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Abstract

This paper studies estimation of dynamic covariance matrix with multiple conditioning variables,

where the matrix size can be ultra large (divergent at an exponential rate of the sample size). We

introduce an easy-to-implement semiparametric method to estimate each entry of the covariance

matrix via model averaging marginal regression, and then apply a shrinkage technique to obtain an

estimate of the large dynamic covariance matrix estimation. Under some regularity conditions, we

derive the asymptotic properties for the proposed estimators including the uniform consistency with

general convergence rates. We also consider extending our methodology to deal with the scenario

where the number of conditioning variables is diverging. Simulation studies are conducted to illustrate

the finite-sample performance of the developed methodology.

Keywords: dynamic covariance matrix, MAMAR, semiparametric estimation, sparsity, uniform

consistency.
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1 Introduction

The classical theory of mean/variance portfolio choice was developed by Markowitz (1952), see Merton

(1969) and Fama (1970) for some other important developments. More recently this topic has been at

the centre of a lot of research, see Back (2010) and Brandt (2010) for some recent surveys. In practice,

it is not uncommon that the dynamic portfolio choice depends on many conditioning (or forecasting)

variables, which reflects the varying investment opportunities over the time. Generally speaking,

there are two ways to describe the dependence of portfolio choice on the conditioning variables. One

is to assume a parametric model that relates the returns of risky assets to the conditioning variables

and then solve for an investor’s portfolio choice using some traditional econometric approaches to

estimate the unknown parameters. However, the assumed parametric models might be misspecified,

which would lead to inconsistent estimation of the optimal portfolio and invalid inference. One way

to avoid the possible model misspecification issue is to use some nonparametric methods such as the

kernel estimation method to describe the dependence of the portfolio choice on conditioning variables.

The latter method is introduced in Brandt (1999) in the case of a univariate conditioning variable.

Äıt-Sahalia and Brandt (2001) further develop a single-index strategy to handle multiple conditioning

variables. This literature has worked with the case where the number of assets is fixed and relatively

small. However, another literature has considered the case where there are no covariates but there

are a large number of assets (c.f., Ledoit and Wolf, 2003, 2004, 2014; Kan and Zhou, 2007; Fan, Fan

and Lv, 2008; DeMiguel et al, 2009; DeMiguel, Garlappi and Uppal, 2009; Pesaran and Zaffaroni,

2009; Frahm and Memmel, 2010; Tu and Zhou, 2011).

As seen from the aforementioned literature, accurate covariance matrix estimation plays a crucial

role in portfolio choice problem. In this paper suppose that the observations Xt = (Xt1, . . . , Xtd)
ᵀ
,

t = 1, . . . , n, are collected from a d-dimensional stationary process with covariance matrix E[(Xt −
EXt)(Xt − EXt)

ᵀ
] = Σ, where the matrix Σ is invariant over time. There have been extensive

studies on estimating such a static covariance matrix. For instance, when the dimension d is fixed or

significantly smaller than the sample size n, Σ can be consistently estimated by the sample covariance

matrix (c.f. Anderson, 2003):

Σ =
1

n

n∑
t=1

(Xt −X)(Xt −X)
ᵀ
, X =

1

n

n∑
t=1

Xt. (1.1)

However, the above conventional sample covariance matrix would fail when the dimension d is large

and exceeds the sample size n. In the latter case, the matrix Σ becomes singular. In order to obtain a

proper estimation of Σ when d > n, some structural assumptions such as sparsity and factor modelling

are usually imposed in the literature, and then various regularisation techniques are used to produce

consistent and reliable estimates (c.f., Wu and Pourahmadi, 2003; Bickel and Levina, 2008a,b; Lam
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and Fan, 2009; Rothman, Levina and Zhu, 2009; Cai and Liu, 2011; Fan, Liao and Mincheva, 2013).

The aforementioned literature on large covariance matrix estimation assumes that the underlying

covariance matrix is constant over time. Such an assumption is very restrictive and may be violated

in many practical applications such as in dynamic optimal portfolio allocation (Guo, Box and

Zhang, 2017). This motivates us to consider a dynamic large covariance matrix, whose entries

may evolve over time. In recent years, there have been increasing interests in estimating dynamic

covariance or correlation matrices and exploring their applications. For example, Engle (2002) uses

the parametric multivariate GARCH modelling method to estimate dynamic conditional correlation;

Guo, Box and Zhang (2017) combine semiparametric adaptive functional-coefficient and GARCH

modelling approaches to estimate dynamic covariance structure with the dimension d diverging at a

polynomial rate of n; Chen, Xu and Wu (2013) and Chen and Leng (2016) use the kernel smoothing

method to nonparametrically estimate each entry in the dynamic covariance matrix and then apply

the thresholding or generalised shrinkage technique when the dimension d can be divergent at an

exponential rate but the conditioning variable is univariate; Engle, Ledoit and Wolf (2016) extends

Engle (2002)’s dynamic conditional correlation models to large dimensional case using a nonlinear

shrinkage technique derived from the random matrix theory.

Let Ut = (Ut1, . . . , Utp)
ᵀ

be a p-dimensional vector of conditioning variables which are stationary

over time. We consider the conditional covariance matrix of Xt+1 given Ut:

Σ0(u) = E
(
Xt+1X

ᵀ

t+1|Ut = u
)
−
[
E(Xt+1|Ut = u)

][
E(Xt+1|Ut = u)

]ᵀ
,

where u = (u1, . . . , up)
ᵀ

is a vector of fixed constants. To simplify notation, we let

C0(u) = E
(
Xt+1X

ᵀ

t+1|Ut = u
)

and M0(u) = E(Xt+1|Ut = u),

and rewrite the conditional covariance matrix as

Σ0(u) = C0(u)−M0(u)Mᵀ

0(u). (1.2)

In order to estimate Σ0(u), one only needs to estimate C0(u) and M0(u). A natural way to estimate

C0(u) and M0(u) is via nonparametric smoothing. However, although the nonparametric estimation

is robust to model misspecification, its finite-sample performance is often poor when the dimension of

conditioning variables Ut, p, is moderately large (or even as small as three), owing to the “curse of

dimensionality”. Therefore, when Ut is a multivariate vector, a direct use of the nonparametric kernel

approach as in Chen, Xu and Wu (2013) or Chen and Leng (2016) would be inappropriate, and an

alternative technique is needed. In practice, many variables including past lags, momentum measures,

seasonal dummy variables, past earnings, transaction volume, have been used to predict the mean
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and variance of stock returns.

