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Question 1

I 
hose the Hang Seng index from Hong Kong, its largest 
onstituent; China Constru
tion Bank and

a mu
h smaller small 
ap, FDG Ele
tri
 Vehi
les. Statisti
s are derived from the last 12 years so as

to allow 
omparison a
ross the 3 assets:
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104 Hang Seng 2006 - Present

Pri
e Returns Statisti
s:

Mean 0.031

StdDev 1.525

Kurt 12.603

Skew 0.248

JBstat 12421

Log Returns Statisti
s:

Mean 0.019

StdDev 1.524

Kurt 12.061

Skew -0.008

JBstat 11030

∗
Comments and 
orre
tions to tja20�
am.a
.uk
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China Construction Bank 2006 - Present

Pri
e Returns Statisti
s:

Mean 0.051

StdDev 2.121

Kurt 14.244

Skew 0.836

JBstat 17382

Log Returns Statisti
s:

Mean 0.029

StdDev 2.107

Kurt 12.085

Skew 0.473

JBstat 11223
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FDG Electric Vehicles 2006 - Present

Pri
e Returns Statisti
s:

Mean 0.087

StdDev 4.990

Kurt 24.129

Skew 2.235

JBstat 62051

Log Returns Statisti
s:

Mean -0.031

StdDev 4.809

Kurt 16.788

Skew 1.108

JBstat 25946

In pri
e return the series all have positive drift but interestingly the small sto
k has average negative

log return - this suggests there are large positive values in pri
e returns that 
ontribute to a positive

average but have less of a 
ontribution to the average of the log returns (log is a 
on
ave fun
tion).

This is apparent in the pri
e 
hart. The varian
e of the small sto
k is higher than the large 
ap whi
h is

in turn higher still than the index. This is expe
ted from what we learnt in le
tures. However the Skew

is positive whi
h is unexpe
ted - asset pri
es typi
ally exhibit negative skew, 
alled leverage, explained

by holders of an asset selling on large down moves, exa
erbating the sell-o�. Finally, all returns series

exhibit large ex
ess kurtosis whi
h is as expe
ted. I have in
luded the Jarque Bera statisti
. Under

the null of normality, this has an asymptoti
 χ2
2 distribution. Clearly all series are hugely signi�
antly

di�erent from the normal distribution.

The histogram of returns for the Hang Seng from 1987 is shown below. The skew is negative (-1.22)

over this period in line with the stylized fa
ts of sto
k returns. The skew and ex
ess kurtosis are 
learly

apparent:
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Correlogram

First 
ompute the auto
orrelations and 
ompare with the Bartlett intervals:
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At �rst glan
e 3 auto
orrelations appear signi�
ant. Further the Ljung-Box Q statisti
 is 61.5 for

20 lags, reje
ting the null. However both the Bartlett intervals and Ljung-Box test assume IID returns

(RW1).
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An Aside....Testing The E�
ient Markets Hypothesis

RW1 ǫt ∼ IID; E(ǫt) = 0

RW2 ǫt ∼ independent over time; E(ǫt) = 0

RW2.5 Martingale Property: E[ǫt+1|ǫt, ǫt−1, . . . ] = 0 ⇒ E[ǫt+1g(ǫt, ǫt−1, . . . )] = 0 by LIE

RW3 ∀k > 0, COV (ǫt, ǫt−k) = 0

RW2.5 is the Natural de�nition on EMH.

RW1 ⇒RW2 ⇒ RW2.5 ⇒ RW3 so RW 3⇒ RW 2.5⇒RW 2⇒RW 1

Testing RW1

RW1 ⇒

Q = T

P∑

j=1

ρ̂j
2 ∼ χ2

P Box-Pier
e Q Statisti


RW1 ⇒

Q = T (T + 2)

P∑

j=1

ρ̂j
2

T − j
∼ χ2

P Box-Ljung Q Statisti


Latter has better �nite sample properties. Pro
eed by 
al
ulating Q and reje
t RW1 at level α when

Q > χ2
P (α)

RW1 ⇒
√
T ρ̂k =⇒ N(0, 1) ∀k

Test by 
omparing ρ̂k with the Bartlett Intervals:

[
−zα/2√

T
,
zα/2√
T

]

There are also tests of �average� 
orrelation ρ̄(k) a
ross a portfolio of 
orrelated assets under RW1

as well varian
e ratio tests.

Testing RW2.5

Testing RW1 does not reje
t the natural form of the EMH; RW2.5. We need to 
orre
t for het-

roskedasti
ity and non-linearity in higher moments (eg as in a GARCH model).

