
F500 Problem Set 2 - Solutions

Dr Tom Auld∗

February 24, 2019

Question 1

a) Mathematically:

V AR(P (w)) = V AR(wX + (1− w)Y )

= V AR(wX) + V AR((1− w)Y ) + 2COV (wX, (1− w)Y )

= w2V AR(X) + (1− w)2V AR(Y ) + 2w(1− w)COV (X,Y )

= w2σ2
X + (1− w)2σ2

Y + 2w(1− w)σXσY ρXY

≤ w2σ2
X + (1− w)2σ2

Y + 2w(1− w)σXσY ∵ ρXY ≤ 1

= [wσX + (1− w)σY ]
2

≤ max(σX , σY )2 = max(σ2
X , σ

2
Y )

wσX + (1−w)σY ≤ max(σX , σY ) because this is a weighted sum of the two standard errors whose
weights are positive and sum to unity.

Intuitively: (Without leverage) it is impossible to create a portfolio of assets whose variance is
greater than all of the individual components.

b)

Assumptions: We assume investors are risk averse and thus prefer lower variance.

Comment: There is no trade o� between risk and reward in this very simple setup as both assets
have the same mean. In terms of portfolio an e�cient frontier does not exist (or is a single point).
The mean cannot be changed so it makes no sense to perform the optimisation: maximise the mean
for a given amount of variance. Mathematically:

wopt = arg min
w∈[0,1]

V AR(P (w))

V AR(P (w)) = w2σ2
X + (1− w)2σ2

Y + 2w(1− w)σXσY ρXY

= w2σ2
X + (1− 2w + w2)σ2

Y + 2(w − w2)σXσY ρXY

= w2(σ2
X + σ2

Y − 2σXσY ρXY ) + 2w(σXσY ρXY − σ2
Y ) + σ2

Y

= w2(V AR(X − Y )) + 2w(σXσY ρXY − σ2
Y ) + σ2

Y

= Aw2 +Bw + C
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with
A = V AR(X − Y ), B = 2(σXσY ρXY − σ2

Y ), C = σ2
Y

Thus variance is a quadratic in w. In this case the A parameter is positive which means it has a
minimum. This can easily be found either my di�erentiation or (my favourite) by completing the

square and is − B
2A =

(σ2
Y −σXσY ρXY )
V AR(X−Y ) . However, I do not actually agree with the answer in the question

as we have imposed w ∈ [0, 1] and the constraints (ie endpoints of [0, 1]) could bind. Thus, to be
absolutely correct:

wopt =


0 σY ≤ ρXY σX
1 σX ≤ ρXY σY
(σ2
Y −σXσY ρXY )
V AR(X−Y ) otherwise

A simple proof by counter example is enough to demonstrate V ar(P (wopt)) ≤ min(σ2
X , σ

2
Y ). Since

V AR(P (w)) takes the values σ2
X or σ2

Y when w = 0 or 1 supposing V ar(P (wopt)) > min(σ2
X , σ

2
Y )

contradicts the fact that wopt = arg minw∈[0,1] V AR(P (w)). Thus the result must hold.

c)

Flippant Answer: Never, as the question imposes w ∈ [0, 1], ie no shorting.

Short Answer: Negative weights are assumed when one asset is much more volatile than the other
(ie when the ratio of standard errors exceeds ρ−1XY ) and there is no cost involved in shorting.

Long Answer, when shorting is allowed but there is a cost: So far in this question we have made
no assumptions about preferences beyond risk aversion. If one asset is considerably more volatile than
the other then variance can be reduced by shorting the more volatile one. However (assuming positive
mean µ) this will reduce the expected return. There will be a risk return trade o� and a multi-valued
e�cient frontier can appear. However, calculating an �optimal� portfolio in this situation will require

making assumptions about preferences over risk and return. For example if
(σ2
Y −σXσY ρXY )
V AR(X−Y ) is indeed

negative then wopt only takes this value if the investor is completely agnostic to return - This is an
implausible assumption.

Question 2

We use matrix notation and drop the t subscript (we need consider only contemporaneous covariances
as the disturbances are iid across time). I write the variance of εi as σ

2
ε . There are n assets, indexed

by i in the question and the variables have the following dimensions:

R n× 1 vector of (asset) returns.

Rm Scalar market returns.

α n× 1 vector of constants.

β n× 1 vector of asset �market betas�; the sensitivity of the assets to the �market�.

ε n× 1 vector of shocks. These represent the idiosyncratic variation to asset returns.

