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Question 1

I hose the Hang Seng index from Hong Kong, its largest onstituent; China Constrution Bank and

a muh smaller small ap, FDG Eletri Vehiles. Statistis are derived from the last 12 years so as

to allow omparison aross the 3 assets:
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104 Hang Seng 2006 - Present

Prie Returns Statistis:

Mean 0.031

StdDev 1.525

Kurt 12.603

Skew 0.248

JBstat 12421

Log Returns Statistis:

Mean 0.019

StdDev 1.524

Kurt 12.061

Skew -0.008

JBstat 11030

∗
Comments and orretions to tja20�am.a.uk
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China Construction Bank 2006 - Present

Prie Returns Statistis:

Mean 0.051

StdDev 2.121

Kurt 14.244

Skew 0.836

JBstat 17382

Log Returns Statistis:

Mean 0.029

StdDev 2.107

Kurt 12.085

Skew 0.473

JBstat 11223
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FDG Electric Vehicles 2006 - Present

Prie Returns Statistis:

Mean 0.087

StdDev 4.990

Kurt 24.129

Skew 2.235

JBstat 62051

Log Returns Statistis:

Mean -0.031

StdDev 4.809

Kurt 16.788

Skew 1.108

JBstat 25946

In prie return the series all have positive drift but interestingly the small stok has average negative

log return - this suggests there are large positive values in prie returns that ontribute to a positive

average but have less of a ontribution to the average of the log returns (log is a onave funtion).

This is apparent in the prie hart. The variane of the small stok is higher than the large ap whih is

in turn higher still than the index. This is expeted from what we learnt in letures. However the Skew

is positive whih is unexpeted - asset pries typially exhibit negative skew, alled leverage, explained

by holders of an asset selling on large down moves, exaerbating the sell-o�. Finally, all returns series

exhibit large exess kurtosis whih is as expeted. I have inluded the Jarque Bera statisti. Under

the null of normality, this has an asymptoti χ2
2 distribution. Clearly all series are hugely signi�antly

di�erent from the normal distribution.

The histogram of returns for the Hang Seng from 1987 is shown below. The skew is negative (-1.22)

over this period in line with the stylized fats of stok returns. The skew and exess kurtosis are learly

apparent:
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b)

Correlogram

First ompute the autoorrelations and ompare with the Bartlett intervals:
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Hang Seng Price Returns Correlogram

0 2 4 6 8 10 12 14 16 18 20

Lag

At �rst glane 3 autoorrelations appear signi�ant. Further the Ljung-Box Q statisti is 61.5 for

20 lags, rejeting the null. However both the Bartlett intervals and Ljung-Box test assume IID returns

(RW1).
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An Aside....Testing The E�ient Markets Hypothesis

RW1 ǫt ∼ IID; E(ǫt) = 0

RW2 ǫt ∼ independent over time; E(ǫt) = 0

RW2.5 Martingale Property: E[ǫt+1|ǫt, ǫt−1, . . . ] = 0 ⇒ E[ǫt+1g(ǫt, ǫt−1, . . . )] = 0 by LIE

RW3 ∀k > 0, COV (ǫt, ǫt−k) = 0

RW2.5 is the Natural de�nition on EMH.

RW1 ⇒RW2 ⇒ RW2.5 ⇒ RW3 so RW 3⇒ RW 2.5⇒RW 2⇒RW 1

Testing RW1

RW1 ⇒

Q = T

P∑

j=1

ρ̂j
2 ∼ χ2

P Box-Piere Q Statisti

RW1 ⇒

Q = T (T + 2)

P∑

j=1

ρ̂j
2

T − j
∼ χ2

P Box-Ljung Q Statisti

Latter has better �nite sample properties. Proeed by alulating Q and rejet RW1 at level α when

Q > χ2
P (α)

RW1 ⇒
√
T ρ̂k =⇒ N(0, 1) ∀k

Test by omparing ρ̂k with the Bartlett Intervals:

[
−zα/2√

T
,
zα/2√
T

]

There are also tests of �average� orrelation ρ̄(k) aross a portfolio of orrelated assets under RW1

as well variane ratio tests.

Testing RW2.5

Testing RW1 does not rejet the natural form of the EMH; RW2.5. We need to orret for het-

roskedastiity and non-linearity in higher moments (eg as in a GARCH model).

