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a b s t r a c t

This paper considers nonparametric additive models that have a deterministic time trend
and both stationary and integrated variables as components. The diverse nature of the
regressors caters for applications in a variety of settings. In addition, we extend the analysis
to allow the stationary regressor to be instead locally stationary, and we allow the models
to include a linear form of the integrated variable. Heteroscedasticity is allowed for in
all models. We propose an estimation strategy based on orthogonal series expansion
that takes account of the different type of stationarity/nonstationarity possessed by each
covariate. We establish pointwise asymptotic distribution theory jointly for all estimators
of unknown functions and also show the conventional optimal convergence rates jointly in
the L2 sense. In spite of the entanglement of different kinds of regressors, we can separate
out the distribution theory for each estimator. We provide Monte Carlo simulations that
establish the favorable properties of our procedures inmoderate sized samples. Finally, we
apply our techniques to the study of a pairs trading strategy.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper is devoted to the investigation of additively separable nonparametric regressions with deterministic time
trend, stationary and nonstationary variables. In practice all these types of variables are important in applications in
economics, finance and related fields. For example, aggregate consumption, disposable income and share prices are widely
accepted as being (globally) nonstationary variables, while interest rates and the volume of share trading are often taken as
stationary variables or locally stationary variables with mild trends. Some variables may also contain a deterministic time
trend. Therefore, from a practical point of view, it is necessary to study regression with different kinds of regressors. The
choice of functional form is also important, and we should not like to restrict the shape of the regression functions, though
quite hard to address in the presence of nonstationarity, which is the purpose of our study.

Grenander and Rosenblatt (1957) is a classic treatment of parametric deterministic trend models, while Phillips (2007,
2010) provide an update and discussion. There are a number of papers that develop theory for nonparametric regression
with nonstationary variables alone. Karlsen et al. (2007) investigate the nonparametric regression situationwhere the single
covariate is a recurrentMarkov chain. Schienle (2008) investigates additive nonparametric regressionswith Harris recurrent
covariates and obtained a limit theory for kernel smooth backfitting estimators. Wang and Phillips (2009) consider an
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alternative treatment by making use of local time limit theory and, instead of recurrent Markov chains, worked with partial
sum representations. Phillips et al. (2017) consider a functional coefficientmodelwhere the covariates are unit root processes
and the functional coefficient is driven by rescaled time. Wang (2015) gives an excellent overview of the tools needed for
distribution theory in a variety of these settings.

To the best of our knowledge, there are no theoretical studies that accommodate these three kinds of regressors in
a nonparametric setting. The closest study is Chang et al. (2001) where, though all the three regressors are contained, a
nonlinear parametric model is studied, that is, all functions are supposed to be known. In addition, there are a number of
studies that contain regressors with two of these features and most of them are linear regression with perhaps functional
coefficients. Park and Hahn (1999) study linear regression with I(1) regressor and time varying coefficients depending
on fixed design; Xiao (2009) studies functional-coefficient cointegration regression where the coefficients depend on a
stationary variable and the regressor is an I(1) vector; Cai et al. (2009) study a similar model with more flexibility; more
interestingly, Li et al. (2016) recently investigate the convergence of sample covariances which have I(1) process and a
variable that can be a fixed design or a random design but not both.

In this paper, we mainly consider the model

yt = β(t/n) + g(zt ) + m(xt ) + et , t = 1, . . . , n (1.1)

where β, g and m are unknown smooth functions, zt and xt are stationary and integrated processes, respectively, but may
be correlated, et is an error term. Here, β(·) is defined on [0,1], g(·) is defined on Vz , the support of z1, and m(·) is supposed
to be integrable and defined on R. Notice that Vz could be a finite interval like [a, b] or an infinite interval like (−∞,∞) or
(0,∞).

All unknown functions will be estimated by the series method, which is particularly convenient in additive models
(Andrews andWhang, 1990), comparedwith the kernelmethod that requires an iterative ‘‘backfitting technique’’ (Mammen
et al., 1999). Indeed, the series method gives an explicit solution for the estimators obtained by the ordinary least squares,
which facilitates the asymptotic analyses. In contrast, the smooth backfitting technique needs two steps, in order to derive
the estimators. See, for example, Vogt (2012, p. 2612).

Moreover, the setting of model (1.1) is quite different from existing papers such as Dong et al. (2016) and Phillips et
al. (2017). Note that Dong et al. (2016) mainly investigates a single-index model with an integrated regressor that does not
contain either deterministic trend or stationary variable,while Phillips et al. (2017) dealswith a functional-coefficientmodel.
In particular, the approach of deriving asymptotic distribution makes much improvement in this paper as simultaneously
three types of variables are involved in nonparametric models.

The most important feature of model (1.1) is the diverse nature of the regressors, which permits a wide variety
of applications. This, however, gives rise to a challenge for the asymptotic analyses. Our findings include that: (1) the
interactions between m(xt ), properly normalized, and any one of the other components eventually vanishes; (2) although
different kinds of variables are entangled inside the estimators, eachhas its own separable convergence rate; (3) conventional
optimal convergence rates are attainable.

We further extend the model (1.1) in two respects. We shall relax the stationary process zt to be a locally stationary
process. That is, we consider also

yt = β(t/n) + g(znt ) + m(xt ) + et , (1.2)

where t = 1, . . . , n, all ingredients are the same as in model (1.1) except that znt is a locally stationary process defined
below. This class of processes has received a lot of attention recently, (see, Vogt (2012)), and it captures an important notion
that there is slowly evolving change. In addition, since the integrability of the function m(·) excludes the polynomial form
in xt , we extend the model below to contain a linear form of the integrated process. It is clear that this linear form may be
substituted by any polynomial without constant and similar theoretical results remain true.

We work with scalar covariates although it is easy to extend the theory to allow the stationary or locally stationary
regressor znt to be a vector (znt;j, j = 1, . . . , d) and g(znt ) =

∑d
j=1gj(znt;j), but we have eschewed this further complication

due to its notational cost.
Our procedure is easy to implement and we verify in simulation experiments that the distribution theory we obtain

well captures the finite sample behavior of our estimators. We apply our methodology to the study of pairs trading (Gatev
et al., 2006). We consider the stock prices of Coke and Pepsi and build a model that links these prices and allows for
globally nonstationary components, slowly moving deterministic trends, and a stationary or locally stationary covariate,
in our case the relative trading volume of the two common stocks. We find that our model captures important nonlinearity
and evolutionary behavior in the relationship between the two stock prices that the usual linear cointegrating relationship
ignores. The value of our approach is quantified through out of sample forecast and trading profits relative to the linear
alternative.

The organization of the rest is as follows. Section 2 describes the procedure of estimation; Section 3 gives the entire
asymptotic theory that covers the normality of estimators for model (1.1) in Section 3.1, that for model (1.2) in Section 3.2
and that for the extended model which contains an extra linear form of xt in Section 3.3; Monte Carlo experiment is
conducted in Section 4, followedby an empirical study in Section 5, and Section 6 concludes. AppendixA contains all technical
lemmas whose proofs are relegated to the supplementary material of the paper; Appendix B gives the proofs of theorems in
Sections 3.1 and 3.2 while that of all other theorems, proposition and corollaries are shown in the supplement.
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Throughout the paper, Ik is the identity matrix of dimension k; ∥v∥ is Euclidean norm for any vector v and ∥A∥ is entry-
wise norm for anymatrix;

∫
f (x)dx is an integral on the entireR; C , C1, . . ., can be any positive constants andmay be different

at each appearance.

2. Assumptions and estimation procedure

This section gives assumptions on the regressors and the error term as well as the procedure by which the unknown
functions are estimated.

2.1. Assumptions

We first give the structure of the integrated regressor xt that we shall assume.

Assumption A.

A.1 Let {ϵj,−∞ < j < ∞} be a scalar sequence of independent and identically distributed (i.i.d.) random variables
having an absolutely continuous distribution with respect to the Lebesgue measure and satisfying E[ϵ1] = 0,E[ϵ21 ] =

1,E|ϵ1|
q1 < ∞ for some q1 ≥ 4. The characteristic function of ϵ1 satisfies that

∫
|λ||E exp(iλϵ1)|dλ < ∞.

A.2 Let wt =
∑

∞

j=0ψjϵt−j where
∑

∞

j=0j|ψj| < ∞ and ψ :=
∑

∞

j=0ψj ̸= 0.
A.3 For t ≥ 1, xt = xt−1 + wt , and x0 = OP (1).

The conditions in Assumption A are commonly used in the literature concerning unit root time series (see, e.g. Park and
Phillips, 1999, 2001 and Dong et al., 2016). The innovation variables {ϵj} are building blocks for the linear process wt from
which the regressor is obtained by integration. All crucial properties of xt for our theoretical development given in LemmaA.1
are derived from the I(1) structure.

Meanwhile, from the structure of xt , wemay have d2n := E(x2n) = ψ2n(1+o(1)) simply by virtue of the BN decomposition
for wt (Phillips and Solo, 1992 p. 972). It follows that for r ∈ [0, 1], d−1

n x[nr]→DW (r) in the space D[0, 1] as n → ∞,
where [·] is the biggest integer not exceeding the argument. Here, D[0, 1] is the Skorokhod space on [0, 1], that is, the
collection of functions defined on [0, 1] that are everywhere right-continuous and have left limits everywhere; W (r) is
a standard Brownian motion and our theory developed below depends on its local time process defined by LW (r, a) =

limϵ→0ϵ
−1
∫ r
0 I(|W (u) − a| < ϵ)du, where I(·) is the indicator function. Note that LW (r, a) stands for the sojourn time of

the process W (·) at the spatial point a over the time period [0, r], and Revuz and Yor (2005) is a standard book introducing
the local time of Brownian motion.

Assumption B.

B.1 Suppose that either (a) zt is a strictly stationary and α-mixing process with mixing coefficients α(i) such that∑
∞

i=1α
δ/(2+δ)(i) < ∞ for some δ > 0, and zt are independent of {ϵj,−∞ < j < ∞} defined in Assumption A; or

(b) zt = ρ(ϵt , . . . , ϵt−d+1; ηt , . . . , ηt−d+1) with fixed d ≥ 1 and measurable function ρ : R2d
↦→ R, and zt have finite

second moment, where i.i.d.(0,1) sequence {ηj} is independent of {ϵj}.
B.2 There exists an orthogonal function sequence {pi(z), i ≥ 0} on the support Vz of z1 and the orthogonality is with respect

to dF (z) where F (z) is a distribution function on Vz . In addition, for δ > 0 given by Assumption B.1, we have either
(a) E|pj(z1)|2(2+δ) = O(j) for large j or (b) supj≥0E|pj(z1)|2(2+δ) < ∞.

B.3 There is a filtration sequence Fn,t such that (et ,Fn,t ) form a martingale difference sequence and (zt , xt ) is adapted to
Fn,t−1. Moreover, almost surely E(e2t |Fn,t−1) = σ 2(t/n), where σ 2(·) is a positive continuous function on [0, 1] and
max1≤t≤nE(|et |q2 |Fn,t−1) < ∞ for some q2 ≥ 4.

Condition B.1 takes into account two cases for zt . In (a), zt is an α-mixing stationary process (a common assumption
that we only refer the readers to Gao (2007) and independent of xt , while in (b), zt is correlated with xt by sharing the
same ϵt , . . . , ϵt−d+1. These two conditions are different but overlap, because zt in (b) is d-dependent, a subclass of α-mixing
process, while in terms of the relationship with xt they are mutually exclusive. Definitely, the presence of the correlation
between xt and zt would give rise to a challenge for our theoretical derivation. To tackle the issue, we show the probability
properties of xt in Lemmas A.1 and A.2 and the correlation for functions of xt and zt in Lemma A.3 below. Particularly, the
results of LemmaA.3 imply that, comparingwith the independence, the correlation gives an extra termwhich is infinitesimal
and therefore negligible in our derivation. Hence, it is due to these lemmas that we are able to deal with the correlation in
model (1.1) and that our model is applicable broadly.

Condition B.2 stipulates an orthogonal sequence {pi(z), i ≥ 0} on the support V (≡ Vz , the subscript is suppressed here
and below) that is used to approximate the unknown function g(·) in the regression model.

Given a support V ⊂ R, the choice of the density dF (z) determines what function space we shall work with. It is well
known that an orthogonal polynomial sequence can be constructed on a support with respect to a density by the Gram–
Schmidt orthonormalization theorem. See, for example, Dudley (2003, p. 168). If z1 is normal, V = R, the sequence is
consisting of Hermite polynomials given dF (z) = (2π )−1/2e−z2/2dz; if z1 has support V = [0,∞), the sequence is consisting
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of Laguerre polynomials given dF (z) = e−zdz; if V = [0, 1], orthogonal trigonometric polynomials could be used; if
V = [−1, 1], the orthogonal polynomials are Chebyshev or Legendre polynomials.

Notice also that Conditions (a) and (b) in B.2 are about how to control the high order moments of the basis pj(x) and are
used to measure the divergence of certain partial sum below. Because we do not specify the interval V of the variable z1,
there are two cases considered herein. B.2(a) is tackling the case that V is an infinite interval where the high order moment
of pj(x) diverges with j, while B.2(b) is mainly for the case where V is a compact set (e.g. [0, 1], [−1, 1] and so on) such that
the high order moment is uniformly bounded with j. The moment condition is mild and commonly used. In the literature,
B.2(a) is used in Assumption 3 of Dong et al. (2015) and B.2(b) is used in Assumption 3 of Su and Jin (2012). It is worth to
point out that the similar assumption for bases used to estimate β(·) and m(·) (i.e. ϕj(·) and Hj(·) below) is not necessary
since these are specified bounded functions.

