pi1, pj2 — Pj1)
=2y (2)

because the covariances are stationary and do not very from one 8 hour period to the next.

Since 7 trades for the first third of the day and j trades for the second half of the day, daily returns
for day t are defined as follows:

Tit = Pi,3t+1 — Pi,3t—2

Tjt = Pj,3t+2 — Pj,3t—1
So (generalizing the result in equation 2 above)
COV (rit,rj1) = COV (D341 — Pi,3t—25Dj 3142 — Pj,3t—1)

Calculating COV (ry,7,1—1) by again splitting up into overlapping returns and ignoring terms involving
non-overlapping periods:

COV (rit,1j1—1) = COV(Digt41 — Pi,3t—2, Pj,3t—1 — Dj,3t—4)
= COV(Pz‘,3t—1 — Di,3t—2,Dj,3t—1 — Pj,3t—2)
=7

So the observed daily return of stock ¢ is both correlated with the daily return of stock j as well as
the previous day’s return of that stock. Either of %COV(Tit,Tjt) or COV (r4,7;,—1) are consistent

estimators of the 8 hour contemporaneous correlation y of the stocks but the estimator:

1l 1—
¥ = gOOV(Tit,Tjt) + gOOV(Titarj,tfl)

is more efficient as it uses both information from the correlation of same day stock returns as well as
that from j’s one day lagged return.



Question 5

The GARCH model was developed to explain both the fat tails of the unconditional return distribution
and serial correlation in squared returns observed in financial time series.

Ty = hi/Qﬁt
hi =w-+ Bhy_1 + ”yrfﬁl

First notice

E(r{|hy) = hy

so h; is of course the conditional variance. Expanding;:

hy =w+ 77‘?_1 + Bhi_1
=wHyri |+ Bw+yri, + Bhio)
= w(l+B) + (i) + Bris) + B2his

iterating s times

—wY B+ Y BT 4 B e
s=1 s=1

. w . s—1,2 . n

- m + ’YZB Ti—s + llmnﬂooﬂ htfn
s=1

_ v - s—1,.2 i 1

—m*‘VZﬂ Ti—s if [B] <
s=1

As in lectures h; can be expanded as an EMA of past squared returns with decay factor 8 plus a level
(ﬁ) This gives an intuitive explanation as to why volatility in this model clusters as well as the fact
that variance is expected to be higher after a “big move”.

a) We require h; to be stationary for the variance to exist. We also need to ensure that h; is non-
negative with probability 1. The latter requires that w,$,7 > 0 (assuming general support for ;).
From the above expansion of h; as an EMA of past squared returns it is apparent that <1 is a
condition of stationarity. The stronger condition § + v < 1 is also required to ensure stationarity.
This can be demonstrated by expanding future expectations in terms of today’s squared return and
conditional volatility:



Ey(hegrlre, he) = By (w4977 51 + Bhagr—1 |re, he)
=E(w+ (v + B)hisr—1 |76, e ) " Ey(rf 1) = Br(heyr—1)
=E (w4 (y+8). (w+v77 s + Bhepn—2) e, by )
=E (wl+v+8)+ (v+B) her—1) |re, he) By (rfp_s) = Er(hiyn—2) k> 2

iterating k times

k
- (ZW ’ W) (4B (o Bhe) ) I,
s=0
_ k+1 r—k e
=w (%) + ((7+ﬁ)k—1,(77“?+ﬁht)) uSingTZ:Oxr _ %

So if v 4+ 8 > 1 today observed squared returns will have an explosive and persistent impact on future
volatility. This explains the stationarity condition.

b)
BE(ht) = E(w + Bhy—1 + i)
=w+ BE(hi—1) +7E(r} ;)
= w+ BE(h) + vE(hy) E(ri_y) = B(h1) = E(h)
Blhe) =12 ; -7
¢)

w affects the long run level of the variance but does not affect the persistence of any return shock.
From equation 3 we see that the sum ~ + 3 is the rate of decay of the effect of 77 shocks on future
expectations of volatility. «+ has a greater effect on the level than 5 as

Ei(hitr|re, he) = -+ -+ X (’Y"’ﬁ)k_l X th +oe



