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Dr Tom Auld*
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Question 1

I chose the Hang Seng index from Hong Kong, its largest constituent; China Construction Bank and
a much smaller small cap, FDG Electric Vehicles. Statistics are derived from the last 12 years so as

to allow comparison across the 3 assets:
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*Comments and corrections to tja20@cam.ac.uk

Price Returns Statistics:

Mean 0.031
StdDev 1.525
Kurt 12.603
Skew 0.248
JBstat 12421

Log Returns Statistics:

Mean 0.019
StdDev 1.524
Kurt 12.061
Skew -0.008
JBstat 11030



China Construction Bank 2006 - Present

Price Returns Statistics:

Mean 0.051
8r StdDev 2.121

Kurt 14.244
7r Skew 0.836

JBstat 17382

Log Returns Statistics:

China Construction Bank
(2]

Mean 0.029
4r StdDev 2.107
Kurt 12.085
3 Skew 0.473
JBstat 11223
2 2008 2010 2012 2014 2016 2018
5 FDG Electric Vehicles 2006 - Present
Price Returns Statistics:
25 Mean 0.087
StdDev 4.990
3 5 Kurt 24.129
% Skew 2.235
z JBstat 62051
s 15
3
g Log Returns Statistics:
2! Mean -0.031
StdDev 4.809
05 Kurt 16.788
Skew 1.108
JBstat 25946

2008 2010 2012 2014 2016 2018

In price return the series all have positive drift but interestingly the small stock has average negative
log return - this suggests there are large positive values in price returns that contribute to a positive
average but have less of a contribution to the average of the log returns (log is a concave function).
This is apparent in the price chart. The variance of the small stock is higher than the large cap which is
in turn higher still than the index. This is expected from what we learnt in lectures. However the Skew
is positive which is unexpected - asset prices typically exhibit negative skew, called leverage, explained
by holders of an asset selling on large down moves, exacerbating the sell-off. Finally, all returns series
exhibit large excess kurtosis which is as expected. I have included the Jarque Bera statistic. Under
the null of normality, this has an asymptotic x3 distribution. Clearly all series are hugely significantly
different from the normal distribution.

The histogram of returns for the Hang Seng from 1987 is shown below. The skew is negative (-1.22)
over this period in line with the stylized facts of stock returns. The skew and excess kurtosis are clearly
apparent:



Price Returns of Hang Seng 1987 - Present
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b)
Correlogram

First compute the autocorrelations and compare with the Bartlett intervals:

Hang Seng Price Returns Correlogram
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At first glance 3 autocorrelations appear significant. Further the Ljung-Box Q statistic is 61.5 for
20 lags, rejecting the null. However both the Bartlett intervals and Ljung-Box test assume IID returns
(RW1).



An Aside....Testing The Efficient Markets Hypothesis

RW1 e ~I1ID; E(e)=0

RW2 €, ~ independent over time; E(e) =0

RW2.5 Martingale Property: Eleii1let, €1-1,...] =0 = FElett19(et,€1-1,...)] =0 by LIE
RW3 Vk >0, COV (e, €—) =0

RW2.5 is the Natural definition on EMH.
RW1 =RW2 = RW2.5 = RW3 o) RW3= RW2.5=RW2=RW1

Testing RW1

RW1 = ,
Q= TZPAJQ ~ X% Box-Pierce QQ Statistic
j=1

RW1 =

P A2

Q=T(T+2) Z ij -~ X Box-Ljung Q Statistic
: —J
j=1

Latter has better finite sample properties. Proceed by calculating @ and reject RW1 at level & when
Q > xp(a)
RW1 =
VTp, = N(0,1) Vk
Test by comparing g with the Bartlett Intervals:

|:_ Zaj2 Ra/2 :|

vT' VT
There are also tests of “average” correlation p(k) across a portfolio of correlated assets under RW1
as well variance ratio tests.