Letting σ0
ij(u) and c0ij(u) be the (i, j)-entry of the matrices Σ0(u) and C0(u), respectively, and

m0
i (u) be the i-th element of M0(u), it follows from (1.2) that

σ0
ij(u) = c0ij(u)−m0

i (u)m0
j(u), 1 ≤ i, j ≤ d. (1.3)

Instead of estimating m0
i (u) and c0ij(u) directly via nonparametric smoothing, we approximate them

using the Model Averaging MArginal Regression (MAMAR) approximation (Li, Linton and Lu, 2015),

i.e.,

m0
i (u) ≈ bi,0 +

p∑
k=1

bi,kE(Xt+1,i|Utk = uk) =: bi,0 +

p∑
k=1

bi,kmi,k(uk), 1 ≤ i ≤ d, (1.4)

where bi,k are unknown parameters which may be regarded as “weights” for marginal mean regression

models; and similarly for c0ij(u)

c0ij(u) ≈ aij,0 +

p∑
k=1

aij,kE(Xt+1,iXt+1,j|Utk = uk) =: aij,0 +

p∑
k=1

aij,kcij,k(uk), 1 ≤ i, j ≤ d, (1.5)

where aij,k are unknown weighting parameters. In (1.4) and (1.5), both mi,k(uk) and cij,k(uk) are

univariate nonparametric functions and can be well estimated by commonly-used nonparametric

methods without incurring the curse of dimensionality. The MAMAR method provides an alternative

way to estimate nonparametric joint mean regression with multiple regressors. The MAMAR

approximation is introduced by Li, Linton and Lu (2015) in a semiparametric setting, and is applied

to semiparametric dynamic portfolio choice by Chen et al (2016) and further generalised to the

ultra-high dimensional time series setting by Chen et al (2017). A similar idea is also used by Fan et

al (2016) in high-dimensional classification.

The accuracy of the MAMAR approximation to the joint regression functions relies on the choice

of the weight parameters, e.g., bi,k and aij,k in (1.4) and (1.5), respectively. Section 2.1 below derives

the theoretically optimal weights and consequently obtains a proxy, Σ
?

A(u), of the true dynamic

covariance matrix Σ0(u). A two-stage semiparametric method is proposed to estimate each entry of

Σ
?

A(u): in stage 1, the kernel smoothing method is used to estimate the marginal regression functions

mi,k(uk) and cij,k(uk); in stage 2, the least squares method is used to estimate the optimal weights

in the MAMAR approximation by replacing the marginal regression functions with their estimates

obtained from stage 1 and then treating them as “regressors” in approximate linear models associated

with m0
i (u) and c0ij(u). Based on the above, an estimate of the optimal MAMAR approximation of

m0
i (u) and c0ij(u) can be constructed via (1.4) and (1.5), and subsequently the optimal MAMAR

approximation of σ0
ij(u) can be estimated via (1.3). Finally, a generalised shrinkage technique is

applied to the obtained covariance matrix to produce a non-degenerate estimate that has its small
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entries forced to zero. Under some mild conditions and the assumption that Σ
?

A(u) is approximately

sparse, we derive the uniform consistency results for estimators of Σ
?

A(u) and its inverse. These

results also hold for the true covariance matrix Σ0(u) as long as Σ
?

A(u) and Σ0(u) are sufficiently

“close”. The sparsity result for the semiparametric shrinkage estimator is also established.

The rest of the paper is organised as follows. Section 2 derives the optimal weights in the

MAMAR approximation (1.4) and (1.5), and introduces the semiparametric shrinkage method

to estimate the dynamic covariance matrix. Section 3 gives the limit theorems of the developed

estimators. Section 4 introduces a modification technique to guarantee the positive definiteness

of the dynamic covariance matrix estimation, and discusses the choice of tuning parameter in the

generalised shrinkage method. Section 5 reports finite-sample simulation studies of our methodology.

Section 6 concludes the paper and discusses some possible extensions. The proofs of the main results

and some technical lemmas are given in the appendix. Throughout the paper, we use λmin(·) and

λmax(·) to denote the minimum and maximum eigenvalues of a matrix; ‖ · ‖O to denote the operator

(or spectral) norm defined as ‖∆‖O = supx {‖∆x‖ : ‖x‖ = 1} for a q × q matrix ∆ = (δij)q×q,

where ‖x‖ = (
∑q

i=1 x
2
i )

1/2
is the Euclidean norm; and ‖ · ‖F to denote the Frobenius norm defined

as‖∆‖F =
(∑q

i=1

∑q
j=1 δ

2
ij

)1/2
= Tr1/2(∆∆

ᵀ
), where Tr(·) denotes the trace of a matrix.

2 Estimation methodology

In this section we introduce an estimation method for the dynamic covariance matrix via the MAMAR

approximation. It combines a semiparametric least squares method and the generalised shrinkage

technique to produce reliable large covariance matrix estimation. We start with an introduction of

the MAMAR approximation in our context and then derive the theoretically optimal weights for the

approximation.

2.1 Optimal weights in the MAMAR approximation

For each k = 0, 1, . . . , p, let Ak = (aij,k)d×d be a matrix consisting of the weights in (1.5) and

Ck(uk) = [cij,k(uk)]d×d be a matrix consisting of the conditional means of Xt+1,iXt+1,j (for given

Utk = uk) in (1.5). Then, the MAMAR approximation for C0(u) can be written in matrix form as

C0(u) ≈ A0 +A1 � C1(u1) + · · ·+Ap � Cp(up) =: CA(u), (2.1)

where � denotes the Hadamard product. Similarly, we have the following MAMAR approximation

for M0(u)

M0(u) ≈ B0 + B1 �M1(u1) + · · ·+ Bp �Mp(up) =:MA(u), (2.2)
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where for k = 0, 1, . . . , p, Bk = (b1,k, b2,k, . . . , bd,k)
ᵀ

is the vector consisting of the weights in (1.4)

and Mk(uk) = [m1,k(uk),m2,k(uk), . . . ,md,k(uk)]
ᵀ

is the vector consisting of the conditional means

of Xt+1,i (for given Utk = uk) in (1.4). Combining (2.1) and (2.2), we have the following MAMAR

approximation for Σ0(u)

Σ0(u) ≈

[
A0 +

p∑
k=1

Ak � Ck(uk)

]
−

[
B0 +

p∑
k=1

Bk �Mk(uk)

][
B0 +

p∑
k=1

Bk �Mk(uk)

]ᵀ

= CA(u)−MA(u)Mᵀ

A(u) =: ΣA(u). (2.3)

The matrix ΣA(u) on the right hand side of (2.3) can be viewed as a semiparametric approximation

of Σ0(u), in which the weights aij,k and bi,k play an important role. These weights have to be

appropriately chosen in order to achieve optimal MAMAR approximation. We next derive the

theoretically optimal weights. For 1 ≤ i, j ≤ d, we may choose the optimal weights a?ij,k, k = 0, 1, . . . , p,

so that they minimise

E

[
Xt+1,iXt+1,j − aij,0 −

p∑
k=1

aij,kE(Xt+1,iXt+1,j|Utk)

]2
.

Following standard calculations (c.f., Li, Linton and Lu, 2015), we have the following solution for the

theoretically optimal weights

(
a?ij,1, . . . , a

?
ij,p

)ᵀ
= Ω−1XX,ijVXX,ij, a?ij,0 =

(
1−

p∑
k=1

a?ij,k

)
E(XtiXtj), (2.4)

where ΩXX,ij is a p× p matrix with the (k, l)-entry being

ωij,kl = Cov [E(Xt+1,iXt+1,j|Utk),E(Xt+1,iXt+1,j|Utl)] = Cov [cij,k(Utk), cij,l(Utl)] ,

and VXX,ij is a p-dimensional column vector with the k-th element being

vij,k = Cov [E(Xt+1,iXt+1,j|Utk), Xt+1,iXt+1,j] = Cov [cij,k(Utk), Xt+1,iXt+1,j] = Var [cij,k(Utk)] .