σ2
m Scalar variance of Rm

D n× n diagonal covariance matrix of ε, equal to σ2
ε In as εi are iid

In the derivation we use the fact that the covariance of vectors is a bi-linear function and that
V AR(AB) = AV AR(B)A′
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Ω = V AR(α+ βRm + ε)

= COV (βRm + ε, βRm + ε) ∵ α is a constant vector

= V AR(βRm) + COV (ε, βRm) + COV (βRm, ε) + V AR(ε)

= βV AR(Rm)β′ + V AR(ε) ∵ ε and Rm are iid

= βσ2
mβ
′ +D

= σ2
mββ

′ +D as required

Inspecting the matrix a little further gives some insight into the one factor market model. For i 6= j

COV (Ri, Rj) = Ωij = σ2
mβiβj

V AR(Ri) = Ωii = σ2
mβ

2
i + σ2

ε

ρij =
Ωij√
ΩiiΩij

=
1√(

1 +
[

σε
σmβi

])(
1 +

[
σε

σmβj

])
The covariance of stocks increases with their relative sensitivity to the market (β). Variance of stock
returns also increases β as well as the variances of the market (σm) and idiosyncratic shocks (σε). The
correlation of stocks increases with their β's and decreases with the ratio of the idiosyncratic variance
to market variance (σε/σm). This makes intuitive sense as the factor driving the correlation is the
variation in the single market factor. Stocks whose returns are driven more by the market component
will be more correlated and the overall level of correlation decreases with how much stocks move
idiosyncratically compared to the market. In the extreme case of no idiosynchratic stock movements
(σε = 0) returns of all stocks are perfectly correlated.

Question 3

This question, although concerning empirical �nance, is really a question about OLS under model
mis-speci�cation. You should have come across these problems during the Econometrics course.

We assume that the market model holds and thus the true model is:

Rit = αi + βiRmt + εit

E(εit|Rmt) = 0

So

Zit = Rit −Rft = αi + βiRmt + εit −Rft
Zit = αi + βi(Rmt −Rft) + (βi − 1)Rft + εit

We can also write the model in a way so that the error term has zero expectation

Zit = (αi + [β − 1]E(Rft)) + βiZmt + ηit

ηit = [β − 1] (Rft − E(Rft)) + εit

E(ηit) = 0
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The following regression is performed:

Zit = γi + δiZmt + ηit

Even if all Gauss-Markov assumptions hold (which they do not) γ̂i will be biased for αi as the intercept
in the model is shifted by [β − 1]E(Rft). We can also show the slope estimator is a biased for β using
the OLS standard formula in terms of sample (co)variances:

δ̂i =
ĈOV (Zit,Zmt)

V̂ AR(Zmt)
=
ĈOV (αi + βiZmt + (βi − 1)Rft + εit, Zmt)

V̂ AR(Zmt)

=βi + (βi − 1)
ĈOV (Rft, Zmt)

V̂ AR(Zmt)

=βi + (βi − 1)
ĈOV (Rft, Rmt −Rft)

V̂ AR(Zmt)

=βi + (1− βi)
V̂ AR(Rft)

V̂ AR(Zmt)
+ (βi − 1)

ĈOV (Rft, Rmt)

V̂ AR(Zmt)

so

δ̂i −→ βi + (1− βi)
V AR(Rft)

V AR(Zmt)
+ (βi − 1)

COV (Rft, Rmt)

V AR(Zmt)
6= βi

Similarly, we can also show the Gauss-Markov assumption E(ηit|Zmt) 6=0:

E(ηit|Zmt) = E((β − 1)[β − 1] (Rft − E(Rft)) + εit|Rmt −Rft)
= (β − 1)E [(Rft − E(Rft)) |Rmt −Rft] + E(εit|Rmt −Rft)
= (β − 1)E [Rft − E(Rft)|Rmt −Rft]
6= 0

Question 4

As we saw in the preceding class, stock returns are not observed to be normal. The distributions
typically have large excess kurtosis and negative skewness. Fama has argued that using aggregation
of daily returns to form monthly returns suppresses the higher moments (by the number of units of
aggregation) which makes the distributions closer to normal. This has the downside that the sample
size is reduced, and the argument is not beyond criticism.1 Below I show the Hang Seng from 1987
along with sample statistics. The excess kurtosis has reduced from the daily returns but it is still high
and the null of normality is rejected by the JB test.

The CAPM in the presence of a riskless asset (Sharpe-Lintner version) implies that excess returns
of stocks are fully explained by their �β�. This implies the intercepts (α) in the regression of excess
stock returns on excess market returns is zero. It also implies the risk premia relationship πi = βiπm.
The former is tested by Maximum Likelihood equivalent to running equation-by-equation regressions

1For example, daily returns are also the aggregation of large numbers of intra-day returns but do not appear to be

normal. The aggregation argument requires that these higher moments exist - it is not even clear that stock returns are

well described by distributions with �nite variance, on which the CLT relies; for example Mandlebrot in his 1963 paper

�The Variation of Certain Speculative Prices� proposes the use of a family of distributions that have in�nite variance.
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Price Returns of Hang Seng 1987 - Present

Price Returns Statistics:

Mean 0.94

StdDev 7.73

Kurt 7.18

Skew -0.7

JBstat 305

of excess stock returns on excess market returns and the latter is tested by cross sectional regressions
of the observed risk premia relationships. The fat tailed and skewed distributions of returns results in
the fact that any tests of CAPM which rely on the normality assumption will not be valid. Thus only
approaches that use large sample asymptotic results are robust (and even then there is the questionable
assumption of �nite variance of returns). In the context of the tests mentioned in lecture notes the
LR and Wald tests based on the χ2 distribution are valid whereas the exact �nite-sample variant that
uses the F statistic is not. Note that adjustments are required in the presence of heteroskedasticity
and serial correlation of errors.