Testing RW2.5

Testing RW1 does not reject the natural form of the EMH; RW2.5. We need to correct for het-
roskedasticity and non-linearity in higher moments (eg as in a GARCH model).

RW2.5 =

E(X2X?
VTj, — N (07 M) i

B(X?)?

Conduct test via adjusted Bartlett interval on de-meaned series (robust errors):

_ Za/2 » ZtXEXE—k a2 y ZtXEth—k
VT (S, x2)° VT (3, X2)°

The difference can be shown to be increasing in the kurtosis of the returns and proportional to the
autocorrelation at lag k of the squared return series. Similar adjustments exist for variance ratio
tests under RW2.5.




Comparing with the adjusted intervals tells a different story:

Hang Seng Correlogram With Robust Intervals
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The significance disappears! What does this say about the autocorrelation of the squared returns?

Regression Test

We can conduct a regression test where we regress the next period return on some number of lags of that
return. The regression appears highly significant, even using robust errors (as below), highlighting the
difference between regression and autocorrleation tests. The regression coefficient is based on a joint
prediction whereas the correlation coefficient is based on a univariate model. The joint model takes
into account the dependence of the different lags (which will be non-zero if the model is not trivial,
because if a lag predicts the return, then an older lag predicts a newer lag). Note that when explanatory
variables are independent, the regression coefficient is the correlation coefficient. The significance of
the regression may come as a surprise. However, the coefficients are tiny and of questionable economic
significance - for instance for a 1% move in the previous return one should fade the move by 2.4bp (bp
= basis point = 0.01%). The R? is also tiny and the reported significance is likely down to the large
data set used, rather than any meaningful predictability.



Linear regression model (robust fit):
¥ ~ 1 < ¥ 4 %2 + X3 4 ¥4 + %5

Estimated Coefficients:

Estimate SE tstat pvValue
(Intercept) 0.00066912 0.00013967 4.7908 1.6917e-06
x1 -0.024335 0.0085434 -2.8484 0.0044049
x2 0.0045593 0.0085407 0.53383 0.59347
x3 0.023911 0.0085333 2.802 0.0050903
x4 -0.0055994 0.008541 -0.65559 0 .51.211
x5 0.0063506 0.0085433 0.74335 0.45729

Number of observations: 7921, Error degrees of freedom: 7915
Root Mean Squared Error: 0.0124

R-squared: 0.0026, Adjusted R-Squared 0.00197

F-statistic vs. constant model: 4.12, p-value = 0.000965

c)

Computing returns using log price ratios makes no difference to the ACF, it looks identical. This is
not surprising as log(1 +z) = x + O(z?) = r; = Ry + O(R;), so log and price returns are the same
to first order. Typically daily returns are under 2% magnitude so any second order contribution is
around 2%?2 or 0.0004. Of course we do see the odd huge outlier (such as -33% on Black Monday for
the Hang Seng!) and the non-linearity does change the moments of the distribution as we saw earlier.

Question 2

Contrarian Trading Strategies rely on the idea that the value of an asset will overreact in the short term
(perhaps due to behavioural factors) but then correct and “revert to the mean”. Momentum strategies
simply buy when the stock is going up, ie when it is above its mean, and sell on a corresponding
negative signal. The strategies outlined in this question, ignoring trading costs, are exact opposites.
If the stock closes below the relevant MA the contrarian strategy buys and earns the next day return.
The momentum trade buys and earns the opposite return.

A simple glance at the moving averages (below) suggest momentum is more likely to work, as when
the price is above the moving average the stock tends to be rising.