We thus can obtain the optimal weight matrix A?

k from a?ij,k, k = 0, 1, . . . , p, and subsequently the

theoretically optimal MAMAR approximation to C0(u):

C?

A(u) = A?

0 +

p∑
k=1

A?

k � Ck(uk). (2.5)
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Similarly, we can derive the optimal weights b?i,k in the MAMAR approximation (1.4):

(
b?i,1, . . . , b

?
i,p

)ᵀ
= Ω−1X,iVX,i, b?i,0 =

(
1−

p∑
k=1

b?i,k

)
E(Xti), (2.6)

where ΩX,i is a p× p matrix with the (k, l)-entry being

ωi,kl = Cov [E(Xt+1,i|Utk),E(Xt+1,i|Utl)] = Cov [mi,k(Utk),mi,l(Utl)] ,

and VX,i is a p-dimensional column vector with the k-th element being

vi,k = Cov [E(Xt+1,i|Utk), Xt+1,i] = Cov [mi,k(Utk), Xt+1,i] = Var [mi,k(Utk)] .

We can then obtain the optimal weight vector B?

k from b?i,k, k = 0, 1, . . . , p, and consequently the

optimal MAMAR approximation to M0(u):

M?

A(u) = B?

0 +

p∑
k=1

B?

k �Mk(uk). (2.7)

Combining (2.3), (2.5) and (2.7), we obtain the optimal MAMAR approximation to Σ0(u):

Σ
?

A(u) = C?

A(u)−M?

A(u)
[
M?

A(u)
]ᵀ

(2.8)

The matrix Σ
?

A(u) serves as a proxy for Σ0(u). Our aim is to consistently estimate Σ
?

A(u). This will

be done by a semiparametric shrinkage method.

2.2 Semiparametric shrinkage estimation

We next introduce a two-stage semiparametric method to estimate m0
i (u) and c0ij(u), respectively.

Stage 1. As both mi,k(uk) and cij,k(uk) are univariate functions, they can be well estimated by the

kernel method, i.e.,

m̂i,k(uk) =

[
n−1∑
t=1

K

(
Utk − uk

h1

)
Xt+1,i

]
/

[
n−1∑
t=1

K

(
Utk − uk

h1

)]
, 1 ≤ k ≤ p, 1 ≤ i ≤ d,

and

ĉij,k(uk) =

[
n−1∑
t=1

K

(
Utk − uk

h2

)
Xt+1,iXt+1,j

]
/

[
n−1∑
t=1

K

(
Utk − uk

h2

)]
, 1 ≤ k ≤ p, 1 ≤ i, j ≤ d,
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where K(·) is a kernel function, h1 and h2 are two bandwidths. Other nonparametric estimation

methods such as the local polynomial method (Fan and Gijbels, 1996) and the sieve method (Chen,

2007) are equally applicable here.

Stage 2. With the kernel estimates obtained in stage 1, obtain the following approximate linear

regression models:

Xt+1,i ≈ bi,0 +

p∑
k=1

bi,km̂i,k(Utk), 1 ≤ i ≤ d, (2.9)

and

Xt+1,iXt+1,j ≈ aij,0 +

p∑
k=1

aij,kĉij,k(Utk), 1 ≤ i, j ≤ d. (2.10)

Treating m̂i,k(Utk) and ĉij,k(Utk) as “regressors” and using the ordinary least squares, we may obtain

an estimate of the optimal weights defined in (2.4) and (2.6), i.e.,

(
b̂i,1, . . . , b̂i,p

)ᵀ

= Ω̂−1X,iV̂X,i, b̂i,0 =
1

n− 1

n−1∑
t=1

Xt+1,i −
p∑

k=1

b̂i,k

(
1

n− 1

n−1∑
t=1

m̂i,k(Utk)

)
, (2.11)

where Ω̂X,i is a p× p matrix with the (k, l)-entry being

ω̂i,kl =
1

n− 1

n−1∑
t=1

m̂c
i,k(Utk)m̂

c
i,l(Utl), m̂c

i,k(Utk) = m̂i,k(Utk)−
1

n− 1

n−1∑
s=1

m̂i,k(Usk),

and V̂X,i is a p-dimensional column vector with the k-th element being

v̂i,k =
1

n− 1

n−1∑
t=1

m̂c
i,k(Utk)X

c
t+1,i, Xc

t+1,i = Xt+1,i −
1

n− 1

n−1∑
s=1

Xs+1,i;

and

(âij,1, . . . , âij,p)
ᵀ

= Ω̂−1XX,ijV̂XX,ij, âij,0 =
1

n− 1

n−1∑
t=1

Xt+1,iXt+1,j −
p∑

k=1

âij,k

(
1

n− 1

n−1∑
t=1

ĉij,k(Utk)

)
,

(2.12)

where Ω̂XX,ij is a p× p matrix with the (k, l)-entry being

ω̂ij,kl =
1

n− 1

n−1∑
t=1

ĉcij,k(Utk)ĉ
c
ij,l(Utl), ĉcij,k(Utk) = ĉij,k(Utk)−

1

n− 1

n−1∑
s=1

ĉij,k(Usk),
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and V̂XX,ij is a p-dimensional column vector with the k-th element being

v̂ij,k =
1

n− 1

n−1∑
t=1

ĉcij,k(Utk)X
c
t+1,(i,j), Xc

t+1,(i,j) = Xt+1,iXt+1,j −
1

n− 1

n−1∑
s=1

Xs+1,iXs+1,j.

As a result, an estimate of σ?ij(u), the (i, j)-entry in Σ
?

A(u), can be obtained as

σ̂ij(u) = ĉij(u)− m̂i(u)m̂j(u), (2.13)

where

ĉij(u) = âij,0 +

p∑
k=1

âij,kĉij,k(uk), m̂i(u) = b̂i,0 +

p∑
k=1

b̂i,km̂i,k(uk).

A naive estimate, Σ̂(u), of Σ
?

A(u) uses σ̂ij(u) directly as its entries, i.e.,

Σ̂(u) = [σ̂ij(u)]d×d .

Unfortunately, this matrix gives a poor estimation of Σ0(u) when the dimension d is ultra large.

In the latter case, a commonly-used approach is to use a shrinkage method on Σ̂(u) so that very

small values of σ̂ij(u) are forced to zero. We follow the same approach and denote sρ(·) a shrinkage

function that satisfies the following three conditions: (i) |sρ(z)| ≤ ‖z‖ for z ∈ R (the real line); (ii)

sρ(z) = 0 if |z| ≤ ρ; (iii) |sρ(z)− z| ≤ ρ, where ρ is a tuning parameter. It is easy to show that some

commonly-used shrinkage methods including the hard thresholding, soft thresholding and SCAD

satisfy the above three conditions. Then define

σ̃ij(u) = sρ(u) (σ̂ij(u)) , 1 ≤ i, j ≤ d, (2.14)

where ρ(u) is a variable tuning parameter which may depend on the value of conditioning variables.