RW2.5 ⇒

√
T ρ̂k =⇒ N

(
0,

E(X2
t X

2
t−k)

E(X2
t )

2

)
∀k

Condut test via adjusted Bartlett interval on de-meaned series (robust errors):

[
−zα/2√

T
×
√∑

t X
2
t X

2
t−k

(
∑

t X
2
t )

2 ,
zα/2√
T

×
√∑

t X
2
t X

2
t−k

(
∑

t X
2
t )

2

]

The di�erene an be shown to be inreasing in the kurtosis of the returns and proportional to the

autoorrelation at lag k of the squared return series. Similar adjustments exist for variane ratio

tests under RW2.5.
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Comparing with the adjusted intervals tells a di�erent story:
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The signi�ane disappears! What does this say about the autoorrelation of the squared returns?

Regression Test

We an ondut a regression test where we regress the next period return on some number of lags of that

return. The regression appears highly signi�ant, even using robust errors (as below), highlighting the

di�erene between regression and autoorrleation tests. The regression oe�ient is based on a joint

predition whereas the orrelation oe�ient is based on a univariate model. The joint model takes

into aount the dependene of the di�erent lags (whih will be non-zero if the model is not trivial,

beause if a lag predits the return, then an older lag predits a newer lag). Note that when explanatory

variables are independent, the regression oe�ient is the orrelation oe�ient. The signi�ane of

the regression may ome as a surprise. However, the oe�ients are tiny and of questionable eonomi

signi�ane - for instane for a 1% move in the previous return one should fade the move by 2.4bp (bp

= basis point = 0.01%). The R2
is also tiny and the reported signi�ane is likely down to the large

data set used, rather than any meaningful preditability.
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Computing returns using log prie ratios makes no di�erene to the ACF, it looks idential. This is

not surprising as log(1 + x) = x + O(x2) ⇒ rt = Rt + O(Rt), so log and prie returns are the same

to �rst order. Typially daily returns are under 2% magnitude so any seond order ontribution is

around 2%2
or 0.0004. Of ourse we do see the odd huge outlier (suh as -33% on Blak Monday for

the Hang Seng!) and the non-linearity does hange the moments of the distribution as we saw earlier.

Question 2

Contrarian Trading Strategies rely on the idea that the value of an asset will overreat in the short term

(perhaps due to behavioural fators) but then orret and �revert to the mean�. Momentum strategies

simply buy when the stok is going up, ie when it is above its mean, and sell on a orresponding

negative signal. The strategies outlined in this question, ignoring trading osts, are exat opposites.

If the stok loses below the relevant MA the ontrarian strategy buys and earns the next day return.

The momentum trade buys and earns the opposite return.

A simple glane at the moving averages (below) suggest momentum is more likely to work, as when

the prie is above the moving average the stok tends to be rising.
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The umulative returns of the momentum trading strategy appear below (There is no need to show

the ontrarian returns as they are simply minus those of the above):
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These strategies appear fantasti. However, they ignore trading ost and slippage. Further, they

assume that if today's lose rosses the moving average one an trade at that lose, whih is atually

impossible (it is more plausible for a ontrarian strategy if there is a losing aution - why?). Below

results are shown for the simple moving average in the ase where there are transation osts of 10bp,

and also when instead of trading on today's lose we trade on tomorrows lose (with no osts). Clearly

the returns are muh worse, partiularly sine 2000 and for the realisti �delayed strategy�.
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Question 3

We repeat the analysis from the previous question for the bollinger band momentum strategy. Again

there is no need to plot the opposite, ontrarian strategy. Returns are alulated ignoring osts and

slippage (trading on �today's� lose). Note that the absolute returns are lower as these algorithms

have no position for muh of the time due to the bollinger band providing a �safety net�. Costs would

likely be redued signi�antly, partiularly for the shorter lengths. (They are zero for the 5 day moving

average as it never trades!).
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Question 4

Rolling annual sample mean, standard error, skewness, kurtosis, seleted autoorrelations for the Hang

Seng shown below and the full prie hart for omparison.
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104 Hang Seng 2006 - Present

Interesting features of the trailing harts are:

• The trailing mean follows rising and falling markets.