Question 5

We are asked to �nd the �statistical properties� of RVn. Faced with this question one should probably
calculate the �rst two moments. One could also consider RVn as an estmator for the variance of the
underlying process σ2 and show it is consistent. This can be achieved in a fairly straight-forward
manner using the the Strong LLN in the equally spaced case, and the Weak LLN in the unequally
spaced case. In the latter, one must consider, say, Yi = r2i − E(r2i ). Then Yi are independent and
E(Yi) = 0 ∀ i so WLLN can apply. Consistency trivially follows from the below derivations of the �rst
two moments, as the expectation converges to σ2 and the variance vanishses in the limit.

The complication in this question comes from the fact that the intra-day returns are not equally spaced.
This means that although r2i is independent they are not independent and identically distributed.

First lets work in the simpler equally spaced case. Say there are n trades then ti − ti−1 = 1
n and

ri ∼ N(
µ

n
,
σ2

n
) ∀i

The CLT can be applied to the realised volatility. First calculate the mean and variance of r2i (using
E(X4) = µ4 + 6µ2 + 3σ4 when X ∼ N(µ, σ2)).
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E(r2i ) = V AR(ri) + E(ri)
2

=
µ2 + nσ2

n2

=
σ2

n
+O(

1

n2
)

V AR(r2i ) = E(r4i )− E(r2i )
2

=
µ4

n4
+ 6

µ2

n2
.
σ2

n
+ 3

σ4

n2
− [

σ2

n
+O(

1

n2
)]2 using the expression for E(X4) above

=
µ4 + 6nµ2σ2 + 3n2σ4

n4
− σ4

n2
+O(

1

n3
)

= 2
σ4

n2
+O(

1

n3
)

Then by the CLT

RVn =

n∑
i=1

r2i =⇒ N(σ2, 2
σ4

n
)

In fact, the exact distribution of RVn for �nite n in the equally spaced trade case is known. The realised
volatility is the i.i.d. sum of non-central Normal Distributions squared which is in fact a non-central
chi-squared distribution. This is beyond the scope of this course but those interested may wish to look
it up on Wikipedia. When µ = 0 the distribution is of course a standard chi-sq distribution, which
should be apparent to you.

Turning to the more di�cult case. As the r2i are no longer i.i.d. a CLT cannot be applied (there is a
version of the CLT that can be applied in the central case when µ = 0 but this again is beyond the
scope of this course). We calculate the mean and variance of RVn directly. Writing τi = ti − ti−1 ⇒
ri ∼ N(τiµ, τiσ

2). Noting that τi = O( 1
n ) (because n of them sum to unity):

E(RVn) = E(

n∑
i=1

r2i )

=

n∑
i=1

E(r2i )

=

n∑
i=1

(V AR(ri) + E(ri)
2)

=

n∑
i=1

(τiσ
2 + τ2i µ

2)

= σ2
n∑
i=1

τi + µ2
n∑
i=1

τ2i

= σ2 + µ2
n∑
i=1

τ2i ∵
n∑
i=1

τi = 1

= σ2 +O(
1

n
) ∵ τi = O(

1

n
)
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the mean remains unchanged from the equally spaced case. Turning to variance and using E(r2i ) =
τiσ

2 + τ2i µ
2 and E(r2i ) = τ4i µ

4 + 6τ3i µ
2σ2 + 3τ2i σ

4:

V AR(RVn) = V AR(

n∑
i=1

r2i )

=

n∑
i=1

V AR(r2i ) ∵ r2i are independent

=

n∑
i=1

[
E(r4i )− E(r2i )

2
]

=

n∑
i=1

[
(τ4i µ

4 + 6τ3i µ
2σ2 + 3τ2i σ

4)− (τiσ
2 + τ2i µ

2)2
]

=

n∑
i=1

[
3τ2i σ

4 − τ2i σ4 +O(
1

n3
)

]

= 2σ4

(
n∑
i=1

τ2i

)
+O(

1

n2
)

so the variance of RVn is still O( 1
n ) but is di�erent than in the equally spaced case.

Higher moments of RVm can be calculated in a similar fashion using the standard moment expressions
for N(µ, σ2). As always, look at Wikipedia for more details.
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