Themartingale difference structure for the error term is extensively used in the literature such as Park and Phillips (1999,
2001) and Gao and Phillips (2013) among others. However, Condition B.3 here allows heteroscedasticity that is a function
depending on the normalized time t/n. This makes our theoretical results more applicable, but the function σ 2(·) might
be multivariate to contain additionally either zt or xt even both. This possibility would affect a bit the conditional variance
matrices studied belowwhile themain results still hold. To preserve space, we do not consider all possibilities in this regard.

In order to be more applicable, we may allow zt in model (1.1) to be a locally stationary process, which is defined as
follows.

Definition 2.1 (Locally Stationary Process). Process {znt} is locally stationary if for each rescaled time point v ∈ [0, 1] there
exists an associated process {zt (v)} satisfying:

(i) {zt (v)} is strictly stationary;
(ii) it holds that

|znt − zt (v)| ≤

(⏐⏐⏐⏐ tn − v

⏐⏐⏐⏐+ 1
n

)
Unt (v) a.s.,

where Unt (v) is a process of positive variables such that E[(Unt (v))q3 ] < C for some q3 ≥ 1 and C > 0 independent of
v, t and n.

This definition of locally stationarity accommodates a variety of financial datasets. Koo and Linton (2012) give sufficient
conditions under which a time-inhomogeneous diffusion process is locally stationary and meanwhile, Vogt (2012) studies
nonparametric regression for locally stationary time series. Certainly, each stationary process is locally stationary.

Assumption B*. Suppose that

B*.1 {znt} is locally stationary with associated process {zt (v)}, and all znt ( 1 ≤ t ≤ n) have the same compact support
Vz = [amin, amax]. Moreover, the density f (v, z) of zt (v) is smooth in v.

B*.2 For all t and any v ∈ [0, 1], either (a) zt (v) satisfies Assumption B.1.a, or (b) zt (v) satisfies Assumption B.1.b.
B*.3 There exists an orthogonal function sequence {pi(z), i ≥ 0} on the support [amin, amax] with respect to dF (z) such that

supv∈[0,1]supj≥0E|pj(z1(v))| < ∞.
B*.4 Suppose that there is a filtration sequenceFnt such that (et ,Fn,t ) formamartingale difference sequence and (zt (t/n), xt )

is adapted with Fn,t−1. Meanwhile, E(e2t |Fn,t−1) = σ 2(t/n) almost surely with continuous and nonzero function σ (·)
and for some q3 ≥ 4, max1≤t≤nE(|et |q3 |Fn,t−1) < ∞.

This assumption allows us to approximate the locally stationary variable znt by stationary variable zt (v) when t/n is in a
small neighborhood of v. Thus, the theoretical results below may be applicable. As studied in Koo and Linton (2012, p. 212),
{znt} may have a common domain of closed interval. Thus, we simply require the support of the locally stationary process
to be compact in this paper. Moreover, {zt (v)} possibly is α-mixing and β-mixing, as studied in Koo and Linton (2012) and
Chen et al. (2010). Moreover, Theorem 3.3 of Vogt (2012) shows, under certain conditions, the density f (v, z) of zt (v) is
smooth in v. Here again, by B*.2 we allow the associated stationary process to be either independent of or correlated with
the nonstationary process xt , for which we have the same comment as that for Assumption B.1.

Basically, Assumption B*.1 is particularly for the local stationary process, while Assumptions B*.2–B*.4 are a generalized
version of Assumption B.1–B.3, that take into account the dependence of the locally stationarity on the normalized time
v ∈ [0, 1]. As znt is approximated asymptotically by the stationary process zt (t/n), the condition of et in B*.4 is assumed to
be a martingale difference sequence with respect to a filtration that satisfies conditions similar to B.3 of Assumption B.

2.2. Estimation procedure

The least squares series estimationmethod is used to estimate all unknown functions inmodels (1.1) and (1.2). By nature
these functions belong to different function spaces, and therefore we introduce these function spaces and their orthonormal
bases.
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First, suppose that β(·) ∈ L2[0, 1] = {u(r) :
∫ 1
0 u2(r)dr < ∞}, in which the inner product is given by ⟨u1, u2⟩ =∫ 1

0 u1(r)u2(r)dr and the induced norm ∥u∥2
= ⟨u, u⟩. Let ϕ0(r) ≡ 1, and for j ≥ 1, ϕj(r) =

√
2 cos(π jr). Then, {ϕj(r)} is

an orthonormal basis in the Hilbert space L2[0, 1], ⟨ϕi(r), ϕj(r)⟩ = δij the Kronecker delta. The basis {ϕj(r)} is used to expand
the unknown continuous function β(r) ∈ L2[0, 1] into orthogonal series, that is,

β(r) =

∞∑
j=0

c1,jϕj(r), where c1,j = ⟨β(r), ϕj(r)⟩. (2.1)

It is noteworthy that {ϕj(r)} can be replaced by any other orthonormal basis in L2[0, 1], as shown in Chen and Shen (1998),
Gao et al. (2001) and Phillips (2005) among others. However, with this specific basis other than a general onewe do not need
any assumption on it, and all quantities related to the basis are easily and directly calculated. See Lemma A.2 below.

Second, in order to expand g(zt ), suppose that the function g(·) is in Hilbert space L2(V , dF (x)) = {q(x) :
∫
V q2(x)dF (x) <

∞} where F (x) is a distribution on the support V that may not be compact. The sequence {pj(x), j ≥ 0} in Assumption B.2 is
an orthonormal basis in L2(V , dF (x)) where an inner product is given by ⟨q1, q2⟩ =

∫
V q1(x)q2(x)dF (x) and the induced norm

∥q∥2
= ⟨q, q⟩. Hence, the unknown function g(x) has an orthogonal series expansion in terms of the basis of {pj(x), j ≥ 0},

viz.,

g(x) =

∞∑
j=0

c2,jpj(x), where c2,j = ⟨g(x), pj(x)⟩. (2.2)

Third, because of xt = OP (
√
t), the support of m(·) has to be R. We thus suppose m(·) ∈ L2(R) = {f (x) :

∫
f 2(x)dx < ∞}

in which an inner product is given by ⟨f1, f2⟩ =
∫
f1(x)f2(x)dx and the induced norm ∥f ∥2

= ⟨f , f ⟩. To expandm(x), recall the
Hermite polynomials {Hj(x)} and the Hermite functions {Hj(x)}. By definition

Hj(x) = (−1)j exp(x2)
dj

dxj
exp(−x2), j ≥ 0, (2.3)

are Hermite polynomials such that
∫
Hi(x)Hj(x) exp(−x2)dx =

√
π2jj!δij, meaning that they are orthogonal with respect to

the density exp(−x2). It is known that

Hj(x) = (
√
π2jj!)−1/2Hj(x) exp

(
−

x2

2

)
, j ≥ 0, (2.4)

are called Hermite functions in the relevant literature.
The orthogonality of the Hermite polynomials implies that ⟨Hi(x),Hj(x)⟩ = δij. In addition, {Hj(x)} is bounded uniformly

in both j and x ∈ R. See Szego (1975, p. 242). Moreover, {Hj(x)} is an orthonormal basis in Hilbert space L2(R). The unknown
functionm(x) thence has an orthogonal series expansion in terms of {Hj(x)}, viz.,

m(x) =

∞∑
j=0

c3,jHj(x), where c3,j = ⟨m(x),Hj(x)⟩. (2.5)

2.2.1. Estimation procedure for model (1.1)
Let ki, i = 1, 2, 3, be positive integers. Define truncation series with truncation parameter k1 for β(r) as βk1 (r) =∑k1
j=1c1,jϕj(r) (noting by Assumption C.2 below that c1,0 = 0) and residue after truncation γ1k1 (r) =

∑
∞

j=k1+1c1,jϕj(r). It
is known that βk1 (r) → β(r) as k1 → ∞ in pointwise sense for smooth β(r). Similarly, define the truncation series for g(x)
as gk2 (x) =

∑k2−1
j=0 c2,jpj(x) and residue after truncation as γ2k2 (x) =

∑
∞

j=k2
c2,jpj(x); for m(x) as mk3 (x) =

∑k3−1
j=0 c3,jHj(x) and

residue after truncation as γ3k3 (x) =
∑

∞

j=k3
c3,jHj(x). It follows that gk2 (x) → g(x) andmk3 (x) → m(x) as k2, k3 → ∞ in some

sense under certain condition. We omit mathematical details in order not to deviate from our main course.
Denote φk1 (r) = (ϕ1(r), . . . , ϕk1 (r))

⊺ and c1 = (c1,1, . . . , c1,k1 )
⊺. We then have βk1 (r) = φk1 (r)

⊺c1. Denote also ak2 (x) =

(p0(x), . . . , pk2−1(x))⊺, bk3 (x) = (H0(x), . . . ,Hk3−1(x))⊺, and ci = (ci,0, . . . , ci,ki−1)⊺, i = 2,3. Accordingly, gk2 (x) = ak2 (x)
⊺c2

and mk3 (x) = bk3 (x)
⊺c3. Thus, model (1.1) is written as

yt =φk1 (t/n)
⊺c1 + ak2 (zt )

⊺c2 + bk3 (xt )
⊺c3

+ γ1k1 (t/n) + γ2k2 (zt ) + γ3k3 (xt ) + et ,
(2.6)

where t = 1, . . . , n.
To write all equations in (2.6) into a matrix form, let y = (y1, . . . , yn)⊺, c = (c⊺1, c

⊺
2, c

⊺
3)

⊺, e = (e1, . . . , en)⊺, γ =

(γ (1), . . . , γ (n))⊺ where γ (t) = γ1k1 (t/n) + γ2k2 (zt ) + γ3k3 (xt ), t = 1, . . . , n, and

Bnk =

⎛⎜⎝φk1 (1/n)
⊺ ak2 (z1)

⊺ bk3 (x1)
⊺

...
...

...

φk1 (1)
⊺ ak2 (zn)

⊺ bk3 (xn)
⊺

⎞⎟⎠
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a n × kmatrix with k = k1 + k2 + k3 for convenience. Consequently, we have

y = Bnkc + γ + e (2.7)

which by the ordinary least squares (OLS) gives ĉ = (̂c⊺1, ĉ
⊺
2, ĉ

⊺
3)

⊺
= (B⊺

nkBnk)−1B⊺
nky provided that the matrix B⊺

nkBnk is non-
singular (which will be so under our conditions with high probability).

Therefore, for any r ∈ [0, 1], z ∈ V and x ∈ R define naturally β̂n(r) = φk1 (r)
⊺ĉ1, ĝn(z) = ak2 (z)

⊺ĉ2 and m̂n(x) = bk3 (x)
⊺ĉ3

as estimators of the unknown functions β, g and m, which can be wrapped up in a vector

(̂βn(r), ĝn(z), m̂n(x))⊺ = Ψ (r, z, x)⊺ĉ, (2.8)

where Ψ (r, z, x) is a block matrix given by

Ψ (r, z, x) =

(
φk1 (r) 0 0

0 ak2 (z) 0
0 0 bk3 (x)

)
(2.9)

in which 0’s are zero column vectors that have different dimensions over each row. We study the asymptotics of the
estimators in the next section.

2.2.2. Estimation procedure for model (1.2)
In model (1.2) where the regressor zt is replaced by a locally stationary process znt , the procedure of estimation remains

the same, but notice that, ak2 (zt ) in Bnk in this case are replaced by ak2 (znt ), t = 1, . . . , n. Let B̃nk be the counterpart of Bnk in
the previous setting. Meanwhile, the estimator in (2.8) should be adjusted by using the coefficient vector ĉ calculated from
B̃nk, as themodel can bewritten as y = B̃nkc+ γ̃ +e, where γ̃ = (γ̃ (1), . . . , γ̃ (n))⊺ with γ̃ (t) = γ1k1 (t/n)+γ2k2 (znt )+γ3k3 (xt ),
t = 1, . . . , n. As a result, ĉ = (̃B⊺

nk̃Bnk)−1̃B⊺
nky. The asymptotics of these estimators will be studied in the next section as well.

3. Asymptotic theory

We shall first study the asymptotics of the estimators defined in (2.8) for model (1.1). After this, the estimators for model
(1.2) where zt is replaced by a locally stationary process znt are investigated. Additionally, we also consider in the third
subsection an extension of our model.

3.1. Estimators for model (1.1)

Note by Eq. (2.7) that ĉ − c = (B⊺
nkBnk)−1B⊺

nk(γ + e). Thus, it is necessary to study first the asymptotics of B⊺
nkBnk, which is

done under the following assumptions and given by Lemma A.5.

Assumption C.

C.1 The functions β(·), g(·) and m(·) are continuously differentiable up to s1, s2 and s3, respectively. Moreover, β (s1)(·),
g (s2)(·) and m(s3)(·) belong to the Hilbert spaces which contain the original functions, respectively.

C.2 For β(·) function, let
∫ 1
0 β(r)dr = 0.

Sincewe need not only the convergence of all orthogonal expansions discussed before but also quicker rates for them, the
smoothness of the unknown functions is necessary to guarantee a certain rate of the convergence. The concrete requirements
on si will be shown below, combining with sample size as well as truncation parameters. Note that C.2 is an identification
condition since in both the expansions ofβ(·) and g(·) there is constant term that could not be distinguished one fromanother
in the following regression. Notice also that C.2 is sufficient asm(·) is integrable on R.