• The trailing standard error has lusters in it. This is indiative of persistent volatility whih is

a harateristi of �nanial time series. For interest the spike around 1998 is due to the Russian
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Finanial Crisis when LTCM nearly blew up the �nanial system - the FED organised a bailout

of $3.625 billion by the fund's major reditors. There are also spikes around the dotom bubble

in 2001 and the 2008 GFC is also learly evident.

• The trailing third and fourth standardised moments are a�eted greatly in the early years by

some huge outliers whih inlude Blak Monday in 1987 (-33%).

• The trailing autoorrelations do not appear statistially di�erent from noise.

Question 5

Although not expliit in the question assume there are k − 1 zeros separating reported trades so that

the observed and real returns have the same number of data points. We observe j bathes of k − 1
zero returns followed by the sum of all the preeding true returns that were missed. We are asked to

onsider the di�erene in the sample mean, variane and autoovariane of the observed versus true

returns series. Of ourse as the sample size grows the sample statistis will approah the true statistis

of the distribution (LLN). Considering the mean:

r̃ =
1

T

T∑

t=1

r̃t =
1

T

j∑

i=1

(0 + · · ·+ rik+1 + · · ·+ r(i−1)k) =
1

T

T∑

t=1

rt = r̄

The mean is una�eted. This is not surprising as any missed observations are added to the next

non-zero one - thus the umulative return is preserved. Moving on to the sample variane:

(T − 1)s2r =

T∑

t=1

(rt − r)2 =

T∑

t=1

(
r2t − 2rtr̄ + r̄2

)
=

(
T∑

t=1

r2t

)
− 2

(
T∑

t=1

rt

)
r̄ + T r̄2 =

(
T∑

t=1

r2t

)
− T r̄2

Similarly

(T − 1) s2r̃ =

(
T∑

t=1

r̃2t

)
− T r̄2

But

T∑

t=1

r̃2t =

j−1∑

i=0

(
rik+1 + · · ·+ r(i−1)k

)2
=

T∑

t=1

r2t +

j−1∑

i=0

k∑

m 6=n,=1

rik+mrik+n

So

(s2r̃ − s2r) =
1

T − 1

j−1∑

i=0

k∑

m 6=n,=1

rik+mrik+n

The di�erene in the observed and true variane depends on the produt of returns that are lose

together (in the same �bath�). In general this ould be positive or negative. In the ase where the

mean is non-zero, this term will likely be higher and the variane higher. When the mean is zero, it

will likely be over reported for positively serially orrelated returns, and lower for negative ones. If the

EMH holds (no serial orrelation) and the mean is zero the sample variane should be similar.

Autoorrelation

(T−s) γr(s) =

T∑

t=s+1

(rt−r)(rt−s−r) =

T∑

t=s+1

rtrt−s−r̄

T∑

t=s+1

(rt+rt−s)+(T−s)r̄2 ≈
T∑

t=s+1

rtrt−s−(T−s)r̄2
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beause the

∑T
t=s+1(rt+rt−s) term only di�ers from 2(T −s)r̄ by a few (s) returns at the beginning

and end of the series. So

(T − s) γr̃(s) ≈
T∑

t=s+1

r̃tr̃t−s − (T − s)r̄2

As r̃t is non-zero only for multiples of k, r̃tr̃t−s an only be non-zero when s is a multiple of k. So

γr̃(s) ≈ −r̄2 < 0, ∀ s 6= n.k n ∈ N

Thus negative auto-orrelations observed auto-orrelations are implied.

When j = 1 and k = T all observed returns are zero, exept the �nal observation whih reports

the total return at the end of the period. This is analogous to looking at, say, daily returns whih

aumulate all the intra-day data. In this ase, the mean is the same (as always), the variane will

di�er depending on the properties of the true returns as desribed above and autoovarianes will be

negative.

The setup desribed in this question is of ourse a speial ase of the non-trading model where the

time between reported trades (dt in letures) is deterministi and set to k.

Question 6

The ROLL model provides a framework to explain the presene of negative AutoCorrelation in observed

trade pries at the �rst lag. It is very simple and relies on the observed trades ourring randomly at

a �xed spread from the true �fundamental� pries.

Basi setup:

Pt Observed Pries

P ∗
t �Fundamental� Pries

s Fixed Spread

It Trade Diretion Indiator, +1 or -1 (This was Qt in letures).