Then we construct

Σ̃(u) = [σ̃ij(u)]d×d , (2.15)

as the final estimate of Σ
?

A(u). The asymptotic properties of Σ̃(u) will be explored in Section 3 below.

Section 4.1 will introduce a modified version of Σ̃(u) to guarantee the positive definiteness of the

estimated covariance matrix.

3 Large sample theory

In this section we first state the regularity conditions required for establishing the limit theorems

of the large dynamic covariance matrix estimators developed in Section 2, and then present these

9



theorems in Section 3.2.

3.1 Technical assumptions

Some of the assumptions presented below may not be the weakest possible, but they are imposed to

facilitate proofs of our limit theorems and can be relaxed at the cost of more lengthy proofs.

Assumption 1. (i) The process {(Xt, Ut)}t≥1 is stationary and α-mixing dependent with the mixing

coefficient decaying to zero at a geometric rate, i.e., αk ∼ cαγ
k with 0 < γ < 1 and cα being a

positive constant.

(ii) The variables Xti, 1 ≤ i ≤ d, satisfy the following moment condition:

max
1≤i≤d

E
[
exp{sX2

ti}
]
≤ cX , 0 < s ≤ s0, (3.1)

where cX and s0 are two positive constants.

(iii) The conditioning variables Ut have a compact support denoted by U =
∏p

k=1 Uk, where

Uk = [ak, bk] is the support of the k-th conditional variable Utk. The marginal density functions,

fk(·), of Utk, 1 ≤ k ≤ p, are continuous and uniformly bounded away from zero on Uk, i.e.,

min
1≤k≤p

inf
ak≤uk≤bk

fk(uk) ≥ cf > 0.

In addition, the marginal density functions fk(·), 1 ≤ k ≤ p, have continuous derivatives up to

the second order.

Assumption 2. (i) The regression functions cij,k(·) and mi,k(·) are continuous and uniformly bounded

over 1 ≤ i, j ≤ d and 1 ≤ k ≤ p. Furthermore, they have continuous and uniformly bounded

derivatives up to the second order.

(ii) For each i = 1, . . . , d and j = 1, . . . , d, the p× p matrix ΩXX,ij defined in (2.4) is positive

definite and satisfies

0 < cΩXX
≤ min

1≤i,j≤d
λmin(ΩXX,ij) ≤ max

1≤i,j≤d
λmax(ΩXX,ij) ≤ cΩXX

<∞. (3.2)

The analogous condition also holds for the matrix ΩX,i defined in (2.6).

Assumption 3. (i) The kernel function K(·) is symmetric and Lipschitz continuous and has a

compact support, say [−1, 1].
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(ii) The bandwidths h1 and h2 satisfy h1 → 0 and h2 → 0, and there exists 0 < ι < 1/2 so that

n1−ιh1

log2(d ∨ n)
→∞, n1−2ιh2

log2(d ∨ n)
→∞, (3.3)

where x ∨ y denotes the maximum of x and y.

(iii) The dimension, d, of X satisfies (dn) exp{−snι} = o(1) for some 0 < s < s0, where ι is

defined as in Assumption 3(ii).

Assumption 4. The variable tuning parameter can be written as ρ(u) = M0(u)τn,d, where M0(u) is

positive and can be sufficiently large at each u ∈ U with supu∈UM0(u) <∞, and

τn,d =
√

log(d ∨ n)/(nh1) +
√

log(d ∨ n)/(nh2) + h21 + h22.

Most of the above assumptions are commonly used and can be found in some existing literature.

The stationarity and α-mixing dependence condition in Assumption 1(i) relaxes the restriction of

independent observations usually imposed in the literature on high-dimensional covariance matrix

estimation (c.f. Bickel and Levina, 2008a,b). For some classic vector time series processes such as

vector auto-regressive processes, it is easy to verify Assumption 1(i) under some mild conditions. It

is possible to allow the even more general setting of local stationarity, Vogt (2012), which includes

deterministic local trends, but for simplicity we have chosen not to go there. The moment condition

(3.1) is similar to those in Bickel and Levina (2008a,b) and Chen and Leng (2016), and can be replaced

by the weaker condition of E(|Xti|κ) for κ > 2 sufficiently large if the dimension d diverges at a

polynomial rate of n. The restriction of the conditioning variables Ut having a compact support in

Assumption 1(iii) is imposed mainly in order to facilitate the proofs of our asymptotic results and

can be removed by using an appropriate truncation technique on Ut (c.f., Remark 1 in Chen et al,

2017). The smoothness condition on cij,k(·) and mi,k(·) in Assumption 2(i) is commonly used in kernel

smoothing, and it is relevant to asymptotic bias of the kernel estimators (c.f., Wand and Jones, 1995).

Assumption 2(ii) is crucial to the unique existence of optimal weights in the MAMAR approximation

of c0ij(·) and m0
i (·). Many commonly-used kernel functions, such as the uniform kernel and the

Epanechnikov kernel, all satisfy the conditions in Assumption 3(i). The conditions in Assumptions

3(ii) and (iii) indicate that the dimension d can be divergent at an exponential rate of n. For example,

when h1 and h2 have the well-known optimal rate of n−1/5, we may show that d can be divergent at a

rate of exp{nζ} with 0 < ζ < 1/5 while Assumptions 3(ii) and (iii) hold. Assumption 4 is critical to

ensure the validity of the shrinkage method, and Section 4.2 below will discuss how to select ρ(u) in

numerical studies.
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3.2 Asymptotic properties

In order to derive some sensible asymptotic results for the dynamic covariance matrix estimators

defined in Section 2.2, we extend the sparsity assumption in Bickel and Levina (2008a), Rothman,

Levina and Zhu (2009) and Cai and Liu (2011) and assume that Σ
?

A(u) is approximately sparse

uniformly over u ∈ U . Specifically, this means that Σ
?

A(u) ∈ SA(q, cd,M?,U) uniformly over u ∈ U ,

where

SA(q, cd,M?,U) =

{
Σ(u), u ∈ U

∣∣ sup
u∈U

σii(u) ≤M? <∞, sup
u∈U

d∑
j=1

|σij(u)|q ≤ cd ∀ 1 ≤ i ≤ d

}
(3.4)

with 0 ≤ q < 1. In particular, if q = 0, SA(q, cd,M?,U) becomes

SA(0, cd,M?,U) =

{
Σ(u), u ∈ U

∣∣ sup
u∈U

σii(u) ≤M? <∞, sup
u∈U

d∑
j=1

I (|σij(u)| 6= 0) ≤ cd ∀ 1 ≤ i ≤ d

}
,

and we have Σ
?

A(u) ∈ SA(0, cd,M?,U), the exact sparsity assumption, uniformly over u ∈ U . The

above assumption is natural for nonparametric estimation of large covariance matrices (c.f., Chen,

Xu and Wu, 2013; Chen and Leng, 2016). Define Uh? =
∏p

k=1 Uk,h? with Uk,h? = [ak + h?, bk − h?] and

h? = h1 ∨ h2. Without loss of generality, we assume that, for each 1 ≤ k ≤ p, all of the observations

Utk, 1 ≤ t ≤ n, are located in the intervals [ak + h?, bk − h?] (otherwise a truncation technique can be

applied when constructing the semiparametric estimators defined in Section 2.2). Theorem 1 below

gives the uniform consistency for the semiparametric shrinkage estimator of the matrix Σ
?