Assumption D. All ki, i = 1, 2, 3, diverge with n such that:

D.1 If B.2(a) holds, (1) k2+2/(2+δ)
2 = o(n), k53 = o(n), (2) k1k

1+1/(2+δ)
2 = o(n), k21k

3
3 = o(n), k22k

3/2
3 = o(n); if B.2(b) holds, (3)

k22 = o(n), k53 = o(n), (4) k1k2 = o(n), k21k
3
3 = o(n), k32k

3
3 = o(n).

D.2 Suppose that as n → ∞, (5) nk−(2s1−1)
1 = o(1), nk−(s2−1)

2 = o(1) and n1/2k−(s3−1)
3 = o(1) and (6) nk2k

−2s1
1 = o(1),

nk3k
−2s1
1 = o(1), nk1k

−s2
2 = o(1), nk3k

−s2
2 = o(1), n1/2k1k

−s3
3 = o(1), n1/2k2k

−s3
3 = o(1).

This assumption imposes the divergence rates for ki, i = 1, 2, 3, which guarantee the convergence of the estimators.
Because of the divergence of the moment of pj(z1) with j in B.2(a), the requirement for k2 in (1) and (2) is harsher than its
counterpart in (3) and (4). Due to the nonstationarity of xt , k3 diverges very slowly, the rate of which is similar to the related
study purely on integrated time series, see, for example, Dong et al. (2016). Anyway, if we simply take ki = k̃ for i = 1, 2, 3,
then k̃6 = o(n) is a concise condition.

Additionally, note that the conditions in (2) and (4) are for two of ki’s, while (1) and (3) are for each of k2 and k3. This is
due to the structure of B⊺

nkBnk := (Πij)3×3 a block symmetric matrix. Note also that the conditions in (2) are made for the
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blocks likeΠ12 =
∑n

t=1φk1 (t/n)ak2 (zt )
⊺ under B.2(a), whereas that in (4) are made the same blocks but under B.2(b). More

importantly, k1 is not included in (1) and (3). This is because Π11 :=
∑n

t=1φk1 (t/n)φk1 (t/n)
⊺ is convergent so fast that the

condition derived fromΠ11 is substituted by the slower ones that are derived fromΠ12 andΠ13.
Given the smoothness of the unknown functions in Condition C.1, Condition D.2 demands that the smoothness orders be

large enough such that the residues after truncation (γiki , i = 1, 2, 3) converging to zero rapidly enough and do not affect
the convergence of the estimators. This can be understood as an undersmoothing condition (see Comment 4.3 in Belloni et
al. (2015, p. 352)). The combination of the requirements in Assumption D for ki implies that we have a minimum demand
on the smoothness. We here emphasize that all requirements on ki are compatible. For example, in an extreme case that
ki = [nτ ] for all i = 1, 2, 3 with 0 < τ < 1/5, along with s1 ≥ 3, s2 ≥ 6 and s3 ≥ 4, Assumption D is fulfilled.

Before showing the large sample theory for the estimators, we introduce some notation and preliminary results. Let
Dn = diag(

√
nIk1 ,

√
nIk2 ,

√
n/dnIk3 ) a diagonal matrix of k×k (k = k1+k2+k3). Then, as shown in Lemma A.5,D−1

n B⊺
nkBnkD−1

n
is asymptotically approximated by a matrix Uk in probability, viz., ∥D−1

n B⊺
nkBnkD−1

n − Uk∥ = oP (1) as n → ∞ on a richer
probability space. Here, Uk = diag(Ik1 ,Uk2 , LW (1, 0)Ik3 ) where LW (1, 0) is the local time of W (r) given in Section 2, and
Uk2 = E[ak2 (z1)ak2 (z1)

⊺
].

In addition, in order to tackle the heteroskedasticity we also need to consider the limit of the conditional covariance
matrix B⊺

nkΣnBnk where Σn = diag(σ 2(1/n), σ 2(2/n), . . . , σ 2(1)). Note that ∥D−1
n B⊺

nkΣnBnkD−1
n − Vk∥ = oP (1) where

Vk = diag
(
V∗,

∫ 1
0 σ

2(r)dLW (r, 0)Ik3
)
in which V∗ = (V∗ij) is a 2 × 2 symmetric block matrix with

V∗11 =

∫ 1

0
φk1 (r)φk1 (r)

⊺σ 2(r)dr,

V∗12 =

∫ 1

0
φk1 (r)σ

2(r)dr E(ak2 (z1)
⊺),

V∗22 =

∫ 1

0
σ 2(r)dr E(ak2 (z1)ak2 (z1)

⊺).

This is given by LemmaA.7. In the homoskedastic case,Vk = σ 2Uk,whereσ 2(·) ≡ σ 2. To show the following theorem, denote
byΨ (r, z, x) thenormalized version ofΨ (r, z, x) defined in Section2, i.e. post-multiplyingdiag(∥φk1 (r)∥, ∥ak2 (z)∥, ∥bk3 (x)∥)

−1

to Ψ (r, z, x) such that all block vectors in Ψ (r, z, x) are unit, Ūk = diag(Ik1 ,Uk2 , Ik3 ) and V̄k = diag(V∗, Ik3 ).

Theorem 3.1. Suppose that uniformly over all n, all eigenvalues of Uk2 and V∗ are bounded below from zero and above from
infinity, and that Assumptions A–D hold. Then, for any r ∈ [0, 1], z ∈ V and x ∈ R,

Ω−1/2
n

⎛⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]√

n
dn

1
∥bk3 (x)∥

[m̂n(x) − m(x)]

⎞⎟⎟⎟⎟⎟⎟⎠→DN

⎛⎝0,

⎛⎝1 0 0
0 1 0
0 0 a2

⎞⎠⎞⎠ (3.1)

as n → ∞ where 0 is a 3-dimensional zero column vector, a2 := L−2
W (1, 0)

∫ 1
0 σ

2(r)dLW (r, 0) andΩn := Ψ (r, z, x)⊺Ū−1
k V̄kŪ−1

k
Ψ (r, z, x) is a 3 × 3 deterministic matrix.

The proof is relegated to Appendix B below. Here, the estimator has a mixed normal limiting distribution. As argued
in Park and Phillips (2001, p. 122), the random variable a is independent of the underling normal distribution due to the
integrability ofm(·). This applies to the following theorems too.

The boundedness of all eigenvalues of the deterministic matrices Uk2 and V∗ is a commonly used assumption in the
literature. See, Condition A.2 in Belloni et al. (2015, p. 347) and Assumptions 1.3 and 1.4 in Hansen (2015) among others.
Here, Uk2 = E[ak2 (z1)ak2 (z1)

⊺
] and V∗ is formed in the same way but from one deterministic basis functions and another

basis functions of variable zt . This condition, along with the block diagonal structure of Uk and Vk containing the local time
LW (1, 0), is sufficient in the derivation of the normality in the theorem. This is because LW (1, 0) = OP (1) in the sense that,
for any ϵ > 0, there exists a constant M > 0 such that P(M−1

≤ LW (1, 0) ≤ M) ≥ 1 − ϵ (so is L−1
W (1, 0) = OP (1)). This

is easy to be verified by virtue of the distribution function of LW (1, 0), viz., 2Φ(x) − 1 with Φ(x) being the standard normal
distribution.

In the homoskedastic caseVk = σ 2Uk, two requirements onUk2 andV∗ are reduced to that aboutUk2 and researchers often
normalizeUk2 to be the identitymatrix. See, for example, Eq. 11 of Chen and Christensen (2015, p. 450) and the normalization
of Belloni et al. (2015, p. 347).

Note that the matrixΩn has a diagonal block form

Ωn = diag
(
Ψ 12(r, z)⊺U−1

∗
V∗U−1

∗
Ψ 12(r, z), 1

)
,
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where we denote by Ψ 12(r, z) the left-top 2 × 2 sub-matrix of Ψ (r, z, x) defined right before Theorem 3.1 and U∗ :=

diag(Ik1 ,Uk2 ). This reveals some crucial asymptotic behaviors for the variables. Due to the divergence of the I(1) process
xt , all interactions between m(xt ) and each one of β(t/n) and g(zt ) with proper normalization are asymptotically negligible
and thenceΩn has the above diagonal block form. The details can be found in Lemmas A.5 and A.7 below.

Therefore, we may separate the estimator m̂n(x) from the other estimators in (3.1). That is, as n → ∞,

[Ψ 12(r, z)⊺U−1
∗

V∗U−1
∗
Ψ 1(r, z)]−1/2

⎛⎜⎜⎝
√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]

⎞⎟⎟⎠→DN(0, I2) (3.2)

√
n
dn

1
∥bk3 (x)∥

(m̂n(x) − m(x))→DN(0, a2). (3.3)

They are all comparablewith the literature in the corresponding context. To see this, observe thatΨ 12(r, z)⊺U−1
∗

V∗U−1
∗
Ψ 1(r, z)

has eigenvalues bounded below from zero and above from infinity due to the condition on Uk2 and V∗. Then, the rates of (3.2)
are [

√
n/∥φk1 (r)∥]

−1 and [
√
n/∥ak2 (z)∥]

−1 for β̂n(r) − β(r) and ĝn(z) − g(z), respectively, the same as the estimators in
Theorem 2 of Newey (1997) and Theorem 3.1 of Chen and Christensen (2015) in the case that the functional of the estimator
in the papers is identical.

On the other hand, the rate in (3.3) is about n−1/4k3, very slowdue to the divergence of xt and the integrability ofm(x). This
is the same as that in Theorem3.3 of Dong et al. (2016). Overall, although the additivemodel has themixture of deterministic
trend, nonparametric function of stationary variable and nonparametric integrable function of the unit root variable, the
estimators have their own separable rate of convergence.

Note that the matrices U∗ and V∗ could be further simplified in the special case that the function sequence {pj(x)} is
orthogonal with respect to the density of z1 (i.e., dF (x) in the space L2(V , dF (x)) is the density of z1). Hence, E(ak2 (z1)) = 0
and E(ak2 (z1)ak2 (z1)

⊺) = Ik2 . Particularly, when σ 2(·) ≡ σ 2, V∗ = σ 2Ik1+k2 and U∗ = Ik1+k2 . Therefore, the statement about
the limits for β̂n(r) − β(r) and ĝn(z) − g(z) in (3.2) would be simplified too.

More importantly, the conventional optimal convergence rates for ∥β̂n(r) − β(r)∥ and ∥̂gn(z) − g(z)∥ can be jointly
established where ∥ · ∥ stands for the norm of functions in different spaces defined in Section 2. Here, the conventional
optimal rates are in the sense studied in Stone (1982, 1985).

Proposition 3.1. Suppose that Assumptions A–D hold. In the model (1.1) we have jointly ∥β̂n(r) − β(r)∥ = OP (
√
k1/n + k−s1

1 ),
∥̂gn(z)− g(z)∥ = OP (

√
k2/n+ k−s2

2 ) and ∥m̂n(x)−m(x)∥ = OP (
√
k3/ 4

√
n+ k−s3/2

3 ) as n → ∞, where the norms are of L2 sense
in the function spaces, respectively.

The proposition implies that the optimal rates of Stone (1982, 1985) are attainable jointly for the estimators β̂n(r) and
ĝn(z). Indeed, if ki = O(n1/(2si+1)), the rates will beOP (n−si/(2si+1)), i = 1, 2, which are exactly the optimal rates in Stone (1982,
1985). Note also that in the literature as far as we know, there is no study dwelling on the optimal rates with respect to unit
root regressor.While Newey (1997) and Chen and Christensen (2015, p.451) obtain optimal rates for sieve estimator in some
situations, Proposition 3.1 establishes the optimal rates jointly for two nonparametric functions in an additive model.

In order to make statistical inference, there is a need to estimate the function σ 2(·). Though the estimation is possible by
nonparametric method using the estimated residues, the main purpose of the paper would be deviated if we were about to
do so. In what follows, we focus on the inference in a simpler case, the case of homoskedasticity. It can be seen from (3.2)–
(3.3) that V∗ = σ 2U∗ and we need to estimate σ 2 and nLW (1, 0)/dn because of

∫ 1
0 σ

2(r)dLW (r, 0) = σ 2LW (1, 0). Here, as an
unknown parameter in dn, viz.,ψ , can be offset from the estimate of LW (1, 0), we simply estimate the quantity nLW (1, 0)/dn
directly. Define

σ̂ =

[
1
n

n∑
t=1

(yt − β̂n(t/n) − ĝn(zt ) − m̂n(xt ))2
]1/2

,

Λn =

n∑
t=1

f (xt ), where f (x) =
1

√
2π

e−x2/2.

We then have the following corollary.