ǫt Random Walk (RW) Innovation

σ2
ǫ Variane of RW

It and ǫt are the Random Variables in the model and are jointly IID and mean zero. Thus:

E(ǫtǫt−1) = E(ǫtIt) = E(ItIt−1) = E(ǫtIt−1) = E(ǫt) = E(It) = 0

The ROLL model is de�ned as:

Pt = P ∗
t +

s

2
It

△Pt = ǫt +
s

2
△It

Considering the Covariane

COV (△P 2
t ,△P 2

t−1) = E(△P 2
t △P 2

t−1)− E(△P 2
t )E(△P 2

t−1)

= E(△P 2
t △P 2

t−1)− E(△P 2
t )

2
(1)
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beause the△P 2
t is stationary (ie we an hange the t−1 to t within the E(·) operator). Considering

only the �rst term:

E(△P 2
t △P 2

t−1) = E
[
(ǫt +

s

2
△It)

2 × (ǫt−1 +
s

2
△It−1)

2
]

= E

[
(ǫ2t +

s2

4
△I2t + ǫts△It)× (ǫ2t−1 +

s2

4
△I2t−1 + ǫt−1s△It−1)

]
(2)

Note that the only terms whih are not independent in the �rst set of brakets with the seond are

△It and △It−1. As E(A ×B) = E(A) × E(B) for A & B independent and E(ǫt) = E(It) = 0 means

all terms with a linear ǫ or I term vanish (as the expetation fatorises with a zero fator). Thus

E(△P 2
t △P 2

t−1) = E

[
ǫ2t ǫ

2
t−1 + ǫ2t

s2

4
△I2t−1 +

s2

4
△I2t ǫ

2
t−1 +

s2

4
△I2t

s2

4
△I2t−1

]

= E(ǫ2t )E(ǫ2t−1) +
s2

4
E(ǫ2t )E(△I2t−1) +

s2

4
E(ǫ2t )E(△I2t−1) + (

s2

4
)2E(△I2t △I2t−1)

= E(ǫ2t )
2 + 2× s2

4
E(ǫ2t )E(△I2t ) + (

s2

4
)2E(△I2t △I2t−1) (3)

Noting that I2t = 1 ∀t and E(ItIt−1) = 0 ⇒

E(△I2t ) = E(I2t − 2ItIt−1 + I2t−1) = 2

Similarly

E(△I2t △I2t−1) = E
[
(It − It−1)

2 × (It−1 − It−2)
2
]

= E
[
(I2t − 2ItIt−1 + I2t−1)(I

2
t−1 − 2It−1It−2 + I2t−2)

]

= E [(2− 2ItIt−1)(2 − 2It−1It−2)]

= E
[
4− 4ItIt−1 − 4It−1It−2 + 4ItI

2
t−1It−2

]

= 4

Substituting bak in equation 3 ⇒

E(△P 2
t △P 2

t−1) = E(ǫ2t )
2 + s2E(ǫ2t ) +

s4

4

Now onsider the seond term in equation 1 and again using the expression for E(△I2t ):

E(△P 2
t )

2 =
(
E
[
(ǫt +

s

2
△It)

2
])2

=

(
E

[
ǫ2t + 2× s

2
△Itǫt +

s2

4
△I2t

])2

=

(
E(ǫ2t ) + 2× s

2
E(△It)E(ǫt) +

s2

4
E(△I2t )

)2

=

(
E(ǫ2t ) +

s2

2

)2

= E(ǫ2t )
2 + s2E(ǫ2t ) +

s4

4
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Whih is the same as the �rst term and thus the Covariane is zero, as required.

This impliation an be tested by examining the �rst term in the autoorrelation of the squared

di�erene of prie series. The impliation is not reasonable as we know that volatility is autoorrelated

(Daily hange; △P , is a simplest measure of �volatility� that I an think of). For the Hang Seng

we have already observed that this ovariane annot be zero otherwise there would have been no

adjustments in the robust errors. For ompleteness the ACF of the squared returns is plotted below

whih of ourse shows positive signi�ant values.
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Note that testing for the presene of this autoorrelation using robust errors makes no sense here.

The result we are testing, namely that COV (△P 2
t ,△P 2

t−1) = 0 assumes no serial orrelation in

fundamental returns. Mathematially, we use the fat that E(ǫ2t ǫ
2
t−1) = 0 in equation 2 to derive the

result.

It is also worth noting that the model appliation of this model to this prie series is ompletely

unreasonable as it is is based on prie hanges between trades and the Hang Seng learly trades more

than one a day.