RW2.5 ⇒

√
T ρ̂k =⇒ N

(
0,

E(X2
t X

2
t−k)

E(X2
t )

2

)
∀k

Condu
t test via adjusted Bartlett interval on de-meaned series (robust errors):

[
−zα/2√

T
×
√∑

t X
2
t X

2
t−k

(
∑

t X
2
t )

2 ,
zα/2√
T

×
√∑

t X
2
t X

2
t−k

(
∑

t X
2
t )

2

]

The di�eren
e 
an be shown to be in
reasing in the kurtosis of the returns and proportional to the

auto
orrelation at lag k of the squared return series. Similar adjustments exist for varian
e ratio

tests under RW2.5.
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Comparing with the adjusted intervals tells a di�erent story:
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The signi�
an
e disappears! What does this say about the auto
orrelation of the squared returns?

Regression Test

We 
an 
ondu
t a regression test where we regress the next period return on some number of lags of that

return. The regression appears highly signi�
ant, even using robust errors (as below), highlighting the

di�eren
e between regression and auto
orrleation tests. The regression 
oe�
ient is based on a joint

predi
tion whereas the 
orrelation 
oe�
ient is based on a univariate model. The joint model takes

into a

ount the dependen
e of the di�erent lags (whi
h will be non-zero if the model is not trivial,

be
ause if a lag predi
ts the return, then an older lag predi
ts a newer lag). Note that when explanatory

variables are independent, the regression 
oe�
ient is the 
orrelation 
oe�
ient. The signi�
an
e of

the regression may 
ome as a surprise. However, the 
oe�
ients are tiny and of questionable e
onomi


signi�
an
e - for instan
e for a 1% move in the previous return one should fade the move by 2.4bp (bp

= basis point = 0.01%). The R2
is also tiny and the reported signi�
an
e is likely down to the large

data set used, rather than any meaningful predi
tability.
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)

Computing returns using log pri
e ratios makes no di�eren
e to the ACF, it looks identi
al. This is

not surprising as log(1 + x) = x + O(x2) ⇒ rt = Rt + O(Rt), so log and pri
e returns are the same

to �rst order. Typi
ally daily returns are under 2% magnitude so any se
ond order 
ontribution is

around 2%2
or 0.0004. Of 
ourse we do see the odd huge outlier (su
h as -33% on Bla
k Monday for

the Hang Seng!) and the non-linearity does 
hange the moments of the distribution as we saw earlier.

Question 2

Contrarian Trading Strategies rely on the idea that the value of an asset will overrea
t in the short term

(perhaps due to behavioural fa
tors) but then 
orre
t and �revert to the mean�. Momentum strategies

simply buy when the sto
k is going up, ie when it is above its mean, and sell on a 
orresponding

negative signal. The strategies outlined in this question, ignoring trading 
osts, are exa
t opposites.

If the sto
k 
loses below the relevant MA the 
ontrarian strategy buys and earns the next day return.

The momentum trade buys and earns the opposite return.

A simple glan
e at the moving averages (below) suggest momentum is more likely to work, as when

the pri
e is above the moving average the sto
k tends to be rising.
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The 
umulative returns of the momentum trading strategy appear below (There is no need to show

the 
ontrarian returns as they are simply minus those of the above):
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These strategies appear fantasti
. However, they ignore trading 
ost and slippage. Further, they

assume that if today's 
lose 
rosses the moving average one 
an trade at that 
lose, whi
h is a
tually

impossible (it is more plausible for a 
ontrarian strategy if there is a 
losing au
tion - why?). Below

results are shown for the simple moving average in the 
ase where there are transa
tion 
osts of 10bp,

and also when instead of trading on today's 
lose we trade on tomorrows 
lose (with no 
osts). Clearly

the returns are mu
h worse, parti
ularly sin
e 2000 and for the realisti
 �delayed strategy�.
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Question 3

We repeat the analysis from the previous question for the bollinger band momentum strategy. Again

there is no need to plot the opposite, 
ontrarian strategy. Returns are 
al
ulated ignoring 
osts and

slippage (trading on �today's� 
lose). Note that the absolute returns are lower as these algorithms

have no position for mu
h of the time due to the bollinger band providing a �safety net�. Costs would

likely be redu
ed signi�
antly, parti
ularly for the shorter lengths. (They are zero for the 5 day moving

average as it never trades!).
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Question 4

Rolling annual sample mean, standard error, skewness, kurtosis, sele
ted auto
orrelations for the Hang

Seng shown below and the full pri
e 
hart for 
omparison.
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Interesting features of the trailing 
harts are:

• The trailing mean follows rising and falling markets.