Corollary 3.1. Suppose that Assumptions A–D hold. Then, σ̂→Pσ andΛn/(nLW (1, 0)/dn)→P1 as n → ∞. As a result, with the
replacement of σ by σ̂ and nLW (1, 0)/dn byΛn, we have, n → ∞,

[σ̂ 2Ψ 12(r, z)⊺U−1
∗
Ψ 1(r, z)]−1/2

⎛⎜⎜⎝
√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]

⎞⎟⎟⎠→DN(0, I2) (3.4)
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Λn

1
σ̂∥bk3 (x)∥

(m̂n(x) − m(x))→DN(0, 1). (3.5)

3.2. Estimators for model (1.2)

In this case we have ĉ − c = (̃B⊺
nk̃Bnk)−1̃B⊺

nk(γ̃ + e). The asymptotics of B̃⊺
nk̃Bnk is given by Lemma A.6. Note that B̃nk

is the same as Bnk but the stationary process zt is replaced by the locally stationary process znt . The replacement only
affects Π12 (Π21), Π23 (Π32) and Π22, denoted respectively by Π̃12, Π̃23 and Π̃22 the resulting counterparts. Precisely,
Π̃12 =

∑n
t=1φk1 (t/n)ak2 (znt )

⊺, Π̃22 =
∑n

t=1ak2 (znt )ak2 (znt )
⊺, and Π̃23 =

∑n
t=1ak2 (znt )bk3 (xt )

⊺.
Define Ũk = diag(Ũ∗, LW (1, 0)Ik3 ), where Ũ∗ = (Ũ∗ij) is a symmetric 2 × 2 block matrix of order (k1 + k2) × (k1 + k2)

with Ũ∗11 = Ik1 , Ũ∗12 =
∫ 1
0 φk1 (r)E[ak2 (z1(r))

⊺
]dr with elements

∫ 1
0 ϕi(r)E[pj(z1(r))]dr for 1 ≤ i ≤ k1, 0 ≤ j ≤ k2 − 1, and

Ũ∗22 =
∫ 1
0 E[ak2 (z1(r))ak2 (z1(r))

⊺
]dr with elements

∫ 1
0 E[pi(z1(r))pj(z1(r))]dr for i, j = 0, . . . , k2 −1. As shown in Lemma A.6,

under certain condition we have ∥D−1
n B̃⊺

nk̃BnkD−1
n − Ũk∥ = oP (1) where Dn is the same as before.

Meanwhile, due to the heteroskedasticity, we also consider the limit of B̃⊺
nkΣñBnk whereΣn is the same as in the preceding

section. The result is givenby LemmaA.8, that is,∥D−1
n B̃⊺

nkΣñBnkD−1
n −Ṽk∥ = oP (1),where Ṽk = diag

(
Ṽ∗,

∫ 1
0 σ

2(r)dLW (r, 0)Ik3
)

in which Ṽ∗ = (Ṽ∗ij) is a 2 × 2 symmetric block matrix with Ṽ∗11 = V∗11, Ṽ∗12 =
∫ 1
0 φk1 (r)σ

2(r)E(ak2 (z1(r))
⊺)dr and

Ṽ∗22 =
∫ 1
0 σ

2(r)E(ak2 (z1(r))ak2 (z1(r))
⊺)dr .

Denote Ω̃n = diag(Ψ 12(r, z)⊺Ũ−1
∗

Ṽ∗Ũ−1
∗
Ψ 12(r, z), 1) a deterministic matrix of 3 × 3 with the same Ψ 12(r, z) as before.

We then have the following theorem.

Theorem 3.2. Suppose that uniformly over all n, all eigenvalues of Ũ∗ and Ṽ∗ are bounded below from zero and above from
infinity, and that Assumptions A, B*, C and D hold. Then, for any r ∈ [0, 1], z ∈ V and x ∈ R, the estimators of the unknown
functions in model (1.2) obey

Ω̃−1
n

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]√

n
dn

1
∥bk3 (x)∥

[m̂n(x) − m(x)]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
→DN

⎛⎝0,

⎛⎝1 0 0
0 1 0
0 0 a2

⎞⎠⎞⎠ (3.6)

as n → ∞ where 0 is a 3-dimensional zero column vector and a2 is the same as in the previous theorem.

The proof is relegated to Appendix B below. The main contribution of the theorem is the relaxation of the stationary
process inmodel (1.1) to the locally stationary process inmodel (1.2). It is readily seen that if the distribution of the associated
process zt (v) does not depend on v, implying that E[pj(z1(r))] = E[pj(z1)], Ũk would reduce to Uk and Ṽk would reduce to Vk.
Consequently, in this degenerated case Ω̃n = Ωn and essentially model (1.2) would reduce to model (1.1).

We have similar comments for Theorem 3.2 as that for Theorem 3.1. In particular, the condition on the eigenvalues of
the deterministic matrices Ũ∗ and Ṽ∗ is often encountered in the sieve literature such as Condition A.2 in Belloni et al. (2015,
p. 347). For the statistical inference purpose, under homoskedasticity the unknown parameter in (3.6) may be estimated
similar to Corollary 3.1, which is omitted for brevity.

3.3. Extension of model (1.1)

Since the functionm(·) is integrable on R, model (1.1) is impossible to have any polynomial form of the regressor xt . This
possibly is a restriction in some situations. Thus, it is worth to extend model (1.1) to be

yt = β(t/n) + g(zt ) + θ0xt + m(xt ) + et , (3.7)

where t = 1, . . . , n, β, g and m are unknown smooth functions and θ0 is an unknown scalar, zt , xt and et are the same as
before. It can be seen later that the linear form of xt may be replaced by any polynomial form θ01xt +· · ·+ θ0dxdt with d being
known and a similar result remains true.

To estimate β(·), g(·) and m(·), the same bases are used for their orthogonal expansions. Notice that θ0 can be estimated
along with the estimate of the coefficients in the expansions and this can be viewed as an advantage of the series method
because it parameterizes the nonparametric variables. Using previous notation model (3.7) is written as

yt =φk1 (t/n)
⊺c1 + ak2 (zt )

⊺c2 + θ0xt + bk3 (xt )
⊺c3

+ γ1k1 (t/n) + γ2k2 (zt ) + γ3k3 (xt ) + et ,
(3.8)
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and we define

Ank =

⎛⎜⎝φk1 (1/n)
⊺ x1 ak2 (z1)

⊺ bk3 (x1)
⊺

...
...

...
...

φk1 (1)
⊺ xn ak2 (zn)

⊺ bk3 (xn)
⊺

⎞⎟⎠
a n × kmatrix with k = k1 + k2 + k3 + 1 for convenience. Consequently, we have

y = Ankc + γ + e (3.9)

which by the ordinary least squares (OLS) gives ĉ = (̂c⊺1, θ̂ , ĉ
⊺
2, ĉ

⊺
3)

⊺
= (A⊺

nkAnk)−1A⊺
nky provided that A⊺

nkAnk is non-singular
(that is true with high probability).

Similarly, for any r ∈ [0, 1], z ∈ V and x ∈ R define β̂n(r) = φk1 (r)
⊺ĉ1, ĝn(z) = ak2 (z)

⊺ĉ2 and m̂n(x) = bk3 (x)
⊺ĉ3 as

estimators of the unknown functions, which together with the estimator of θ0 can be wrapped up in a vector

(̂βn(r), θ̂ , ĝn(z), m̂n(x))⊺ = Φ(r, z, x)⊺ĉ, (3.10)

whereΦ(r, z, x) is a block matrix given by

Φ(r, z, x) =

⎛⎜⎜⎝
φk1 (r) 0 0 0

0 1 0 0
0 0 ak2 (z) 0
0 0 0 bk3 (x)

⎞⎟⎟⎠
in which 0’s are zero column vectors that have different dimension over each row while 0’s are scalar.

As before, we introduce first some notation and preliminary results. LetMn = diag(
√
nIk1 ,

√
ndn,

√
nIk2 ,

√
n/dnIk3 ) a diag-

onal matrix of k×k. Then,M−1
n A⊺

nkAnkM−1
n is asymptotically approximated by amatrix in probability, viz., ∥M−1

n A⊺
nkAnkM−1

n −

Qk∥ = oP (1) as n → ∞ as shown in Lemma A.9. Here Qk = diag(Q∗, LW (1, 0)Ik3 ) and Q∗ has a 3 × 3 block form (Q∗ij):
Q∗11 = Ik1 , Q∗12 =

∫ 1
0 φk1 (r)W (r)dr of k1 × 1, Q∗13 = 0 of k1 × k2, Q∗22 =

∫ 1
0 W 2(r)dr a scalar, Q∗23 = E[ak2 (z1)

⊺
]
∫ 1
0 W (r)dr

of k2 × 1 and Q∗33 = E[ak2 (z1)ak2 (z1)
⊺
].

In addition, in order to tackle the heteroskedasticity we also need to consider the limit of the conditional covariance
matrix A⊺

nkΣnAnk where Σn = diag(σ 2(1/n), . . . , σ 2(1)). By Lemma A.11, ∥M−1
n A⊺

nkΣnAnkM−1
n − Pk∥ = oP (1) where

Pk = diag
(
P∗,
∫ 1
0 σ

2(r)dLW (r, 0)Ik3
)
in which P∗ = (P∗ij) is a 3 × 3 symmetric block matrix with

P∗11 =

∫ 1

0
φk1 (r)φk1 (r)

⊺σ 2(r)dr, P∗13 =

∫ 1

0
φk1 (r)σ

2(r)drE(ak2 (z1)
⊺),

P∗12 =

∫ 1

0
φk1 (r)σ

2(r)W (r)dr, P∗22 =

∫ 1

0
σ 2(r)W 2(r)dr,

P∗23 =

∫ 1

0
σ 2(r)W (r)drE(ak2 (z1)

⊺), P∗33 =

∫ 1

0
σ 2(r)drE(ak2 (z1)ak2 (z1)

⊺).

Once the model reduces to the case of homoskedasticity, Pk = σ 2Qk where σ 2(·) ≡ σ 2, as expected.
Denote Ξn = Φ(r, z, x)⊺Q̄−1

k P̄kQ̄−1
k Φ(r, z, x) a matrix of 4-by-4, where Φ is the normalized version of Φ , i.e. the φk1 (r),

ak2 (z) and bk3 (x) inΦ are replaced by theφk1 (r)/∥φk1 (r)∥, ak2 (z)/∥ak2 (z)∥ and bk3 (x)/∥bk3 (x)∥, respectively; Q̄k = diag(Q∗, Ik3 )
and P̄k = diag

(
P∗, Ik3

)
. Hence, Ξn = diag(Ξ1n, 1) where Ξ1n is of 3-by-3 and Ξ1n = Φ13(r, z)⊺Q−1

∗
P∗Q−1

∗
Φ13(r, z) where

Φ13(r, z) is the left-top 3-by-3 block submatrix ofΦ(r, z, x).
Note that the Brownian motion W (r) is contained in Q∗ and P∗, we thus need to strengthen the conditions on et in

Assumptions B and B*.

Assumption E. The limit Brownian motionW (r) derived from xt is independent of {et , t ≥ 1}.

This assumption would facilitate the establishment of the following asymptotic normality for our estimators. The
condition can be fulfilled if {ϵj} in Assumption A is independent of {et} and xt is substituted by x′

t = xt + f (et−1) for
some measurable function f (·). Notice that, x′

t still has limit W (r), d−1
n x′

[nr]→DW (r), as long as E|f (et )| < ∞ and therefore
Assumption E is satisfied. A stronger one to replace Assumption E is that xt is independent of es for all t and s.

Theorem 3.3. In addition to Assumptions A–E, suppose that uniformly over all n, all eigenvalues of Q∗ and P∗ are bounded below
from zero and above from infinity almost surely, andΞ1n→PΞ1 when n → ∞. Then, for any r ∈ [0, 1], z ∈ V and x ∈ R,
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√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
ndn [̂θ − θ0]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]

√
n

∥bk3 (x)∥
√
dn

[m̂n(x) − m(x)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→DN

(
0,
(
Ξ1

a2

))
(3.11)

as n → ∞ where 0 is a 4-dimensional zero column vector, and a2 is the same as in the previous theorem.

The proof is relegated to Appendix D in the supplementary material. We have similar comment as that for Theorem 3.1.
Note that the covariance matrix in the limit has a diagonal block form diag(Ξ1, a2). This is similar to but more than the
situation in Theorem 3.1. First, all interactions between m(xt ) and one of β(t/n), g(zt ) and xt with proper normalization
are asymptotically negligible and thence the covariance has the above diagonal block form; second, interestingly, the
interactions between xt and each of β(t/n) and g(zt ) with the same normalization last ultimately, and thereby the block
in Ξ1 is a square matrix of order 3 that in general cannot be reduced further. The details can be found in Lemmas A.9 and
A.10 below.

Therefore, we may isolate the estimator m̂n(x) from the other estimators in (3.11). That is, as n → ∞,⎛⎜⎜⎜⎜⎝
√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
ndn [̂θ − θ0]√

n
∥ak2 (z)∥

[̂gn(z) − g(z)]

⎞⎟⎟⎟⎟⎠→DN(0,Ξ1) (3.12)

√
n

∥bk3 (x)∥
√
dn

(m̂n(x) − m(x))→DN(0, a2). (3.13)

Here, (3.13) is exactly the same as (3.3), meaning that the estimate ofm(·) is not affected by the linear form of xt at all, while
sinceW (r) is involved inΞ1n, the other estimators are affected more or less. All function estimators have the same order as
before, whereas θ̂ − θ0 has a super rate OP (n−1) in view of dn ∼

√
n. The normalizer

√
ndn in the front of θ̂ − θ0 has an extra

dn comparing with the usual stationary regression. That is due to the convergence of d−1
n x[nr]→DW (r) and thus results in

the super rate. Because the linear form θ0xt is one particular kind of H-regular function defined in Park and Phillips (2001),
the order of θ̂ − θ0 is comparable with its counterpart in Theorem 7 of Chang et al. (2001, p. 13). Overall, the estimators in
this additive model, where each component is different dramatically in terms of regressors and functions, have their own
separable rate of convergence.