Hang Seng with 200day MA and EMA
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The cumulative returns of the momentum trading strategy appear below (There is no need to show
the contrarian returns as they are simply minus those of the above):

Profit from Momentum MA Trading Strategies Profit from Momentum EMA Trading Strategies
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These strategies appear fantastic. However, they ignore trading cost and slippage. Further, they
assume that if today’s close crosses the moving average one can trade at that close, which is actually
impossible (it is more plausible for a contrarian strategy if there is a closing auction - why?). Below
results are shown for the simple moving average in the case where there are transaction costs of 10bp,
and also when instead of trading on today’s close we trade on tomorrows close (with no costs). Clearly
the returns are much worse, particularly since 2000 and for the realistic “delayed strategy”.



f’rofit from Momentum MA Trading Strategies With 10bp Costs
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Question 3
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We repeat the analysis from the previous question for the bollinger band momentum strategy. Again
there is no need to plot the opposite, contrarian strategy. Returns are calculated ignoring costs and

1477

slippage (trading on “today’s

close). Note that the absolute returns are lower as these algorithms

have no position for much of the time due to the bollinger band providing a “safety net”. Costs would
likely be reduced significantly, particularly for the shorter lengths. (They are zero for the 5 day moving

average as it never trades!).

«10% 200D Hang Seng Bollinger Bands
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Question 4
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Rolling annual sample mean, standard error, skewness, kurtosis, selected autocorrelations for the Hang

Seng shown below and the full price chart for comparison.
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Interesting features of the trailing charts are:

Trailing Mean of Hang Seng
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e The trailing mean follows rising and falling markets.

e The trailing standard error has clusters in it. This is indicative of persistent volatility which is
a characteristic of financial time series. For interest the spike around 1998 is due to the Russian



Financial Crisis when LTCM nearly blew up the financial system - the FED organised a bailout
of $3.625 billion by the fund’s major creditors. There are also spikes around the dotcom bubble
in 2001 and the 2008 GFC is also clearly evident.

e The trailing third and fourth standardised moments are affected greatly in the early years by
some huge outliers which include Black Monday in 1987 (-33%).

e The trailing autocorrelations do not appear statistically different from noise.

Question 5

Although not explicit in the question assume there are k — 1 zeros separating reported trades so that
the observed and real returns have the same number of data points. We observe j batches of k — 1
zero returns followed by the sum of all the preceding true returns that were missed. We are asked to
consider the difference in the sample mean, variance and autocovariance of the observed versus true
returns series. Of course as the sample size grows the sample statistics will approach the true statistics
of the distribution (LLN). Considering the mean:

X L 1 o
T=—=) It=— (0+-"+7”z'k+1+"'+T(i—1)k):TZ”:_
t=1

t=1 i=1
The mean is unaffected. This is not surprising as any missed observations are added to the next
non-zero one - thus the cumulative return is preserved. Moving on to the sample variance:

T

= Z(’I‘t —7)2 :Z(Tf —27“1577-1-772) = (ZT?) -2 (Z”) 74T = (Zﬁ) _ T2

t=1 t=1

Similarly
T
- (x)-
t=1
But
T j—1 , T j—1
YOI SCTHESRETHNALIED SIS il S e
t=1 =0 t=1 i=0 m#n,=1
So

| il ok
(57— 57) = T_1 Z Z Tik+mTik+n

i=0 m#n,=1

The difference in the observed and true variance depends on the product of returns that are close
together (in the same “batch”). In general this could be positive or negative. In the case where the
mean is non-zero, this term will likely be higher and the variance higher. When the mean is zero, it
will likely be over reported for positively serially correlated returns, and lower for negative ones. If the
EMH holds (no serial correlation) and the mean is zero the sample variance should be similar.

Autocorrelation
T
(T=s)7(s) = Y (re=T)(re—s—T) Z Tt s—T Z retre—s) Z rire—s—(T—s)7
t=s+1 t=s+1 t=s+1 t=s+1
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because the ZtT:sH (re+r¢—s) term only differs from 2(7 — s)7 by a few (s) returns at the beginning
and end of the series. So

(T — 5) 77 (s) ~ Firy—s — (T — )7
t=s+1

As 7 is non-zero only for multiples of k, ¥:7;_s can only be non-zero when s is a multiple of k. So

Ye(s) = -7 <0, Vs#nkneN
Thus negative auto-correlations observed auto-correlations are implied.