• The trailing standard error has 
lusters in it. This is indi
ative of persistent volatility whi
h is

a 
hara
teristi
 of �nan
ial time series. For interest the spike around 1998 is due to the Russian
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Finan
ial Crisis when LTCM nearly blew up the �nan
ial system - the FED organised a bailout

of $3.625 billion by the fund's major 
reditors. There are also spikes around the dot
om bubble

in 2001 and the 2008 GFC is also 
learly evident.

• The trailing third and fourth standardised moments are a�e
ted greatly in the early years by

some huge outliers whi
h in
lude Bla
k Monday in 1987 (-33%).

• The trailing auto
orrelations do not appear statisti
ally di�erent from noise.

Question 5

Although not expli
it in the question assume there are k − 1 zeros separating reported trades so that

the observed and real returns have the same number of data points. We observe j bat
hes of k − 1
zero returns followed by the sum of all the pre
eding true returns that were missed. We are asked to


onsider the di�eren
e in the sample mean, varian
e and auto
ovarian
e of the observed versus true

returns series. Of 
ourse as the sample size grows the sample statisti
s will approa
h the true statisti
s

of the distribution (LLN). Considering the mean:

r̃ =
1

T

T∑

t=1

r̃t =
1

T

j∑

i=1

(0 + · · ·+ rik+1 + · · ·+ r(i−1)k) =
1

T

T∑

t=1

rt = r̄

The mean is una�e
ted. This is not surprising as any missed observations are added to the next

non-zero one - thus the 
umulative return is preserved. Moving on to the sample varian
e:

(T − 1)s2r =

T∑

t=1

(rt − r)2 =

T∑

t=1

(
r2t − 2rtr̄ + r̄2

)
=

(
T∑

t=1

r2t

)
− 2

(
T∑

t=1

rt

)
r̄ + T r̄2 =

(
T∑

t=1

r2t

)
− T r̄2

Similarly

(T − 1) s2r̃ =

(
T∑

t=1

r̃2t

)
− T r̄2

But

T∑

t=1

r̃2t =

j−1∑

i=0

(
rik+1 + · · ·+ r(i−1)k

)2
=

T∑

t=1

r2t +

j−1∑

i=0

k∑

m 6=n,=1

rik+mrik+n

So

(s2r̃ − s2r) =
1

T − 1

j−1∑

i=0

k∑

m 6=n,=1

rik+mrik+n

The di�eren
e in the observed and true varian
e depends on the produ
t of returns that are 
lose

together (in the same �bat
h�). In general this 
ould be positive or negative. In the 
ase where the

mean is non-zero, this term will likely be higher and the varian
e higher. When the mean is zero, it

will likely be over reported for positively serially 
orrelated returns, and lower for negative ones. If the

EMH holds (no serial 
orrelation) and the mean is zero the sample varian
e should be similar.

Auto
orrelation

(T−s) γr(s) =

T∑

t=s+1

(rt−r)(rt−s−r) =

T∑

t=s+1

rtrt−s−r̄

T∑

t=s+1

(rt+rt−s)+(T−s)r̄2 ≈
T∑

t=s+1

rtrt−s−(T−s)r̄2
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be
ause the

∑T
t=s+1(rt+rt−s) term only di�ers from 2(T −s)r̄ by a few (s) returns at the beginning

and end of the series. So

(T − s) γr̃(s) ≈
T∑

t=s+1

r̃tr̃t−s − (T − s)r̄2

As r̃t is non-zero only for multiples of k, r̃tr̃t−s 
an only be non-zero when s is a multiple of k. So

γr̃(s) ≈ −r̄2 < 0, ∀ s 6= n.k n ∈ N

Thus negative auto-
orrelations observed auto-
orrelations are implied.

When j = 1 and k = T all observed returns are zero, ex
ept the �nal observation whi
h reports

the total return at the end of the period. This is analogous to looking at, say, daily returns whi
h

a

umulate all the intra-day data. In this 
ase, the mean is the same (as always), the varian
e will

di�er depending on the properties of the true returns as des
ribed above and auto
ovarian
es will be

negative.

The setup des
ribed in this question is of 
ourse a spe
ial 
ase of the non-trading model where the

time between reported trades (dt in le
tures) is deterministi
 and set to k.

Question 6

The ROLL model provides a framework to explain the presen
e of negative AutoCorrelation in observed

trade pri
es at the �rst lag. It is very simple and relies on the observed trades o

urring randomly at

a �xed spread from the true �fundamental� pri
es.

Basi
 setup:

Pt Observed Pri
es

P ∗
t �Fundamental� Pri
es

s Fixed Spread

It Trade Dire
tion Indi
ator, +1 or -1 (This was Qt in le
tures).