Observe that both the matrices Q∗ and P∗ are almost surely positive definite by their structures. Note further that
the matrices Q∗ and P∗ could be further simplified in the special case aforementioned, which gives E(ak2 (z1)) = 0 and
E(ak2 (z1)ak2 (z1)

⊺) = Ik2 . Particularly, when σ 2(·) ≡ σ 2, P∗11 = σ 2Ik1 , P∗13 = 0, P∗22 = σ 2
∫ 1
0 W 2(r)dr , P∗23 = 0 and

P∗33 = σ 2Ik2 , but normally P∗12 = σ 2
∫ 1
0 φ(r)W (r)dr ̸= 0. The same situation applies to Q∗. Therefore, Q∗ and P∗ are reduced

to diagonal block matrices and thus the limit for ĝn(z) − g(z) in (3.12) can be isolated from the other two, that however
cannot be broken up any more due to P∗12 ̸= 0.

The case that zt in model (3.7) is replaced by znt is considered now, that is,

yt = β(t/n) + g(znt ) + θ0xt + m(xt ) + et , (3.14)

where t = 1, . . . , n.
With the same estimation procedure, in this case we have ĉ − c = (̃A⊺

nk̃Ank)−1̃A⊺
nk(γ̃ + e). Here, Ãnk is the counterpart of

Ank with zt substituted by znt . The asymptotics of Ã⊺
nk̃Ank is given by Lemma A.10.

Define Q̃k = diag(Q̃∗, LW (1, 0)Ik3 ), where Q̃∗ = (Q̃∗ij) is a symmetric 3 × 3 block matrix of order (k1 + k2 + 1) × (k1 +

k2 + 1) with Q̃∗11 = Ik1 , Q̃∗12 =
∫ 1
0 φk1 (r)W (r)dr , Q̃∗13 =

∫ 1
0 φk1 (r)E[ak2 (z1(r))

⊺
]dr with elements

∫ 1
0 ϕi(r)E[pj(z1(r))]dr

for i = 1, . . . , k1, j = 0, . . . , k2 − 1, Q̃∗22 =
∫ 1
0 W 2(r)dr a scalar, Q̃∗23 =

∫ 1
0 E[ak2 (z1(r))

⊺
]W (r)dr and Q̃∗33 =∫ 1

0 E[ak2 (z1(r))ak2 (z1(r))
⊺
]dr with elements

∫ 1
0 E[pi(z1(r))pj(z1(r))]dr for i, j = 0, . . . , k2 −1. As shown in Lemma A.10, under

certain condition we have ∥M−1
n Ã⊺

nk̃AnkM−1
n − Q̃k∥ = oP (1) where Mn is the same as before.

Meanwhile, due to the heteroskedasticity, we also consider the limit of Ã⊺
nkΣñAnk whereΣn is the same as in the preceding

section. The result is given by Lemma A.12, that is, ∥M−1
n Ã⊺

nkΣñAnkM−1
n − P̃k∥ = oP (1), where P̃k = diag

(̃
P∗,
∫ 1
0 σ

2(r)dLW

(r, 0)Ik3
)
in which P̃∗ = (̃P∗ij) is a 3 × 3 symmetric block matrix with P̃∗11 = P∗11, P̃∗22 = P∗22, P̃∗12 = P∗12, while P̃∗13 =∫ 1

0 φk1 (r)σ
2(r)E(ak2 (z1(r))

⊺)dr and P̃∗33 =
∫ 1
0 σ

2(r)E(ak2 (z1(r))ak2 (z1(r))
⊺)dr and P̃∗23 =

∫ 1
0 σ

2(r)E(ak2 (z1(r))
⊺)W (r)dr .
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Define Ξ̃1n = Φ13(r, z)⊺Q̃−1
∗

P̃∗Q̃−1
∗
Φ13(r, z) an 3-by-3 matrix with Φ13(r, z) defined as before. We then have the

following theorem.

Theorem 3.4. In addition to Assumptions A, B*, C–E, suppose that uniformly over all n, all eigenvalues of Q̃∗ and P̃∗ are bounded
below from zero and above from infinity, and Ξ̃1n→PΞ̃1 as n → ∞. Then, for any r ∈ [0, 1], z ∈ V and x ∈ R, the estimators for
model (3.14) obey⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
ndn [̂θ − θ0]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]

√
n

∥bk3 (x)∥
√
dn

[m̂n(x) − m(x)]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
→DN

(
0,
(
Ξ̃1

a2

))
(3.15)

as n → ∞ where 0 is a 4-dimensional zero column vector and a2 is the same as in the previous theorem.

The proof is relegated to Appendix D in the supplementary material. The main contribution of the theorem is the
relaxation of the stationary process in model (3.7) to the locally stationary process in model (3.14). It is readily seen that
if the distribution of the associated process zt (v) does not depend on v, implying that E[pj(z1(r))] = E[pj(z1)], Q̃k would
reduce to Qk and P̃k would reduce to Pk. Consequently, in this degenerated case Ξ̃n = Ξn and essentially model (3.14) would
reduce to model (3.7).

We have similar comments for Theorem 3.4 as that for Theorem 3.3, which is omitted for brevity.

4. Simulation

In this section we conduct Monte Carlo simulation to investigate the performance of our estimators proposed in the last
section in the finite sample situation. Wemainly focus on model (1.1). LetM = 1000 be the number of replication and n the
sample size.

Example 1. Let zt ∼ i.i.U[−1, 1] and g(z) = z2+sin(z). The Chebyshev polynomials of the first kind, pj(x) = cos(j arccos(x)),
j ≥ 0, are used to approximate the function g(·).

Suppose that ϵi ∼ N(0, 1),wt = ρwt−1 + ϵt with ρ = 0.2 andw0 ∼ N(0, 1/(1 − ρ2)). This is the theoretical distribution
of w0 in the AR(1) process. Let x0 = 0, xt = xt−1 + wt , t ≥ 1. Put m(x) = 1/(1 + x4). The Hermite functions are used for the
orthogonal expansion ofm(x).

Moreover, let β(r) = r−1/2 satisfying
∫ 1
0 β(r)dr = 0. The cosine sequence given in Section 2 is utilized for the expansion

of β(r). Then, yt = β(t/n) + g(zt ) + m(xt ) + et , t = 1, . . . , n, where et ∼ N(0, 1).
In the experiments below, the sample size is n = 400,600 and 1200, respectively, and the truncation parameters

k1 = k2 = 3, 4, 5 for β(·) and g(·) and k3 = 3, 4, 6 form(·), corresponding to each sample size. This indicates themove of the
truncation parameters with the sample size. It is noteworthy that, though in stationary case one may use the Generalized
Cross Validation (GCV) (see, e.g., Gao, 2007) to determine the truncation parameter, similar approach is not available in
nonstationary case.

After we obtain all estimators by the procedure described in Section 2, we shall calculate the bias (denoted by Bβ (n),
Bg (n) and Bm(n)), standard deviation (denoted by πβ (n), πg (n) and πm(n)) and RMSE (denoted by Πβ (n), Πg (n) and Πm(n))
of estimators, that is,

Bβ (n) :=
1
Mn

n∑
t=1

M∑
ℓ=1

[β(t/n) − β̂(t/n)], πβ (n) :=

(
1
Mn

n∑
t=1

M∑
ℓ=1

[̂βℓ(t/n) − β̂(t/n)]2
)1/2

,

Bg (n) :=
1
Mn

n∑
t=1

M∑
ℓ=1

[gℓ(zt ) − ĝ(zt )], πg (n) :=

(
1
Mn

n∑
t=1

M∑
ℓ=1

[̂gℓ(zt ) − ĝ(zt )]2
)1/2

,

Bm(n) :=
1
Mn

n∑
t=1

M∑
ℓ=1

[mℓ(xt ) − m̂(xt )], πm(n) :=

(
1
Mn

n∑
t=1

M∑
ℓ=1

[m̂ℓ(xt ) − m̂(xt )]2
)1/2

,

where the superscript ℓ indicates the ℓth replication, β̂(·) = φk1 (·)
⊺ĉ1, ĝ(·) = ak2 (·)

⊺ĉ2 and m̂(·) = bk3 (·)
⊺ĉ3 are the average

of β̂ℓ(·), ĝℓ(·) and m̂ℓ(·), respectively, over Monte Carlo replications ℓ = 1, . . . ,M , gℓ(zt ) and mℓ(xt ) means the values of g
and m are evaluated for the zt and xt , respectively, in the ℓth replication; and

Πβ (n) :=

(
1
Mn

n∑
t=1

M∑
ℓ=1

[β(t/n) − β̂ℓ(t/n)]2
)1/2

,
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Fig. 1. The plot of estimated density functions.

Table 1
Bias and S.d. of the estimators.

Bias S.d.

n Bβ (n) Bg (n) Bm(n) πβ (n) πg (n) πm(n)

400 0.0012 −0.0605 0.0863 0.1040 0.1093 0.2117
600 0.0004 −0.0496 0.0804 0.0992 0.0990 0.1429

1200 0.0001 −0.0431 0.0497 0.0761 0.0725 0.1193

Table 2
RMSE of the estimators.

n Πβ (n) Πg (n) Πm(n)

400 0.0917 0.0831 0.1063
600 0.0831 0.0775 0.0975

1200 0.0707 0.0624 0.0774

Πg (n) :=

(
1
Mn

n∑
t=1

M∑
ℓ=1

[gℓ(zt ) − ĝℓ(zt )]2
)1/2

,

Πm(n) :=

(
1
Mn

n∑
t=1

M∑
ℓ=1

[mℓ(xt ) − m̂ℓ(xt )]2
)1/2

.

It can be seen from Tables 1 and 2 that all the statistics perform very well as all quantities are decreasing reasonably with
the increase of the sample size. Nevertheless, there might be a visible slower rate for the estimator of m function than the
other two. This possibly is because the convergence rate of the estimator m̂n(x) to m(x) is the slowest among all estimators,
in view of Theorem 3.1.

In addition,with the same estimators, we also calculate their values at particular points, i.e., β̂ℓ(0.5), ĝℓ(−0.4) and m̂ℓ(1.2)
for all ℓ = 1, . . . ,M . Then we may estimate the densities of β̂ℓ(0.5) − β(0.5), ĝℓ(−0.4) − g(−0.4) and m̂ℓ(1.2) − m(1.2)
with normalization in Corollary 3.1. These are done in Matlab by the ksdensity function and are plotted in the following
figures.

From the three pictures in Figs. 1 and 2, the curves of the estimated densities for β̂n(0.5) − β(0.5), ĝ(−0.4) − g(−0.4)
and m̂n(1.2) − m(1.2) are gradually approaching the standard normal density. Particularly, the first two estimations seem
visually to have a quicker convergence, which coincides again with our theoretical results in the preceding section.

Example 2. Let all settings be the same as in Example 1 except that zt = ∆xt = wt . Hereby, zt and xt share infinite many
innovations ϵi. Althoughwe cannot establish our theory on this situation, this example implies that the estimation procedure
might be still workable. We report the results of the experiments in the following tables. In addition, in this correlated case
we also calculate the proportion of β̂n(0.1), ĝn(0.4) and m̂n(−0.5) dropping into the theoretical confidence intervals at 95%
significant level according to Corollary 3.1.

It can be seen from Tables 3 and 4 that the three statistics and the probability of the estimators in the confidence intervals
perform satisfactorily, and, comparing with the results in Example 1, it seems that in our settings the correlation between
xt and zt does not affect the implementation of our estimating procedure. In particular, the probabilities are very high, and
therefore sharing infinite many innovations for xt and zt might not affect statistical inference.
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Fig. 2. Estimated density of m̂n(1.2) − m(1.2).

Fig. 3. Plot data about Coke and Pepsi.

Table 3
Bias and S.d. of estimators in correlated case.

Bias S.d.

n Bβ (n) Bg (n) Bm(n) πβ (n) πg (n) πm(n)

400 0.0010 −0.0539 0.0662 0.1099 0.1104 0.1683
600 0.0006 −0.0472 0.0389 0.1008 0.0967 0.1438

1200 0.0001 −0.0224 −0.0226 0.0738 0.0717 0.1075

Table 4
RMSE and coverage probability of estimators in correlated case.

RMSE Coverage Probability

n Πβ (n) Πg (n) Πm(n) β̂n(0.1) ĝn(0.4) m̂n(−0.5)

400 0.1118 0.1250 0.1439 0.9938 0.9933 1
600 0.1034 0.1076 0.1255 0.9970 0.9950 1

1200 0.0745 0.0752 0.0887 1 1 1

5. Empirical study

This section provides an investigation of the relationship between the stock prices of Coke and Pepsi. Let Yt be the log
adjusted close price of Coke, Xt be the log adjusted close price of Pepsi and let zt be the ratio of the trading volume for Coke
and that for Coke plus Pepsi such that we always have 0 ≤ zt ≤ 1. The time span is from the first of June, 1972 to the 31st
of August, 2016. Excluding all weekends and public holidays, we have n = 11163 observations. In Figs. 3 and 4 are the plots
of Yt and Xt as well as zt , respectively.

To verify whether Xt is a unit root process, the ADF test is employed. The test fails to reject the null hypothesis that Xt
is a unit root process with the p-Value 0.9901. The same test is implemented on Yt and results in the p-Value 0.9627, a unit
root process as well. We also plot the daily returns of Coke and Pepsi in Fig. 5, in order to visualize the unit root processes.
The marginal price series appear to contain drifts and be non-recurrent, that is, we may suppose that Xt = µ1 + Xt−1 + ξt
and Yt = µ2 + Yt−1 + ζt , with µ1, µ2 ̸= 0. This implies that Xt − µ1t = X0 +

∑t
j=1ξj and Yt − µ2t = Y0 +

∑t
j=1ζj are

recurrent processes that satisfy the theoretical requirement in the preceding sections. We work with xt = Xt − µ̂1t and
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Fig. 4. Volume weight.