A(u) and its

inverse.

Theorem 1. Suppose that Assumptions 1–4 are satisfied, p is fixed, and Σ
?

A(u) ∈ SA(q, cd,M?,U).

(i) For Σ̃(u), we have

sup
u∈Uh?

∥∥∥Σ̃(u)−Σ
?

A(u)
∥∥∥
O

= OP

(
cd · τ 1−qn,d

)
, 0 ≤ q < 1, (3.5)

where τn,d was defined in Assumption 4 and ‖ · ‖O denotes the operator norm.

(ii) If, in addition, cdτ
1−q
n,d = o(1) and

inf
u∈U

λmin

(
Σ

?

A(u)
)
≥ cΣ > 0, (3.6)

we have

sup
u∈Uh?

∥∥∥Σ̃−1

(u)−Σ
∗−1

A (u)
∥∥∥
O

= OP

(
cd · τ 1−qn,d

)
, 0 ≤ q < 1. (3.7)
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The main reason for considering the uniform consistency only over the set Uh? rather than the

whole support U of the conditioning variables is to avoid the boundary effect in kernel estimation

(c.f., Fan and Gijbels, 1996). The uniform convergence rate in the above theorem is quite general. Its

dependence on the sparsity structure of the matrix Σ
?

A(u) is shown through cd, which controls the

sparsity level in the covariance matrix and may be divergent to infinity. If we assume that h1 = h2 = h

and h2 = O
(√

log(d ∨ n)/(nh)
)

, τn,d can be simplified to
√

log(d ∨ n)/(nh). Then we may find that

our uniform convergence rate is comparable to the rate derived by Bickel and Levina (2008a) and

Rothman, Levina and Zhu (2009) when we treat nh as the “effective” sample size in nonparametric

kernel-based estimation. In the special case of q = 0 and fixed d, log(d ∨ n) = log n and it would be

reasonable to assume that cd is fixed. Consequently, the rate in (3.5) and (3.7) reduces to

OP (τn,d) = OP

(√
log n/(nh1) +

√
log n/(nh2) + h21 + h22

)
,

the same as the uniform convergence rate for nonparametric kernel-based estimators (c.f. Bosq, 1998).

If we assume that the true dynamic covariance matrix Σ0(u) belongs to SA(q, cd,M?,U), and

Σ
?

A(u) is sufficiently close to Σ0(u) in the sense that supu∈U
∥∥Σ?

A(u)−Σ0(u)
∥∥
O

= O(bn) with bn → 0

and max1≤i,j≤d supu∈U
∣∣σ?ij(u)− σij(u)

∣∣ = O(τn,d), by Theorem 1 and its proof in Appendix A, we

may show that

sup
u∈Uh?

∥∥∥Σ̃(u)−Σ0(u)
∥∥∥
O
≤ sup

u∈Uh?

∥∥∥Σ̃(u)−Σ
?

A(u)
∥∥∥
O

+ sup
u∈Uh?

∥∥Σ?

A(u)−Σ0(u)
∥∥
O

= OP

(
cd · τ 1−qn,d

)
+O (bn) = OP

(
cd · τ 1−qn,d + bn

)
. (3.8)

The following theorem shows the sparsity property of the semiparametric shrinkage estimator

defined in Section 2.2.

Theorem 2. Suppose that Assumptions 1–4 are satisfied and p is fixed. For any u ∈ Uh? and

1 ≤ i, j ≤ d, if σ?ij(u) = 0, we must have σ̃ij(u) = 0 with probability approaching one.

4 Modified dynamic covariance matrix estimation and vari-

able tuning parameter selection

In this section we first modify the semiparametric covariance matrix estimator developed in Section

2.2 to ensure the positive definiteness of the estimated matrix in finite samples, and then discuss the

choice of the variable tuning parameter ρ(u) in the generalised shrinkage method.
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4.1 Modified dynamic covariance matrix estimation

In practical application, the estimated covariance matrix Σ̃(u) constructed in Section 2.2 is not

necessarily positive definite uniformly on U . To fix this problem, we next introduce a simple

modification of our estimation method. Let λ̃min(u) be the smallest eigenvalue of Σ̃(u) and mn be a

tuning parameter which tends to zero as the sample size n goes to infinity. As in Chen and Leng

(2016), a corrected version of Σ̃(u) is defined by

Σ̃C(u) = Σ̃(u) +
[
mn − λ̃min(u)

]
Id×d, (4.1)

where Id×d is the d× d identity matrix. The above correction guarantees that the smallest eigenvalue

of Σ̃C(u) is uniformly larger than zero, indicating that Σ̃C(u) is uniformly positive definite. Hence,

we may use Σ̃C(u) as an alternative estimate of Σ
?

A(u) when λ̃min(u) is negative. We thus define the

following modified version of Σ̃(u):

Σ̃M(u) = Σ̃(u) · I
(
λ̃min(u) > 0

)
+ Σ̃C(u) · I

(
λ̃min(u) ≤ 0

)
= Σ̃(u) +

[
mn − λ̃min(u)

]
Id×d · I

(
λ̃min(u) ≤ 0

)
, (4.2)

where I(·) is an indicator function. Note that when λ̃min(u) ≤ 0 for u ∈ Uh? , by Weyl’s inequality, we

have ∣∣∣λ̃min(u)
∣∣∣ ≤ ∣∣∣λ̃min(u)− λmin(Σ

?

A(u))
∣∣∣ ≤ sup

u∈Uh?

∥∥∥Σ̃(u)−Σ
?

A(u)
∥∥∥
O

= OP

(
cd · τ 1−qn,d

)
.

Hence,

sup
u∈Uh?

∥∥∥Σ̃M(u)−Σ
?

A(u)
∥∥∥
O
≤ sup

u∈Uh?

∥∥∥Σ̃(u)−Σ
?

A(u)
∥∥∥
O

+ sup
u∈Uh?

∣∣∣λ̃min(u)
∣∣∣+mn = OP

(
cd · τ 1−qn,d +mn

)
.

(4.3)

By choosing mn = O(cdτ
1−q
n,d ), we obtain the same uniform convergence rate for Σ̃M (u) as that for Σ̃(u)

in Theorem 1. Glad, Hjort and Ushakov (2003) consider a similar modification for density estimators

that are not bona fide densities; indeed they show that the correction improves the performance

according to integrated mean squared error.

4.2 Choice of the variable tuning parameter

For any shrinkage method for covariance matrix estimation, it is essential to choose an appropriate

tuning parameter. Since the variables (Xt, Ut) are allowed to be serially correlated over time, the

tuning parameter selection criteria proposed in Bickel and Levina (2008b) or Chen and Leng (2016)

for independent data may no longer work well in the numerical studies. We hence need to modify
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their method for our own setting, which is described as follows.

Step 1: For given u ∈ U , use a rolling window of size bn/2c + 10 and split data within each

window into two samples of sizes n1 =
⌊
n
2

(
1− 1

log(n/2)

)⌋
and n2 = bn/2c − n1 by leaving out 10

observations in-between them, where n is the sample size and b·c denotes the floor function.