When j = 1 and k£ = T all observed returns are zero, except the final observation which reports
the total return at the end of the period. This is analogous to looking at, say, daily returns which
accumulate all the intra-day data. In this case, the mean is the same (as always), the variance will
differ depending on the properties of the true returns as described above and autocovariances will be
negative.

The setup described in this question is of course a special case of the non-trading model where the
time between reported trades (d; in lectures) is deterministic and set to k.

Question 6

The ROLL model provides a framework to explain the presence of negative AutoCorrelation in observed
trade prices at the first lag. It is very simple and relies on the observed trades occurring randomly at
a fixed spread from the true “fundamental” prices.

Basic setup:

P, Observed Prices

Py “Fundamental” Prices

s Fixed Spread

I Trade Direction Indicator, +1 or -1 (This was @Q; in lectures).
€t Random Walk (RW) Innovation

o? Variance of RW

I; and €; are the Random Variables in the model and are jointly IID and mean zero. Thus:

E(etet_l) = E(Etlt) = E(Itlt_l) = E(GtIt_l) = E(Gt) = E(It) =0
The ROLL model is defined as:

P=P+ gIt
Apt = €¢ + gAIt

Considering the Covariance

C’OV(APE, APt2—1) = E(APtQAPtQ—l) - E(APE)E(APE—l)
= E(APEAPt{l) - E(APt2)2 (1)

11



because the A P? is stationary (ie we can change the ¢t—1 to ¢ within the E(-) operator). Considering
only the first term:

S S
E(APt2APt271) =F |:(€t + §Alt)2 X (thl + §AIt71)2i|

2 2
S_AI,? + EtSAIt) X (6%71 + SZAItzfl + €t—13AIt—1):| (2)

ZE[(ef—l— 1

Note that the only terms which are not independent in the first set of brackets with the second are
Al and AL_;. As E(A x B) = E(A) x E(B) for A & B independent and E(e;) = E(I;) = 0 means
all terms with a linear € or I term vanish (as the expectation factorises with a zero factor). Thus

2 2 2 2 252 2 5° 2 2 5° 252 2
E(A_Pt A’Pt—l) = E Gtet_l + Gt ZAIt_l + ZAIt Et—l + ZAIt ZAIt_l

= BE(@)B(e}1) + TE@)B(ALL,) + TE(QELL ) + (T EARALL,)
= B(})? +2 x TE(QE(OL) + (T EALRALL) 3)

Noting that I? =1Vt and E(I;I;—1) =0 =

E(AI}) = E(I? =251,y +12,) =2

Similarly

B(ARAIE ) = E[(I — Ii—1)? x (Ii—1 — I;—»)?]
[It2_2ItIt VHIE I 2L 0L+ 1))

E
E
E[(2—2L1_1)(2 — 21,_11,_5))
E
4

[4—ALL,_y — AL 115+ ALI7 (1, 5)

Substituting back in equation 3 =

4

B(APPAPY,) = B + 8°B(S) + 7

Now consider the second term in equation 1 and again using the expression for E(AI?):

2
E(AP?)? = (E [(et n %AL)QD
2 s 5° 2 ’
E € + 2 X §AIt6t + ZAIt

(

= <E(ef) +2x gE(AIt)E(et) + Z—QE(AIE))z
(
E

12



Which is the same as the first term and thus the Covariance is zero, as required.

This implication can be tested by examining the first term in the autocorrelation of the squared
difference of price series. The implication is not reasonable as we know that volatility is autocorrelated
(Daily change; AP, is a simplest measure of “volatility” that I can think of). For the Hang Seng
we have already observed that this covariance cannot be zero otherwise there would have been no
adjustments in the robust errors. For completeness the ACF of the squared returns is plotted below
which of course shows positive significant values.