Fig. 5. Daily returns of Coke and Pepsi.

yt = Yt − µ̂2t , where µ̂1 = (Xn − X0)/n and µ̂2 = (Yn − Y0)/n are clearly consistent estimators of µ1 and µ2, respectively.
More importantly, zt and xt might have certain correlation which our theory can deal with (see Assumption B.1.(b)).

We shall look into the relationship of the variables yt , t/n, zt and xt through the model

yt = β(t/n) + g(zt ) + m(xt ) + et , (5.1)

for t = 1, . . . , n, where all functions β(·), g(·) and m(·) are unknown and will be estimated.
Since both β(·) and g(·) are defined on [0, 1], we use the cosine basis for their expansions, and form(·) we use the Hermite

sequence. All of these bases can be found in Section 2.
A key issue in using the series method in practice is the determination of the truncation parameters in the orthogonal

expansions. Themodel can be estimated by the proposed procedure only if the truncation parameters are specified. However,
there is no theoretical guide for the choice of such parameters, in particular in the case where both stationary and integrated
processes are present. Since forecasting ability is one of the most important characteristics for a model, we shall choose the
truncation parameters for our model through the best forecasting ability.

The forecasting ability for a model is measured by the so-called Out-of-Sample mean square errors (mse). That is, we use
part of data, 1 ≤ t ≤ n1 (n1 < n), say, to estimate the model for given ki (i = 1, 2, 3), then using the estimated model
we may forecast the dependent variable at t = n1 + 1, obtaining ŷn1+1. The Out-of-Sample mse with the given truncation
parameters is defined by J−1∑J

j=1 (̂ynj+1 − ynj+1)2 where nj < nj+1 < n for j = 1, . . . , J − 1. The model that has the smaller
Out-of-Sample mse has better forecasting ability.

In this example, let J = 20, nj = 9162 + 100j, 1 ≤ j ≤ J . In view of the nature of the dataset, we shall use the same
truncation parameter for β(·) and g(·), k1 = k2, while the parameter form(·) is still denoted by k3. The Out-of-Sample mse’s
are calculated for all feasible ki, that is, for all ki that are not too large since from the complexity point of view this requirement
is reasonable for a model. The results are reported in Table 5. From the table we can see that with k̂1 = k̂2 = 2 and k̂3 = 1
the model has the smallest Out-of-Sample mse 0.0146, viz., the best forecasting ability. For the dataset we thus suggest
the unknown functions in model (5.1) have the form β̂(r) = β2(r), ĝ(z) = g2(z) and m̂(x) = m1(r). After the estimation
procedure, we obtain

β̂(r) = − 0.0223ϕ1(r) − 0.0115ϕ2(r), r ∈ [0, 1],
ĝ(z) = − 2.7906 + 0.1461ϕ1(z), z ∈ [0, 1], (5.2)

m̂(x) =3.4201e−x2/2, x ∈ R,
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Fig. 6. Plot of estimated functions and confidence curves at 95% level.

Table 5
Out-of-sample mean square errors for model (5.1).

k3
k1(= k2)

2 3 4 5 6 7 8

1 0.0146 0.0515 0.0241 0.0364 0.0358 0.0251 0.0227
2 0.0752 0.0392 0.0190 0.0251 0.0454 0.0378 0.0342
3 0.0529 0.0316 0.0150 0.0191 0.0380 0.0332 0.0314
4 0.0329 0.0293 0.0197 0.0225 0.0367 0.0330 0.0318
5 0.0315 0.0290 0.0196 0.0224 0.0407 0.0383 0.0368
6 0.0260 0.0299 0.0226 0.0248 0.0388 0.0356 0.0338

Table 6
Estimation and related statistics for model (5.3).

a0 0.045 (0.0173, 0.0727) a1 0.1304 (0.1125,0.1482)
a2 −0.3357 (−0.3735, −0.2980) a3 1.2609 (1.2506,1.2711)

R2
= 0.8985 F = 32945

f = 0 p = 0.0491

where ϕj(r) =
√
2 cos(π jr) for j ≥ 1. We plot the pictures of β̂(r), ĝ(z) and m̂(x) and their confidence curves at 95% level

in Fig. 6. The effect of relative trading volume is estimated as negative and close to linear, meaning that large amounts of
trading in Coke relative to Pepsi is predictive of a decline in the price of Coke, ceteris paribus. The effect of Pepsi price on
Coke is symmetrical around zero, implying that Pepsi price far away from its central range in either direction has a negative
effect on the price of Coke, ceteris paribus. The estimated trend seems to be upward during the sample and bottoming out
at the end, meaning that the price of Coke has increased over the sample period relative to the value predicted by a time
invariant relationship based on the chosen covariates.

Comparison. In what follows the proposed model is compared with some potential competing models. One is a pure linear
parametric model and another one is the model studied in Section 3.3,

yt =a0 + a1
t
n

+ a2zt + a3xt + ε1t (5.3)

yt =β1

(
t
n

)
+ g1(zt ) + θ0xt + m1(xt ) + ε2t . (5.4)

The models are still measured by their forecasting ability.
For model (5.3), using the full data we have the estimated coefficients, confidence intervals at 95% significance level and

related statistics reported in Table 6. The linear model is fitted well as the R2 is close to one, F ≫ f and p < 0.05. However,
it is easily to calculate that the Out-of-Sample mse for model (5.3) is 0.0453, much larger than that of the proposed model
with functions in (5.2). Nevertheless, the residual plot looks quite similar for the two models in Fig. 7.

For model (5.4) we compute the Out-of-Sample mse’s with different combinations of feasible truncation parameters,
showing in Table 7. It can be seen that the smallest Out-of-Sample mse is 0.0154 that corresponds to model (5.4) with
k̂1 = k̂2 = 4 and k̂3 = 2. Though we seek the model that has the best forecasting ability in a broad area for the truncation
parameters, the resulting Out-of-Sample mse is larger than that calculated for model (5.1) with k̂1 = k̂2 = 2 and k̂3 = 1.

Taking both models (5.3) and (5.4) into account, in terms of Out-of-Sample mse we still recommend model (5.1) with
functions in (5.2) for the given dataset.
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Fig. 7. Plot of residuals for the proposed and linear models.

Table 7
Out-of-sample mean square errors for model (5.4).

k3
k1(= k2)

2 3 4 5 6 7 8

1 0.0462 0.0366 0.0167 0.0218 0.0319 0.0240 0.0227
2 0.0508 0.0313 0.0154 0.0195 0.0371 0.0322 0.0306
3 0.0457 0.0324 0.0181 0.0225 0.0356 0.0300 0.0286
4 0.0315 0.0289 0.0196 0.0223 0.0408 0.0386 0.0371
5 0.0313 0.0288 0.0195 0.0224 0.0408 0.0392 0.0376
6 0.0261 0.0293 0.0230 0.0259 0.0388 0.0370 0.0341

Trading strategy. We consider the performance of our proposed model in a pair trading strategy. The strategy has at least a
30-year history onWall Street and is among the proprietary ‘statistical arbitrage’ tools currently used by hedge funds as well
as investment banks. The strategy makes use of the idea of cointegration between two related stocks: it opens short/long
positionswhen they diverge and closes the positionswhen they converge. SeeGatev et al. (2006) for details. However, usually
the cointegration is depicted by a linear form equation in the related literature. By contrast, we shall use nonparametric
nonlinear cointegration in defining the pair strategy.

Letn0 ∈ (1, n) be an integer.With the proposedmodel (5.1) and (5.2),wehave êt = yt−β̂(t/n0)−ĝ(zt )−m̂(xt ), 1 ≤ t ≤ n0.
Let α be a significance level specified below. Find the empirical lower (α/2)-quantile ℓ(α/2) and upper (α/2)-quantile L(α/2)
from {̂et : 1 ≤ t ≤ n0}.

The trading rule is as follows. From t = n0 + 1 to t = n, calculate êt = yt − β̂(1)− ĝ(zt )− m̂(xt ). If êt > L(α/2), short one
dollar in Coke and long one dollar in Pepsi; if êt < ℓ(α/2), long one dollar in Coke and short one dollar in Pepsi; otherwise,
close all positions held if any, and put positive gain into a risk free bond account with rate r0 and offset negative gain from
the account. At the last trading day, all positions shall be closed ignoring the location of the residual.

Mathematically, at date t ≥ n0 + 1, if êt > L(α/2), we owe 1/Yt share of Coke and buy 1/Xt share of Pepsi; if êt < ℓ(α/2),
we owe 1/Xt share of Pepsi and buy 1/Yt share of Coke; otherwise, we clear all positions held since last date of closing
positions, say, date k, that is, we obtain

∑t−1
j=k∆

t
j , where

∆t
j =

⎧⎪⎨⎪⎩
(Xt/Xj − Yt/Yj)(1 + r0)n−t , if êj > L(α/2) and Xt/Xj − Yt/Yj ≥ 0,
Xt/Xj − Yt/Yj, if êj > L(α/2) and Xt/Xj − Yt/Yj < 0,
(Yt/Yj − Xt/Xj)(1 + r0)n−t , if êj < ℓ(α/2) and Yt/Yj − Xt/Xj ≥ 0,
Yt/Yj − Xt/Xj, if êj < ℓ(α/2) and Yt/Yj − Xt/Xj < 0.

Then, the total profit of the trading period is
∑

t∈A
∑t−1

j=k∆
t
j where A is the collection of all clearing dates.

Let α = 0.01 and 0.05, and put r0 = 0.02/250 per day. Here, we do not consider any cost in the trading like transaction
fee or price impact. We report the trading results in Table 8. In order to compare with the linear model, we also show the
trading results in the same table using model (5.3). It can be seen that normally the results are sensitive to the length of the
data history that determines the thresholds of taking action. In terms of profit, the proposed nonlinear cointegration model
outperforms the linear model. Also, it seems no action token place for t > 9000 for both but with α = 0.01 the linear model
in the experiment always has nothing to gain. The results imply that nonlinear cointegration might be a better alternative
relationship to the linear cointegration in the literature of pair trading strategy.

6. Conclusion and extension

This paper has studied additive models that have nonparametrically time trend, stationary and integrated variables as
their components. Meanwhile, in order to accommodate more practical situations, the stationary variable has been relaxed
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Table 8
Pair trading for Coke and Pepsi.

Nonlinear cointegration Linear cointegration

α L(α/2) ℓ(α/2) Profit L(α/2) ℓ(α/2) Profit

n0 = 7000 0.01 0.3511 −1.2710 0.0227 0.5678 −0.4937 0
0.05 0.1130 −1.2025 0.6525 0.4631 −0.4324 0.0767

n0 = 7500 0.01 0.3450 −1.2669 0.0227 0.5680 −0.4874 0
0.05 0.1012 −1.1963 0.8162 0.4614 −0.4236 0.1389

n0 = 8000 0.01 0.3401 −1.2647 0.0227 0.5681 −0.4828 0
0.05 0.0806 −1.1913 0.9117 0.4580 −0.4167 0.1931

n0 = 8500 0.01 0.3318 −1.2561 0.0145 0.5646 −0.4780 0
0.05 0.0704 −1.1963 0.7515 0.4562 −0.4122 0.5708

n0 = 9000 0.01 0.3234 −1.2622 0 0.5635 −0.4734 0
0.05 0.0580 −1.2059 0 0.4547 −0.4153 0

to be locally stationary; the correlation between regressors is allowed; the models have been extended to include an extra
linear form of the integrated process that compensates a possible shortcoming in some particular cases. All these efforts
provide with practitioners a variety of options, as illustrated by the empirical study.

As far as we know, it seems the first time in the literature that such models are investigated. All nonparametric functions
are estimated by orthogonal seriesmethod; the central limit theorems for all proposed estimators have been established; the
conventional optimal convergence rates are attainable; Monte Carlo experiment has conducted to verify the performance of
the estimators with finite sample and an empirical study is provided.

The series estimators are convenient, but they are known in other contexts to be inefficient in the sense considered in
Fan (1993). Following Linton (1997), Liu et al. (2013), and Linton andWang (2016) wemay consider efficiency improvement
by one step kernel estimation. However, given the orthogonality between the estimated components, it is likely that the
efficiency improvement is minimal, which is why we have not pursued this here. In addition, it is desirable to investigate
the situation where zt and xt may be sharing infinite many innovations. Our next study would relax this condition to make
the estimation procedure more applicable.
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Appendix A. Lemmas

This section presents all technical lemmas while their proofs are relegated in Appendix C in the supplementary material
of the paper.