Step 2: Obtain Σ̃ρ(u),1,k(u) (the semiparametric shrinkage estimate of the dynamic covariance matrix

from the first sample of the k-th rolling window) constructed as in (2.15), and Σ̂2,k(u) (the

naive estimate without the general shrinkage technique from the second sample of the k-th

rolling window), k = 1, . . . , N with N = bn/20c.

Step 3: Choose the tuning parameter ρ(u) so that it minimises

N∑
k=1

∥∥∥Σ̃ρ(u),1,k(u)− Σ̂2,k(u)
∥∥∥2
F
. (4.4)

Note that, by leaving out 10 observations inbetween, the correlation between the two samples

within each rolling window is expected to be negligible for weekly dependent time series data. Our

simulation studies in Section 5 show that the above selection method has reasonably good numerical

performance.

5 Simulation studies

In this section, we conduct some simulation experiments to examine the finite sample performance

of the proposed large dynamic covariance matrix estimation methods. In order to provide a full

performance study, we consider three different sparsity patterns of the underlying covariance matrix,

i.e., the dynamic banded structure, the dynamic AR(1) structure, and the varying-sparsity structure.

These are the multivariate conditioning variables extension of the covariance models considered in

Examples 1-3 of Chen and Leng (2016). To measure estimation accuracy, we consider both the

operator and Frobenius losses, i.e., ‖Σ0(u)− Σ̆(u)‖O and ‖Σ0(u)− Σ̆(u)‖F , for an estimate Σ̆(u) at

a point u. We compare the accuracy of our semiparametric shrinkage estimation defined in (2.15)

with that of the generalised thresholding of the sample covariance matrix (which treats the covariance

matrix as static). Note that the proposed method sometimes produces covariance matrices that are

not positive definite, in which case the modification in (4.2) can be used. Hence, we also report the

accuracy of the modified dynamic covariance matrix estimation. Four commonly used shrinkage

methods – the hard thresholding, soft thresholding, adaptive LASSO (A. LASSO) and Smoothly

Clipped Absolute Deviation (SCAD) – are considered in the simulation. Throughout this section, the
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dimension of Xt takes one of the values of 100, 200, and 300, and the dimension of the conditioning

vector Ut is set to p = 3. The sample size is fixed at n = 200.

Example 5.1. (Dynamic banded covariance matrix) The conditioning variables Ut = (Ut1, Ut2, Ut3)
ᵀ

are drawn from a VAR(1) process:

Ut = 0.5Ut−1 + vt, t = 1, . . . , n, (5.1)

where vt are i.i.d. three-dimensional random vectors following the N(0, I3×3) distribution. For each

t = 1, . . . , n, the d-dimensional vector Xt is generated from the multivariate Gaussian distribution

N(0, Σ0(Ut)), where

Σ0(Ut) =
{
σ0
ij(Ut)

}
d×d with σ0

ij(Ut) = 0.08ςij(Ut1) + 0.04ςij(Ut2) + 0.04ςij(Ut3) (5.2)

and

ςij(v) = exp(v/2)
{
I(i = j) + [φ(v) + 0.1]I(|i− j| = 1) + φ(v)I(|i− j| = 2)

}
for any v ∈ R, in which φ(v) is the probability density function of the standard normal distribution.

The dynamic covariance matrix is estimated at the following three points: (−0.5,−0.5,−0.5),

(0, 0, 0), and (0.5, 0.5, 0.5). The average operator and Frobenius losses over 30 replications and

their standard errors (in parenthesises) are summarised in Tables 5.1(a)–5.1(c). In these tables,

“Static” refers to the estimation by treating the underlying covariance matrix as static, “Dynamic”

refers to the estimation by using our semiparametric shrinkage method detailed in Section 2, and

“Modified Dynamic” refers to the modified dynamic covariance matrix estimation defined in (4.2). In

addition, “Hard”, “Soft”, “A. LASSO” and “SCAD” in the tables represent the hard thresholding,

soft thresholding, adaptive LASSO and the smoothly clipped absolute deviation, respectively.

The results in Tables 5.1(a)–5.1(c) reveal that at the point u = (−0.5,−0.5,−0.5), the three

methods are comparable in their estimation accuracy. However, at the points u = (0, 0, 0) and

u = (0.5, 0.5, 0.5), our semiparametric dynamic covariance matrix estimation via the proposed

MAMAR approximation and its modified version outperform the static covariance matrix estimation

in almost all thresholding methods. The modified dynamic estimator has similar performance to its

non-modified estimator.

Example 5.2. (Dynamic non-sparse covariance matrix) The specifications of the data generating

process are the same as those in Example 5.1, except that the dynamic covariance matrix Σ0(Ut) is

non-sparse. Specifically, the function ςij(·) in (5.2) is assumed to follow the covariance pattern of an

AR(1) process:

ςij(v) = exp(v/2)
[
φ(v)

]|i−j|
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Table 5.1(a): Average (standard error) losses at point (−0.5,−0.5,−0.5) for Example 5.1

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.221(0.017) 0.227(0.014) 0.225(0.012) 1.195(0.049) 1.711(0.066) 2.074(0.063)
Soft 0.313(0.059) 0.250(0.062) 0.241(0.007) 1.082(0.095) 1.504(0.081) 1.845(0.031)
A. LASSO 0.185(0.009) 0.193(0.010) 0.200(0.009) 1.062(0.030) 1.502(0.037) 1.820(0.027)
SCAD 0.250(0.084) 0.231(0.010) 0.239(0.008) 1.089(0.096) 1.499(0.011) 1.851(0.024)

Dynamic

Hard 0.201(0.041) 0.219(0.052) 0.213(0.047) 0.970(0.152) 1.482(0.329) 1.786(0.350)
Soft 0.255(0.008) 0.256(0.007) 0.260(0.014) 1.088(0.025) 1.545(0.032) 1.944(0.162)
A. LASSO 0.225(0.014) 0.232(0.022) 0.232(0.020) 0.978(0.022) 1.429(0.148) 1.763(0.193)
SCAD 0.250(0.010) 0.252(0.009) 0.257(0.015) 1.066(0.027) 1.515(0.035) 1.912(0.169)
Hard 0.251(0.021) 0.252(0.020) 0.259(0.030) 1.414(0.134) 1.972(0.253) 2.451(0.408)

Modified Soft 0.187(0.017) 0.183(0.007) 0.187(0.010) 1.032(0.100) 1.466(0.075) 1.792(0.057)
Dynamic A. LASSO 0.189(0.036) 0.187(0.023) 0.187(0.017) 1.112(0.227) 1.561(0.189) 1.896(0.168)

SCAD 0.190(0.021) 0.188(0.012) 0.190(0.009) 1.084(0.118) 1.547(0.085) 1.869(0.064)