Hang Seng Square Returns Correlogram
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Note that testing for the presence of this autocorrelation using robust errors makes no sense here.
The result we are testing, namely that COV(AP?,AP? ;) = 0 assumes no serial correlation in
fundamental returns. Mathematically, we use the fact that E(e?¢? ;) = 0 in equation 2 to derive the
result.

It is also worth noting that the model application of this model to this price series is completely
unreasonable as it is is based on price changes between trades and the Hang Seng clearly trades more
than once a day.

Question 7

The model is changed to have a stochastic spread, s; IID from the other Random Variables, with
E(s;) = pand VAR(s;) = 02:

Pl =P+ S—;It
1
APt = €t + §A(St1t)
Because E(AP;) =0

13



1 1
COV(APt, APt_l) =COoV (6,5 + 5&(8,5[,5) , €4—1 T §A(St_1lt_1))

= E(%A(St,[t)%A(St—llt—l))

1
= ZE((StIt —se—1dp—1) (se—1dp—1 — s¢—211—2))

1
= 1 [E(St2—1]t2—1)]
1

=~ [E(5t2—1 x 1)] (4)

1
= —1(02 +p?)

Introducing the stochastic variance increases the magnitude of the non-zero autocovariance introduced
by the model.

For the calculation of COV(AP? AP?2 ) in the previous question we only used explicit terms for
E(AI?) and E(AIZAIE ) along with the joint IID facts. Replacing s with 1 and I; by the random

variable I; = s;I; in question 6 does not change the IID properties but now:

E(AT?) = E((siI; — si-10-1))?
=F [sttz + S?,lftz,l - 25t5t71[t1t71}

=2 x F(s?)
[=2x (0 + p?)] (5)
And
E(ARAI? ) = E [(sely — st-11-1)% X (se-11i-1 — 81-21;—2)?]
=E[(s{I} = 2s¢ysi—1li—1 + 53117 1) (571 I7 — 251l 112Dy o + 57 517 )]
=E (s} +s7_1 —2s:Lyse-15i1) (57 + 870 — 284114181211 2)]
= B [sisi_1 + 57570+ 541 + 5757 oF]
=3 x E(s2)? 4+ E(s}) (6)

Substituting the expressions in equations 5 and 6 above into equation 3 in question 6 yields

BAPEAPE,) = B(E) + B(E)E(s) + (5)? (3 x E(s7)* + E(s}))

4
3 1
— () + B)E(s) + 15 (s + 1o E(s))

And substituting E(AI?) into the second term of equation 3 yields

m&ﬁf—(ﬂﬁnngﬁﬁz

- (E(ef) + E(j))z

E(SQ)Q

(@) + B(@)B(s}) + =

14



The difference is thus:

1
COV(AP?, AP, = T (E(sf) — E(s})?) >0

Interestingly including a stochastic IID spread introduces serially correlated variance in the observed
square returns, even though there is no serial correlation in the spread. Note that this autocorrelation
is in fact related to the fourth moment (kurtosis) of the distribution of s (being proportional to the
variance of s?).

When s; is deterministic, return to equation 4 above:

COV(AP,, AP,_y) = —i [

as required (somewhat easier than the previous part!).

1
E(Sfflltzfl)] = _15571

The magnitude of the autocovariance at lag 1 in the model increases with the spread, thus around
times of wider spread (ie the open and close) the observed trade series should be more predictable.
However, even though the model may make this prediction it does not mean one can profit from it -
you require the possession of the monopoly power of the market maker! Everyone else can only trade
by crossing the spread which is in the exact opposite direction as to the direction you want to trade!
This illustrates a more general point about this model in that the autocorrelation is simply a facet of
the market maker being able to execute trades at a spread either side of the “fundamental price” to
her advantage.

Question 8

Book work...but of course do not forget to include the 7 steps in an event study...
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