Question 7

The model is hanged to have a stohasti spread, st IID from the other Random Variables, with

E(st) = µ and V AR(st) = σ2
s :

P ∗
t = Pt +

st

2
It

△Pt = ǫt +
1

2
△(stIt)

Beause E(△Pt) = 0
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COV (△Pt,△Pt−1) = COV

(
ǫt +

1

2
△(stIt) , ǫt−1 +

1

2
△(st−1It−1)

)

= E(
1

2
△(stIt)

1

2
△(st−1It−1))

=
1

4
E((stIt − st−1It−1) (st−1It−1 − st−2It−2))

= −1

4

[
E(s2t−1I

2
t−1)

]

= −1

4

[
E(s2t−1 × 1)

]
(4)

= −1

4
(σ2 + µ2)

Introduing the stohasti variane inreases the magnitude of the non-zero autoovariane introdued

by the model.

For the alulation of COV (△P 2
t ,△P 2

t−1) in the previous question we only used expliit terms for

E(△I2t ) and E(△I2t △I2t−1) along with the joint IID fats. Replaing s with 1 and It by the random

variable Ĩt = stIt in question 6 does not hange the IID properties but now:

E(△Ĩ2t ) = E [(stIt − st−1It−1)]
2

= E
[
s2t I

2
t + s2t−1I

2
t−1 − 2stst−1ItIt−1

]

= 2× E(s2t )[
= 2× (σ2 + µ2)

]
(5)

And

E(△Ĩ2t △Ĩ2t−1) = E
[
(stIt − st−1It−1)

2 × (st−1It−1 − st−2It−2)
2
]

= E
[
(s2t I

2
t − 2stItst−1It−1 + s2t−1I

2
t−1)(s

2
t−1I

2
t−1 − 2st−1It−1st−2It−2 + s2t−2I

2
t−2)

]

= E
[
(s2t + s2t−1 − 2stItst−1It−1)(s

2
t−1 + s2t−2 − 2st−1It−1st−2It−2)

]

= E
[
s2t s

2
t−1 + s2t s

2
t−2 + s4t−1 + s2t s

2
t−2+

]

= 3× E(s2t )
2 + E(s4t ) (6)

Substituting the expressions in equations 5 and 6 above into equation 3 in question 6 yields

E(△P 2
t △P 2

t−1) = E(ǫ2t )
2 + E(ǫ2t )E(s2t ) + (

1

4
)2
(
3× E(s2t )

2 + E(s4t )
)

= E(ǫ2t )
2 + E(ǫ2t )E(s2t ) +

3

16
E(s2t )

2 +
1

16
E(s4t )

And substituting E(△Ĩ2t ) into the seond term of equation 3 yields

E(△P 2
t )

2 =

(
E(ǫ2t ) +

1

4
E(△Ĩ2t )

)2

=

(
E(ǫ2t ) +

E(s2)

2

)2

= E(ǫ2t )
2 + E(ǫ2t )E(s2t ) +

E(s2)2

4
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The di�erene is thus:

COV (△P 2
t ,△P 2

t−1) =
1

16

(
E(s4t )− E(s2t )

2
)
> 0

Interestingly inluding a stohasti IID spread introdues serially orrelated variane in the observed

square returns, even though there is no serial orrelation in the spread. Note that this autoorrelation

is in fat related to the fourth moment (kurtosis) of the distribution of s (being proportional to the

variane of s2).

When st is deterministi, return to equation 4 above:

COV (△Pt,△Pt−1) = −1

4

[
E(s2t−1I

2
t−1)

]
= −1

4
s2t−1

as required (somewhat easier than the previous part!).

The magnitude of the autoovariane at lag 1 in the model inreases with the spread, thus around

times of wider spread (ie the open and lose) the observed trade series should be more preditable.

However, even though the model may make this predition it does not mean one an pro�t from it -

you require the possession of the monopoly power of the market maker! Everyone else an only trade

by rossing the spread whih is in the exat opposite diretion as to the diretion you want to trade!

This illustrates a more general point about this model in that the autoorrelation is simply a faet of

the market maker being able to exeute trades at a spread either side of the �fundamental prie� to

her advantage.

Question 8

Book work...but of ourse do not forget to inlude the 7 steps in an event study...
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