Table 5.1(b): Average (standard error) losses at point (0, 0, 0) for Example 5.1

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.262(0.010) 0.266(0.008) 0.270(0.007) 1.431(0.016) 2.067(0.025) 2.537(0.019)
Soft 0.295(0.042) 0.358(0.018) 0.361(0.007) 1.173(0.182) 2.180(0.112) 2.752(0.048)
A. LASSO 0.302(0.012) 0.312(0.010) 0.319(0.009) 1.444(0.011) 2.067(0.011) 2.549.(0.019)
SCAD 0.340(0.035) 0.350(0.011) 0.359(0.008) 1.457(0.122) 2.187(0.044) 2.730(0.053)

Dynamic

Hard 0.231(0.019) 0.244(0.012) 0.250(0.008) 1.131(0.039) 1.617(0.039) 2.049(0.040)
Soft 0.321(0.007) 0.325(0.006) 0.329(0.005) 1.396(0.020) 1.986(0.029) 2.465(0.023)
A. LASSO 0.277(0.009) 0.283(0.007) 0.286(0.005) 1.300(0.021) 1.853(0.030) 2.304(0.022)
SCAD 0.291(0.010) 0.297(0.009) 0.304(0.007) 1.376(0.014) 1.958(0.018) 2.422(0.015)
Hard 0.264(0.018) 0.274(0.012) 0.290(0.016) 1.416(0.060) 2.072(0.072) 2.634(0.095)

Modified Soft 0.295(0.009) 0.295(0.009) 0.299(0.008) 1.358(0.015) 1.930(0.022) 2.388(0.017)
Dynamic A. LASSO 0.271(0.013) 0.273(0.014) 0.277(0.009) 1.309(0.031) 1.871(0.043) 2.318(0.019)

SCAD 0.278(0.013) 0.276(0.013) 0.280(0.012) 1.388(0.024) 1.993(0.035) 2.459(0.039)
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Table 5.1(c): Average (standard error) losses at point (0.5, 0.5, 0.5) for Example 5.1

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.349(0.010) 0.354(0.008) 0.358(0.007) 1.613(0.016) 2.333(0.024) 2.880(0.025)
Soft 0.326(0.042) 0.437(0.021) 0.449(0.007) 1.348(0.182) 2.718(0.209) 3.459(0.066)
A. LASSO 0.390(0.012) 0.399(0.010) 0.407(0.009) 1.735(0.011) 2.497(0.046) 3.103(0.053)
SCAD 0.408(0.035) 0.438(0.011) 0.447(0.008) 1.763(0.122) 2.721(0.077) 3.415(0.081)

Dynamic

Hard 0.318(0.019) 0.323(0.011) 0.337(0.040) 1.691(0.039) 2.400(0.018) 2.959(0.033)
Soft 0.358(0.007) 0.366(0.009) 0.389(0.067) 1.523(0.020) 2.172(0.035) 2.748(0.159)
A. LASSO 0.317(0.009) 0.330(0.025) 0.357(0.062) 1.449(0.021) 2.053(0.088) 2.607(0.181)
SCAD 0.316(0.010) 0.326(0.016) 0.361(0.092) 1.522(0.014) 2.171(0.031) 2.753(0.193)
Hard 0.325(0.018) 0.326(0.024) 0.350(0.064) 1.726(0.060) 2.456(0.085) 3.098(0.294)

Modified Soft 0.348(0.009) 0.351(0.009) 0.371(0.082) 1.506(0.015) 2.137(0.036) 2.676(0.092)
Dynamic A. LASSO 0.314(0.013) 0.333(0.042) 0.359(0.093) 1.458(0.031) 2.114(0.110) 2.719(0.244)

SCAD 0.333(0.013) 0.334(0.019) 0.360(0.090) 1.513(0.024) 2.160(0.038) 2.737(0.110)

for any v ∈ R. The dynamic covariance matrix is again estimated at the points (−0.5,−0.5,−0.5),

(0, 0, 0), (0.5, 0.5, 0.5), and the average operator and Frobenius losses are summarised in Tables 5.2(a)–

5.2(c). The same conclusion as that from Example 5.1 can be observed. The proposed semiparametric

shrinkage method can estimate non-sparse dynamic covariance matrices with satisfactory accuracy.

Example 5.3. (Dynamic covariance matrix with varying sparsity) Data on Ut and Xt are generated

in the same way as in Example 5.1 except that the dynamic covariance matrix Σ0(Ut) has varying

sparsity patterns. Specifically, the function ςij(·) in (5.2) is defined as

ςij(v) = exp(v/2)
{
I(i = j) + 0.5 exp

[
− (v − 0.25)2

0.752 − (v − 0.25)2
]
I(−0.49 ≤ v ≤ 0.99)I(|i− j| = 1)

+ 0.4 exp
[
− (v − 0.65)2

0.352 − (v − 0.65)2
I(0.31 ≤ v ≤ 0.99)I(|i− j| = 2)

]}
for any v ∈ R. The dynamic covariance matrix is estimated at the following three points: (−0.6,−0.6,−0.6),

(0, 0, 0), (0.6, 0.6, 0.6), where the corresponding covariance matrices have different sparsity structures.

The average operator and Frobenius losses are presented in Tables 5.3(a)–5.3(c), from which the same

conclusion as that from Example 5.1 can be observed.

6 Conclusion and extension

In this paper we estimate the ultra large dynamic covariance matrix for high-dimensional time series

data where the conditioning random variables are multivariate. Through the semiparametric MAMAR

approximation to each entry in the underlying dynamic covariance matrix, we successfully circumvent
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Table 5.2(a): Average (standard error) losses at point (−0.5,−0.5,−0.5) for Example 5.2

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.165(0.019) 0.173(0.017) 0.174(0.019) 0.932(0.055) 1.330(0.082) 1.640(0.109)
Soft 0.235(0.077) 0.171(0.008) 0.174(0.008) 0.891(0.195) 1.041(0.034) 1.291(0.045)
A. LASSO 0.135(0.011) 0.140(0.008) 0.142(0.009) 0.753(0.035) 1.054(0.047) 1.285(0.063)
SCAD 0.159(0.010) 0.168(0.010) 0.172(0.010) 0.736(0.015) 1.056(0.020) 1.307(0.034)

Dynamic

Hard 0.141(0.033) 0.149(0.032) 0.171(0.073) 0.721(0.143) 1.015(0.092) 1.340(0.333)
Soft 0.191(0.006) 0.193(0.006) 0.206(0.049) 0.831(0.034) 1.165(0.036) 1.464(0.049)
A. LASSO 0.162(0.009) 0.164(0.010) 0.192(0.096) 0.704(0.022) 0.992(0.024) 1.272(0.172)
SCAD 0.186(0.008) 0.188(0.008) 0.204(0.050) 0.804(0.039) 1.124(0.043) 1.421(0.056)
Hard 0.174(0.037) 0.197(0.044) 0.216(0.103) 0.978(0.252) 1.520(0.357) 2.065(1.258)

Modified Soft 0.127(0.010) 0.131(0.012) 0.146(0.072) 0.717(0.039) 1.037(0.080) 1.514(0.988)
Dynamic A. LASSO 0.135(0.020) 0.140(0.026) 0.180(0.130) 0.785(0.091) 1.152(0.182) 1.873(1.792)

SCAD 0.146(0.021) 0.154(0.024) 0.177(0.077) 0.784(0.051) 1.142(0.098) 1.628(1.000)