ǫt Random Walk (RW) Innovation

σ2
ǫ Varian
e of RW

It and ǫt are the Random Variables in the model and are jointly IID and mean zero. Thus:

E(ǫtǫt−1) = E(ǫtIt) = E(ItIt−1) = E(ǫtIt−1) = E(ǫt) = E(It) = 0

The ROLL model is de�ned as:

Pt = P ∗
t +

s

2
It

△Pt = ǫt +
s

2
△It

Considering the Covarian
e

COV (△P 2
t ,△P 2

t−1) = E(△P 2
t △P 2

t−1)− E(△P 2
t )E(△P 2

t−1)

= E(△P 2
t △P 2

t−1)− E(△P 2
t )

2
(1)
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be
ause the△P 2
t is stationary (ie we 
an 
hange the t−1 to t within the E(·) operator). Considering

only the �rst term:

E(△P 2
t △P 2

t−1) = E
[
(ǫt +

s

2
△It)

2 × (ǫt−1 +
s

2
△It−1)

2
]

= E

[
(ǫ2t +

s2

4
△I2t + ǫts△It)× (ǫ2t−1 +

s2

4
△I2t−1 + ǫt−1s△It−1)

]
(2)

Note that the only terms whi
h are not independent in the �rst set of bra
kets with the se
ond are

△It and △It−1. As E(A ×B) = E(A) × E(B) for A & B independent and E(ǫt) = E(It) = 0 means

all terms with a linear ǫ or I term vanish (as the expe
tation fa
torises with a zero fa
tor). Thus

E(△P 2
t △P 2

t−1) = E

[
ǫ2t ǫ

2
t−1 + ǫ2t

s2

4
△I2t−1 +

s2

4
△I2t ǫ

2
t−1 +

s2

4
△I2t

s2

4
△I2t−1

]

= E(ǫ2t )E(ǫ2t−1) +
s2

4
E(ǫ2t )E(△I2t−1) +

s2

4
E(ǫ2t )E(△I2t−1) + (

s2

4
)2E(△I2t △I2t−1)

= E(ǫ2t )
2 + 2× s2

4
E(ǫ2t )E(△I2t ) + (

s2

4
)2E(△I2t △I2t−1) (3)

Noting that I2t = 1 ∀t and E(ItIt−1) = 0 ⇒

E(△I2t ) = E(I2t − 2ItIt−1 + I2t−1) = 2

Similarly

E(△I2t △I2t−1) = E
[
(It − It−1)

2 × (It−1 − It−2)
2
]

= E
[
(I2t − 2ItIt−1 + I2t−1)(I

2
t−1 − 2It−1It−2 + I2t−2)

]

= E [(2− 2ItIt−1)(2 − 2It−1It−2)]

= E
[
4− 4ItIt−1 − 4It−1It−2 + 4ItI

2
t−1It−2

]

= 4

Substituting ba
k in equation 3 ⇒

E(△P 2
t △P 2

t−1) = E(ǫ2t )
2 + s2E(ǫ2t ) +

s4

4

Now 
onsider the se
ond term in equation 1 and again using the expression for E(△I2t ):

E(△P 2
t )

2 =
(
E
[
(ǫt +

s

2
△It)

2
])2

=

(
E

[
ǫ2t + 2× s

2
△Itǫt +

s2

4
△I2t

])2

=

(
E(ǫ2t ) + 2× s

2
E(△It)E(ǫt) +

s2

4
E(△I2t )

)2

=

(
E(ǫ2t ) +

s2

2

)2

= E(ǫ2t )
2 + s2E(ǫ2t ) +

s4

4
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Whi
h is the same as the �rst term and thus the Covarian
e is zero, as required.

This impli
ation 
an be tested by examining the �rst term in the auto
orrelation of the squared

di�eren
e of pri
e series. The impli
ation is not reasonable as we know that volatility is auto
orrelated

(Daily 
hange; △P , is a simplest measure of �volatility� that I 
an think of). For the Hang Seng

we have already observed that this 
ovarian
e 
annot be zero otherwise there would have been no

adjustments in the robust errors. For 
ompleteness the ACF of the squared returns is plotted below

whi
h of 
ourse shows positive signi�
ant values.
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Note that testing for the presen
e of this auto
orrelation using robust errors makes no sense here.

The result we are testing, namely that COV (△P 2
t ,△P 2

t−1) = 0 assumes no serial 
orrelation in

fundamental returns. Mathemati
ally, we use the fa
t that E(ǫ2t ǫ
2
t−1) = 0 in equation 2 to derive the

result.