We first study some properties about xt . Without loss of generality, let x0 = 0 almost surely. It follows that

xt =

t∑
ℓ=1

wℓ =

t∑
ℓ=1

ℓ∑
i=−∞

ψℓ−iϵi =

t∑
i=−∞

⎛⎝ t∑
ℓ=max(1,i)

ψℓ−i

⎞⎠ ϵi =:

t∑
i=−∞

bt,iϵi. (A.1)

Taking into account that in Assumption B.1.(b), zt maybe contains ϵt , . . . , ϵt−d+1, we decompose, for t > d,

xt =

t∑
i=t−d+1

bt,iϵi +
t−d∑

i=−∞

bt,iϵi := x(d)t + x(t−d)
t . (A.2)

Thus, x(d)t and x(t−d)
t are mutually independent, and x(d)t is stationary since it is a combination of ϵt , . . . , ϵt−d+1 with fixed

coefficients ψ0, . . . ,
∑d−1

ℓ=0ψℓ (i.e., a MA(d) process), while x(t−d)
t is still nonstationary as we only take out fixed number of

ϵ’s from xt .
Letting 1 ≤ s < t , xt also has the following decomposition:

xt = x∗

s + xts,

where x∗
s = xs + x̄s with x̄s =

∑t
i=s+1

∑s
a=−∞

ψi−aϵa containing all information available up to s and xts =
∑t

i=s+1bt,iϵi which
captures all information containing in xt on the time periods (s, t]. Let dts := (Ex2ts)

1/2
∼

√
t − s for large t − s. Moreover,

x̄s = OP (1) by virtue of Assumption A.
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Additionally, taking into account of that zt and zs maybe have ϵt , . . . , ϵt−d and ϵs, . . . , ϵs−d for t − s ≥ d, we decompose

xt =x(d)t + x(d)ts + x(d∗)s + x(s−d∗)
s , (A.3)

where x(d)t =

t∑
i=t−d+1

bt,iϵi, x(d)ts =

t−d∑
i=s+1

bt,iϵi

x(d∗)s = x(d)s + x̄(d)s , x(s−d∗)
s = x(s−d)

s + x̄(s−d)
s ,

recalling that x(d)s and x̄(d)s are the sums of the first d terms of xs and x̄s, respectively, whereas x(s−d)
s and x̄(s−d)

s are the rests of
them in xs and x̄s, respectively. Obviously, all four components in (A.3) are mutually independent.

Lemma A.1. Suppose that Assumption A holds. For t or t − s is large,

(1) d−1
t xt have uniformly bounded densities ft (x) over all t and x satisfying a uniform Lipschitz condition supx|ft (x+y)−ft (x)| ≤

C |y| for any y and some constant C > 0. In addition, supx|ft (x) − φ(x)| → 0 as t → ∞ where φ(x) is the standard normal
density function.

(2) Let 1 ≤ s < t. d−1
ts xts have uniformly bounded densities fts(x) over all (t, s) and x satisfying the above uniform Lipschitz

condition as well.

Lemma A.2. Suppose that Assumption A holds. For t or t − s is large,

(1) Let d̃2t = E[(x(t−d)
t )2]. d̃−1

t x(t−d)
t have uniformly bounded densities ft/d(x) over all t and x satisfying a uniform Lipschitz

condition supx|ft/d(x + y) − ft/d(x)| ≤ C |y| for any y and some constant C > 0. In addition, supx|ft/d(x) − φ(x)| → 0 as
t → ∞ where φ(x) is the standard normal density function.

(2) For 1 ≤ s < t and t − s > d, let d̃2ts = E[(x(t−d)
ts )2]. d̃−1

ts x(t−d)
ts have uniformly bounded densities fts/d(x) over all (t, s) and x

satisfying the above uniform Lipschitz condition as well.

It is noteworthy that d̃t ∼
√
t , the same order as dt for large t , and d̃ts ∼

√
t − s, the same order as dts, for large t−s noting

by that d is fixed. This fact will be used frequently in the following derivation which, for simplicity, will not be mentioned
repeatedly.

Lemma A.3. Suppose that Assumptions A and B.1(b) hold.

(1) Let p(·) be a function such that E|p(zt )| < ∞, h(·) be an integrable function on R, i.e.
∫
|h(x)|dx < ∞. Then, for large t,

|Ep(zt )h(xt )| < Cd̃−1
t E|p(zt )|

∫
|h(x)|dx(1 + O(d̃−1

t )).
(2) Let p1(·) and p2(·) satisfy the above condition for p(·); and h1(·) is integrable and h2(·) is such that

∫
|xh2(x)|dx < ∞. For

1 ≤ s < t and t − s > d, |E[p1(zt )p2(zs)h1(xt )h2(xs)]| ≤ Cd̃−1
ts d̃−1

s E|p1(zt )|E|p2(zs)|
∫
|h1(x)|dx

∫
|h2(x)|dx(1 + O(d̃−1

ts )).

This lemma is sufficient to deal with the correlation between zt and xt stipulated in Assumptions B and B*.
All notation used below can be found in the text and thus is omitted for brevity.

Lemma A.4. (1)
 1

n

∑n
t=1φk1 (t/n)φ

⊺
k1
(t/n) − Ik1

2 = O(n−2k21) as k1/n → 0;
(2) sup0≤r≤1∥φk1 (r)∥

2
= k1 + O(1) as k1 → ∞.

Lemma A.5. Let Dn = diag(
√
nIk1 ,

√
nIk2 ,

√
n/dnIk3 ). Then, under Assumptions A, B and D, ∥D−1

n B⊺
nkBnkD−1

n − Uk∥ = oP (1) as
n → ∞ on a richer probability space. Particularly, ∥ 1

n

∑n
t=1φk1 (t/n)φk1 (t/n)

⊺
− Ik1∥ = o(1), ∥ 1

n

∑n
t=1ak2 (zt )ak2 (zt )

⊺
− U∗22∥ =

oP (1) and ∥
dn
n

∑n
t=1bk2 (xt )bk2 (xt )

⊺
− LW (1, 0)Ik3∥ = oP (1).

Lemma A.6. Under Assumptions A, B* and D, ∥D−1
n B̃⊺

nk̃BnkD−1
n − Ũk∥ = oP (1) as n → ∞ on a richer probability space, where Dn

is given in Lemma A.5.

Lemma A.7. Under Assumptions A, B and D, ∥D−1
n B⊺

nkΣnBnkD−1
n − Vk∥ = oP (1) as n → ∞ on a richer probability space, where

Σn = diag(σ 2(1/n), . . . , σ 2(1)) and Dn is given in Lemma A.5.

Lemma A.8. Under Assumptions A, B* and D, ∥D−1
n B̃⊺

nkΣñBnkD−1
n − Ṽk∥ = oP (1) as n → ∞ on a richer probability space, where

Dn is given in Lemma A.5.

Lemma A.9. Let Mn = diag(
√
nIk1 ,

√
ndn,

√
nIk2 ,

√
n/dnIk3 ). Then, under Assumptions A, B and D, ∥M−1

n A⊺
nkAnkM−1

n − Qk∥ =

oP (1) as n → ∞ on a richer probability space.

Lemma A.10. Under Assumptions A, B* and D, ∥M−1
n Ã⊺

nk̃AnkM−1
n − Q̃k∥ = oP (1) as n → ∞ on a richer probability space, where

Mn is the same as in Lemma A.9.
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Lemma A.11. Under Assumptions A, B andD, ∥M−1
n A⊺

nkΣnAnkM−1
n −Pk∥ = oP (1) as n → ∞ on a richer probability space, where

Mn is the same as in Lemma A.9.

Lemma A.12. Under Assumptions A, B* and D, ∥M−1
n Ã⊺

nkΣñAnkM−1
n − P̃k∥ = oP (1) as n → ∞ on a richer probability space,

where Mn is the same as in Lemma A.9.

Appendix B. Proof of the main result

In this appendix only the proofs of Theorems 3.1 and 3.2 are provided, while that for other theorems, proposition and
corollaries are relegated to the supplement of the paper.

Proof of Theorem 3.1. The theorem will be shown via Cramér–Wold theorem. Notice that

ĉ − c = (B⊺
nkBnk)−1B⊺

nk(γ + e) = D−1
n [D−1

n B⊺
nkBnkD−1

n ]
−1D−1

n B⊺
nk(γ + e), (B.1)

which implies

Dn (̂c − c) = [D−1
n B⊺

nkBnkD−1
n ]

−1D−1
n B⊺

nk(γ + e).

Hence, for any r ∈ [0, 1], z ∈ V and x ∈ R,⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]

√
n

∥bk3 (x)∥
√
dn

[m̂n(x) − m(x)]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Ψ (r, z, x)⊺Dn (̂c − c) −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
γ1k1 (r)

√
n

∥ak2 (z)∥
γ2k2 (z)

√
n

∥bk3 (x)∥
√
dn
γ3k3 (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Ψ (r, z, x)⊺[D−1

n B⊺
nkBnkD−1

n ]
−1D−1

n B⊺
nke (B.2)

+ xsΨ (r, z, x)⊺[D−1
n B⊺

nkBnkD−1
n ]

−1D−1
n B⊺

nkγ −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
γ1k1 (r)

√
n

∥ak2 (z)∥
γ2k2 (z)

√
n

∥bk3 (x)∥
√
dn
γ3k3 (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (B.3)

where Ψ (r, z, x) is the Ψ (r, z, x) defined in Section 2 postmultiplying by diag(∥φk1 (r)∥
−1, ∥ak2 (z)∥

−1, ∥bk3 (z)∥
−1), so that

each block in Ψ (r, z, x) is a unit vector. Here, the leading term in the above is Ψ (r, z, x)⊺[D−1
n B⊺

nkBnkD−1
n ]

−1D−1
n B⊺

nke that will
be dealt with firstly. To begin, by Lemma A.5, ∥D−1

n B⊺
nkBnkD−1

n −Uk∥ = oP (1) as n → ∞, andmaking use of the block diagonal
structure of Uk, it follows that

Ψ (r, z, x)⊺[D−1
n B⊺

nkBnkD−1
n ]

−1D−1
n B⊺

nke = Ψ (r, z, x)⊺U−1
k D−1

n B⊺
nke(1 + oP (1))

= L−1
3 Ψ (r, z, x)⊺Ū−1

k D−1
n B⊺

nke(1 + oP (1)), (B.4)

where L3 = diag(1, 1, LW (1, 0)) and Ūk = diag(Ik1 ,Uk2 , Ik3 ). As L3 is independent of the sample size, we now focus on
Ψ (r, z, x)⊺Ū−1

k D−1
n B⊺

nke.
Write

Ψ (r, z, x)⊺Ū−1
k D−1

n B⊺
nke =

n∑
t=1

ξntet

where we denote

ξnt := Ψ (r, z, x)⊺Ū−1
k D−1

n

(
φk1 (t/n)
ak2 (zt )
bk3 (xt )

)
.

Since (et ,Fnt ) is a martingale difference sequence stipulated in Assumption B,
∑n

t=1ξntet is a martingale due to
Assumption B.4. We calculate the conditional variance as follows:

n∑
t=1

E[ξntξ
⊺
nte

2
t |Fn,t−1] =

n∑
t=1

ξntξ
⊺
ntσ

2(t/n)
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=Ψ (r, z, x)⊺Ū−1
k D−1

n B⊺
nkΣnBnkD−1

n Ū−1
k Ψ (r, z, x)

=Ψ (r, z, x)⊺Ū−1
k VkŪ−1

k Ψ (r, z, x)(1 + oP (1))

=Ψ (r, z, x)⊺Ū−1
k V̄kŪ−1

k Ψ (r, z, x)Lσ (1 + oP (1))
:=ΩnLσ (1 + oP (1)) (B.5)

by Lemma A.7 and the structure of Vk, where Lσ = diag(1, 1,
∫ 1
0 σ

2(r)dL(r, 1)), V̄k = diag(V∗, Ik3 ) a deterministic matrix, and
Ωn := Ψ (r, z, x)⊺Ū−1

k V̄kŪ−1
k Ψ (r, z, x) is a 3 × 3 deterministic matrix as well. This means that the conditional variance of

Ω
−1/2
n

∑n
t=1ξntet is approximated by Lσ in probability.

Here, we emphasize thatΩ−1/2
n is exchangeable with L3, i.e.Ω

−1/2
n L3 = L3Ω

−1/2
n . Indeed, notice that

Ω−1/2
n =

[
Ψ (r, z, x)⊺

(
U−1

∗
V∗U−1

∗
0

0 Ik3

)
Ψ (r, z, x)

]−1/2

=

(
[Ψ 12(r, z)⊺U−1

∗
V∗U−1

∗
Ψ 12(r, z)]−1/2 0

0 1

)
,

whereΨ 12(r, z) := diag(φk1 (r)/∥φk1 (r)∥, ak2 (z)/∥ak2 (z)∥) the left-top 2-by-2 sub-block matrix ofΨ (r, z, x), while the right-
bottom block of Ψ (r, z, x) is bk3 (x)/∥bk3 (x)∥, U∗ = diag(Ik1 ,Uk2 ). Then, it is obvious thatΩ

−1/2
n is exchangeable with L3. This

point allows us to normalize the left hand side of Eq. (B.2) and the martingale
∑n

t=1ξntet byΩ
−1/2
n simultaneously.