It is also worth noting that the model appli
ation of this model to this pri
e series is 
ompletely

unreasonable as it is is based on pri
e 
hanges between trades and the Hang Seng 
learly trades more

than on
e a day.

Question 7

The model is 
hanged to have a sto
hasti
 spread, st IID from the other Random Variables, with

E(st) = µ and V AR(st) = σ2
s :

P ∗
t = Pt +

st

2
It

△Pt = ǫt +
1

2
△(stIt)

Be
ause E(△Pt) = 0
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COV (△Pt,△Pt−1) = COV

(
ǫt +

1

2
△(stIt) , ǫt−1 +

1

2
△(st−1It−1)

)

= E(
1

2
△(stIt)

1

2
△(st−1It−1))

=
1

4
E((stIt − st−1It−1) (st−1It−1 − st−2It−2))

= −1

4

[
E(s2t−1I

2
t−1)

]

= −1

4

[
E(s2t−1 × 1)

]
(4)

= −1

4
(σ2 + µ2)

Introdu
ing the sto
hasti
 varian
e in
reases the magnitude of the non-zero auto
ovarian
e introdu
ed

by the model.

For the 
al
ulation of COV (△P 2
t ,△P 2

t−1) in the previous question we only used expli
it terms for

E(△I2t ) and E(△I2t △I2t−1) along with the joint IID fa
ts. Repla
ing s with 1 and It by the random

variable Ĩt = stIt in question 6 does not 
hange the IID properties but now:

E(△Ĩ2t ) = E [(stIt − st−1It−1)]
2

= E
[
s2t I

2
t + s2t−1I

2
t−1 − 2stst−1ItIt−1

]

= 2× E(s2t )[
= 2× (σ2 + µ2)

]
(5)

And

E(△Ĩ2t △Ĩ2t−1) = E
[
(stIt − st−1It−1)

2 × (st−1It−1 − st−2It−2)
2
]

= E
[
(s2t I

2
t − 2stItst−1It−1 + s2t−1I

2
t−1)(s

2
t−1I

2
t−1 − 2st−1It−1st−2It−2 + s2t−2I

2
t−2)

]

= E
[
(s2t + s2t−1 − 2stItst−1It−1)(s

2
t−1 + s2t−2 − 2st−1It−1st−2It−2)

]

= E
[
s2t s

2
t−1 + s2t s

2
t−2 + s4t−1 + s2t s

2
t−2+

]

= 3× E(s2t )
2 + E(s4t ) (6)

Substituting the expressions in equations 5 and 6 above into equation 3 in question 6 yields

E(△P 2
t △P 2

t−1) = E(ǫ2t )
2 + E(ǫ2t )E(s2t ) + (

1

4
)2
(
3× E(s2t )

2 + E(s4t )
)

= E(ǫ2t )
2 + E(ǫ2t )E(s2t ) +

3

16
E(s2t )

2 +
1

16
E(s4t )

And substituting E(△Ĩ2t ) into the se
ond term of equation 3 yields

E(△P 2
t )

2 =

(
E(ǫ2t ) +

1

4
E(△Ĩ2t )

)2

=

(
E(ǫ2t ) +

E(s2)

2

)2

= E(ǫ2t )
2 + E(ǫ2t )E(s2t ) +

E(s2)2

4
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The di�eren
e is thus:

COV (△P 2
t ,△P 2

t−1) =
1

16

(
E(s4t )− E(s2t )

2
)
> 0

Interestingly in
luding a sto
hasti
 IID spread introdu
es serially 
orrelated varian
e in the observed

square returns, even though there is no serial 
orrelation in the spread. Note that this auto
orrelation

is in fa
t related to the fourth moment (kurtosis) of the distribution of s (being proportional to the

varian
e of s2).

When st is deterministi
, return to equation 4 above:

COV (△Pt,△Pt−1) = −1

4

[
E(s2t−1I

2
t−1)

]
= −1

4
s2t−1

as required (somewhat easier than the previous part!).

The magnitude of the auto
ovarian
e at lag 1 in the model in
reases with the spread, thus around

times of wider spread (ie the open and 
lose) the observed trade series should be more predi
table.

However, even though the model may make this predi
tion it does not mean one 
an pro�t from it -

you require the possession of the monopoly power of the market maker! Everyone else 
an only trade

by 
rossing the spread whi
h is in the exa
t opposite dire
tion as to the dire
tion you want to trade!

This illustrates a more general point about this model in that the auto
orrelation is simply a fa
et of

the market maker being able to exe
ute trades at a spread either side of the �fundamental pri
e� to

her advantage.

Question 8

Book work...but of 
ourse do not forget to in
lude the 7 steps in an event study...
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