Hence, we shall show that themartingaleΩ−1/2
n

∑n
t=1ξntet converges toN(0, Lσ ) by Cramér–Wold theorem and Corollary

3.1 of Hall and Heyde (1980, p. 58).
To this end, let λ = (λ1, λ2, λ3) ̸= 0 and we need to check for

ξn :=

n∑
t=1

λΩ−1/2
n ξntet ,

whether (1) Lindeberg condition and (2) the convergence of the conditional variance are fulfilled.
(1). The Lindeberg condition is fulfilled if we show that

∑n
t=1E[(λξntet )4|Fn,t−1]→P0 as n → ∞. Indeed, denoting

µ4 := max1≤t≤nE[e4t |Fn,t−1],
n∑

t=1

E[(λξntet )4|Fn,t−1] ≤ µ4

n∑
t=1

(λξnt )4

=µ4

n∑
t=1

[λΨ (r, z, x)⊺Ū−1
k D−1

n (φk1 (t/n)
⊺, ak2 (zt )

⊺, bk3 (xt )
⊺)⊺]4

=µ4

n∑
t=1

(
λ1

1
√
n
φk1 (r)

⊺

∥φk1 (r)∥
φk1 (t/n) + λ2

1
√
n

ak2 (z)
⊺

∥ak2 (z)∥
U−1
k2

ak2 (zt )

+

√
dn
n
λ3∥bk3 (x)∥

−1bk3 (x)
⊺bk3 (xt )

)4

≤C1λ
4
1
1
n2

n∑
t=1

1
∥φk1 (r)∥4 [φk1 (r)

⊺φk1 (t/n)]
4
+ C2λ

4
2
1
n2

n∑
t=1

1
∥ak2 (z)∥

[ak2 (z)
⊺ak2 (zt )]

4

+ C3
d2n
n2

n∑
t=1

[λ4∥bk3 (x)∥
−1bk3 (x)

⊺bk3 (xt )]
4,

because Uk2 has eigenvalues greater than zero and bounded from above uniformly. Denote u1 = φk1 (r)/∥φk1 (r)∥ and
u2 = ak2 (z)/∥ak2 (z)∥ two unit vectors with dimensions k1 and k2, respectively. It follows that

1
n2

n∑
t=1

[u⊺
1φk1 (t/n)]

4
=

1
n

∫ 1

0
[u⊺

1φk1 (s)]
4ds + O(n−2)

≤
1
n

∫ 1

0
∥φk1 (s)∥

4ds = O(n−1k21) → 0,

by Cauchy–Schwarz inequality and supr∈[0,1]∥φk1 (s)∥
2

= O(k1). Also, in order to show that 1
n2
∑n

t=1[u
⊺
2ak2 (zt )]

4
→P0, note

that

1
n2E

n∑
t=1

(u⊺
2ak2 (zt ))

4
=

1
n2E

n∑
t=1

(k2−1∑
i=0

u2ipi(zt )

)4
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=
1
n2

n∑
t=1

k2−1∑
i=0

u4
2iEp

4
i (zt ) + 6

1
n2

n∑
t=1

k2−1∑
i=1

i−1∑
j=1

u2
2iu

2
2jE[p2i (zt )p

2
j (zt )]

+ 4
1
n2

n∑
t=1

k2−1∑
i=1

i−1∑
j=1

u2iu3
2jE[(pi(zt ))p3j (zt )]

+ 8
1
n2

n∑
t=1

k2−1∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=0

u2i1u2i2u2i3u2i4E[pi1 (zt )pi2 (zt )pi3 (zt )pi4 (zt )]

≤
1
n
k2

k2∑
i=1

u4
2i + 6

1
n
k2

k2∑
i=1

i−1∑
j=0

u2
2iu

2
2j + 4

1
n
k2

k2∑
i=1

i−1∑
j=1

|u2i||u2j|
3

+ 8
1
n
k2

k2∑
i1=3

i1−1∑
i2=2

i2−1∑
i3=1

i3−1∑
i4=0

|u2i1u2i2u2i3u2i4 |

≤
1
n
k2 + 4

1
n
k2k

1/2
2 + 8

1
n
k2k22 = o(1),

where we denote u2 = (u21, . . . , u2k2 )
⊺, and Assumption B.2(a) is used for Ep4i (zt ) = O(i) for i large, Cauchy–Schwarz

inequality to deriveE|(pi(zt ))p3j (zt )| ≤ (E|(pi(zt ))|4)1/4(E|pj(zt )|4)4/3 aswell as other similar terms;meanwhile,
∑k2−1

i=0 |u2i| ≤

k1/22 . The third term is much easier to be dealt with. Let u3 := ∥bk3 (x)∥
−1bk3 (x) a unit vector, and notice that ∥bk3 (·)∥

2
≤ Ck3

uniformly by the uniform boundedness of Hermite functions. We have, by Lemma A.1,

d2n
n2E

n∑
t=1

(u⊺
3bk3 (xt ))

4
≤ Ck3

d2n
n2

n∑
t=1

E(u⊺
3bk3 (xt ))

2

=Ck3
d2n
n2

n∑
t=1

∫
(u⊺

3bk3 (dtx))
2ft (x)dx = Ck3

d2n
n2

n∑
t=1

1
dt

∫
(u⊺

3bk3 (x))
2ft (d−1

t x)dx

≤Ck3
d2n
n2

n∑
t=1

1
dt

∫
(u⊺

3bk3 (x))
2dx = Ck3

d2n
n2

n∑
t=1

1
dt

=Ck3n−1/2
= o(1),

where
∫
(u⊺

3bk3 (x))
2dx = ∥u3∥

2
= 1 by the orthogonality. This finishes the Lindeberg condition.

(2). For the conditional variance, it is clear by (B.5) that the martingale ξn has conditional variance approaching λLσλ⊺ in
probability. The normality therefore is shown.

To finish the proof, we next demonstrate that all reminder terms in (B.3) are negligible, that is, as n → ∞,
n∑

t=1

ξntγ (t) = oP (1),
√
n∥φk1 (r)∥

−1γ1k1 (r) = o(1),

√
n∥ak2 (z)∥

−1γ2k2 (z) = o(1),
√
n/dn∥bk3 (x)∥

−1γ3k3 (x) = o(1).

Here, we omit the normalizerΩn since it is positive definite and has eigenvalues bounded below from zero and above from
infinity due to the condition on Uk2 and V∗.

In view of the structures of ξnt , we need to show

(3)
1

√
n

n∑
t=1

∥φk1 (r)∥
−1φk1 (r)

⊺φk1 (t/n)γ (t) = o(1),

(4)
1

√
n

n∑
t=1

∥ak2 (z)∥
−1ak2 (z)

⊺ak2 (zt )γ (t) = oP (1),

(5)
√
n∥φk1 (r)∥

−1γ1k1 (r) = o(1),
√
n∥ak2 (z)∥

−1γ2k2 (z) = o(1),

(6)

√
dn
n

n∑
t=1

1
∥bk3 (x)∥

bk3 (x)
⊺bk3 (xt )γ (t) = oP (1),

(7)
√

n
dn

1
∥bk3 (x)∥

γ3k3 (x) = o(1).
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To fulfill (3)–(5), it suffices to show

A1n :=
1

√
n

n∑
t=1

∥φk1 (t/n)∥|γ (t)| = oP (1), B1n :=
1

√
n

n∑
t=1

∥ak2 (zt )∥|γ (t)| = oP (1),

A2n :=
√
n

1
∥φk1 (r)∥

|γ1k1 (r)| = o(1), B2n :=
√
n

1
∥ak2 (z)∥

|γ2k2 (z)| = o(1).

Indeed, note that maxr∈[0,1]|γ1k1 (r)| = O(k−s1
1 ) and E|γ2k2 (zt )|

2
= O(k−s2

2 ) by Newey (1997) and Chen and Christensen (2015)
where s1 and s2 are respectively the smoothness order of β(·) and g(·), whereas using the density for d−1

t xt in Lemma A.1
and the result of Lemma C.1 in Dong et al. (2016), we have E|γ3k3 (xt )|

2
≤ Cd−1

t
∫

|γ3k3 (x)|
2dx = d−1

t O(k−s3
3 ). Notice further

that,

E|A1n| ≤
1

√
n

n∑
t=1

∥φk1 (t/n)∥E|γ (t)|

≤
1

√
n

n∑
t=1

∥φk1 (t/n)∥|γ1k1 (t/n)|

+
1

√
n

n∑
t=1

∥φk1 (t/n)∥E|γ2k2 (zt )|

+
1

√
n

n∑
t=1

∥φk1 (t/n)∥E|γ3k3 (xt )|

≤

√
nk1 max

r∈[0,1]
|γ1k1 (r)| +

√
nk1O(k

−s2/2
2 )

+
1

√
n

n∑
t=1

∥φk1 (t/n)∥d
−1/2
t O(k−s3/2

3 )

≤

√
nk1O(k

−s1
1 ) +

√
nk1O(k

−s2/2
2 ) + n1/4

√
k1O(k

−s3/2
3 )

=o(1)

by Assumption D, implying A1n = oP (1). Similarly, it is readily seen that A2n = o(1) as well. For B1n, denoting u2 =

∥ak2 (z)∥
−1ak2 (z) temporarily,

E|B1n| ≤
1

√
n

n∑
t=1

E∥ak2 (zt )γ (t)∥ ≤
1

√
n

n∑
t=1

[
E∥ak2 (zt )∥

2E|γ (t)|2
]1/2

≤C
1

√
n

n∑
t=1

[
E∥ak2 (zt )∥

2]1/2[
|γ1k1 (t/n)|

2
+ E|γ2k2 (zt )|

2
+ E|γ3k3 (xt )|

2]1/2
=C

√
nk1/22 max

r∈[0,1]
|γ1k1 (r)| + C

√
nk1/22 O(k−s2/2

2 )

+ Ck1/22 n1/4O(k−s3/2
3 )

=C
√
nk1/22 O(k−s1

1 ) + C
√
nk1/22 O(k−s2/2

2 ) + Ck1/22 n1/4O(k−s3/2
3 ),

due to Assumption DwhereE∥ak2 (zt )∥
2

≤ Ck2 for some constant C sinceE[ak2 (zt )ak2 (zt )
⊺
] a block in LemmaA.5 has bounded

eigenvalues. In addition,

|B2n| =
1

∥ak2 (z)∥
√
n|γ2k2 (z)| =

1
∥ak2 (z)fz(z)∥

√
n|γ2k2 (z)fz(z)|

=O(k−1/2
2 )

√
nk−s2/2

2 = o(1),

where we have used ∥ak2 (z)fz(z)∥
2

= O(k2) for fixed z and pointwise convergence |γ2k2 (z)fz(z)| = o(k−s2/2
2 ).

For (6), letting u3 = ∥bk3 (x)∥
−1bk3 (x) as before and by Lemma A.1,√

dn
n

n∑
t=1

E|u⊺
3bk3 (xt )γ (t)|

≤

√
dn
n

n∑
t=1

E|u⊺
3bk3 (xt )|γ1k1 (t/n)|
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+

√
dn
n

n∑
t=1

E|u⊺
3bk3 (xt )||γ2k2 (zt )|

+

√
dn
n

n∑
t=1

E|u⊺
3bk3 (xt )γ3k3 (xt )||

≤

√
dn
n

max
r∈[0,1]

|γ1k1 (r)|
n∑

t=1

[
E∥bk3 (xt )∥

2]1/2
+

√
dn
n
k−s2/2
2

n∑
t=1

[E∥bk3 (xt )∥
2
]
1/2

+

√
dn
n

n∑
t=1

[E∥bk3 (xt )∥
2E|γ3k3 (xt )|

2
]
1/2

≤C1n−1/4k−s1
1 k1/23 n3/4

+ C2n−1/4k−s2/2
2 k1/23 n3/4

+ C3

√
dn
n

n∑
t=1

d−1
t

[∫
∥bk3 (x)∥

2dx
∫

|γ3k3 (x)|
2dx
]1/2

=C1n1/2k−s1
1 k1/23 + C2n1/2k−s2/2

2 k1/23 + C3n1/4k−s3/2
3 k1/23

=o(1)

due to Assumption D where we have used the boundedness of the density ft (x) for xt/dt by Lemma A.1. In the mean time,
for (7),

1
∥bk3 (x)∥

√
n/dn|γ3k3 (x)| =O(k−1/2

3 )O(n1/4)o(k−(s3−1)/2−1/12
3 )

=o(n1/4k−s3/2−1/12
3 ) = o(1),

where supx|γ3k3 (x)| = o(k−(s3−1)/2−1/12
3 ) by again Lemma C.1 in the supplement of Dong et al. (2016). The entire proof is

complete.

Proof of Theorem 3.2. Similar to (B.1), we have

ĉ − c = D−1
n Ũ−1

k D−1
n B̃⊺

nk(γ̃ + e)(1 + oP (1)),

where γ̃ = (γ̃ (1), . . . , γ̃ (n))⊺ with γ̃ (t) = γ1k1 (t/n) + γ2k2 (zt,n) + γ3k3 (xt ). Hence, Dn (̂c − c) = Ũ−1
k D−1

n B̃⊺
nk(γ̃ + e) where the

term oP (1) is omitted for better exposition. Also, note that for any r ∈ [0, 1], z ∈ [amin, amax] and x ∈ R,⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
[̂βn(r) − β(r)]

√
n

∥ak2 (z)∥
[̂gn(z) − g(z)]

√
n

∥bk3 (x)∥
√
dn

[m̂n(x) − m(x)]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Ψ (r, z, x)⊺Dn (̂c − c) −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
γ1k1 (r)

√
n

∥ak2 (z)∥
γ2k(z)

√
n

∥bk3 (x)∥
√
dn
γ3k3 (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

= Ψ (r, z, x)⊺Ũ−1
k D−1

n B̃⊺
nk(γ̃ + e) −

⎛⎜⎜⎜⎜⎜⎜⎜⎝

√
n

∥φk1 (r)∥
γ1k1 (r)

√
n

∥ak2 (z)∥
γ2k(z)

√
n

∥bk3 (x)∥
√
dn
γ3k3 (x)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (B.6)

The normality will be derived fromΨ (r, z, x)⊺Ũ−1
k D−1

n B̃⊺
nke. It can be shown exactly in the same fashion as Theorem 3.1 by

Cramér–Wold theorem as well as the diagonal block structure of Ũk and Ṽk. In addition, using the approximation of zt (t/n)
to zt,n [some examples can be found in the proof of the lemmas] it is not hard to demonstrate all the remainder terms are
asymptotically negligible. These are omitted for the sake of similarity. The proof thus is finished.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.05.007.

https://doi.org/10.1016/j.jeconom.2018.05.007
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