Table 5.2(b): Average (standard error) losses at point (0, 0, 0) for Example 5.2

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.191(0.007) 0.193(0.008) 0.194(0.010) 1.035(0.022) 1.474(0.033) 1.813(0.050)
Soft 0.271(0.023) 0.280(0.008) 0.283(0.008) 1.088(0.066) 1.650(0.057) 2.046(0.073)
A. LASSO 0.230(0.009) 0.238(0.011) 0.240(0.010) 1.014(0.010) 1.450(0.017) 1.785(0.024)
SCAD 0.264(0.010) 0.276(0.011) 0.280(0.010) 1.104(0.038) 1.618(0.063) 2.016(0.790)

Dynamic

Hard 0.189(0.006) 0.193(0.008) 0.196(0.006) 0.968(0.017) 1.372(0.020) 1.712(0.027)
Soft 0.253(0.005) 0.255(0.005) 0.258(0.004) 1.048(0.019) 1.475(0.017) 1.833(0.020)
A. LASSO 0.213(0.005) 0.215(0.005) 0.218(0.004) 0.980(0.008) 1.387(0.009) 1.713(0.006)
SCAD 0.224(0.008) 0.226(0.008) 0.233(0.007) 1.016(0.010) 1.438(0.009) 1.771(0.008)
Hard 0.184(0.013) 0.194(0.018) 0.203(0.025) 1.026(0.044) 1.517(0.060) 1.884(0.144)

Modified Soft 0.230(0.007) 0.230(0.006) 0.227(0.007) 0.993(0.008) 1.401(0.009) 1.723(0.009)
Dynamic A. LASSO 0.223(0.008) 0.223(0.007) 0.219(0.009) 0.982(0.010) 1.387(0.010) 1.719(0.017)

SCAD 0.209(0.011) 0.210(0.008) 0.208(0.008) 1.030(0.023) 1.467(0.028) 1.824(0.046)
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Table 5.2(c): Average (standard error) losses at point (0.5, 0.5, 0.5) for Example 5.2

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.248(0.007) 0.250(0.008) 0.249(0.008) 1.119(0.013) 1.588(0.018) 1.948(0.018)
Soft 0.293(0.038) 0.337(0.008) 0.340(0.008) 1.296(0.188) 2.159(0.078) 2.676(0.101)
A. LASSO 0.286(0.009) 0.294(0.011) 0.297(0.011) 1.239(0.040) 1.788(0.064) 2.212(0.082)
SCAD 0.321(0.010) 0.333(0.010) 0.337(0.010) 1.416(0.067) 2.092(0.101) 2.614(0.126)

Dynamic

Hard 0.219(0.026) 0.233(0.025) 0.241(0.037) 1.168(0.023) 1.664(0.025) 2.037(0.030)
Soft 0.269(0.006) 0.275(0.007) 0.280(0.015) 1.147(0.024) 1.623(0.027) 2.022(0.020)
A. LASSO 0.241(0.041) 0.270(0.054) 0.299(0.080) 1.106(0.048) 1.595(0.078) 1.992(0.090)
SCAD 0.233(0.029) 0.248(0.028) 0.264(0.040) 1.138(0.027) 1.619(0.036) 2.008(0.038)
Hard 0.257(0.020) 0.262(0.020) 0.262(0.023) 1.168(0.027) 1.652(0.045) 2.017(0.043)

Modified Soft 0.266(0.010) 0.265(0.013) 0.269(0.024) 1.137(0.028) 1.594(0.032) 1.963(0.031)
Dynamic A. LASSO 0.259(0.038) 0.272(0.057) 0.310(0.098) 1.118(0.043) 1.603(0.111) 2.034(0.190)

SCAD 0.246(0.022) 0.254(0.025) 0.260(0.036) 1.130(0.030) 1.622(0.068) 2.005(0.036)

Table 5.3(a): Average (standard error) losses at point (−0.6,−0.6,−0.6) for Example 5.3

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.123(0.018) 0.132(0.017) 0.134(0.016) 0.721(0.097) 1.021(0.119) 1.234(0.140)
Soft 0.132(0.119) 0.070(0.008) 0.075(0.009) 0.478(0.394) 0.399(0.061) 0.532(0.096)
A. LASSO 0.096(0.020) 0.100(0.015) 0.102(0.018) 0.412(0.101) 0.535(0.117) 0.608(0.117)
SCAD 0.090(0.027) 0.091(0.016) 0.094(0.017) 0.332(0.064) 0.467(0.037) 0.582(0.066)

Dynamic

Hard 0.107(0.030) 0.115(0.013) 0.105(0.022) 0.503(0.360) 0.759(0.506) 0.935(0.731)
Soft 0.103(0.015) 0.115(0.025) 0.111(0.019) 0.547(0.053) 0.841(0.222) 1.033(0.268)
A. LASSO 0.094(0.026) 0.112(0.042) 0.100(0.022) 0.398(0.237) 0.554(0.292) 0.796(0.530)
SCAD 0.103(0.015) 0.115(0.025) 0.111(0.019) 0.519(0.064) 0.808(0.234) 0.996(0.281)
Hard 0.133(0.076) 0.147(0.064) 0.114(0.067) 0.613(0.406) 1.003(0.448) 0.868(0.562)

Modified Soft 0.089(0.024) 0.100(0.033) 0.099(0.029) 0.403(0.127) 0.681(0.332) 0.759(0.302)
Dynamic A. LASSO 0.115(0.040) 0.140(0.055) 0.121(0.033) 0.563(0.242) 1.054(0.584) 0.956(0.411)

SCAD 0.125(0.030) 0.136(0.041) 0.135(0.038) 0.510(0.128) 0.816(0.339) 0.903(0.314)
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Table 5.3(b): Average (standard error) losses at point (0, 0, 0) for Example 5.3

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.184(0.013) 0.188(0.010) 0.189(0.010) 1.054(0.031) 1.494(0.037) 1.827(0.037)
Soft 0.230(0.041) 0.218(0.009) 0.223(0.008) 1.154(0.048) 1.670(0.056) 2.084(0.074)
A. LASSO 0.171(0.008) 0.180(0.010) 0.184(0.010) 1.030(0.008) 1.471(0.015) 1.814(0.035)
SCAD 0.203(0.011) 0.216(0.010) 0.222(0.009) 1.117(0.038) 1.639(0.061) 2.055(0.082)

Dynamic

Hard 0.188(0.015) 0.198(0.015) 0.206(0.012) 1.042(0.017) 1.474(0.017) 1.818(0.019)
Soft 0.190(0.004) 0.195(0.005) 0.196(0.005) 1.070(0.013) 1.525(0.020) 1.875(0.021)
A. LASSO 0.164(0.007) 0.168(0.006) 0.170(0.007) 1.019(0.007) 1.443(0.007) 1.772(0.007)
SCAD 0.175(0.008) 0.181(0.006) 0.183(0.006) 1.043(0.009) 1.480(0.010) 1.817(0.013)
Hard 0.176(0.018) 0.193(0.023) 0.200(0.023) 1.026(0.029) 1.470(0.054) 1.816(0.065)

Modified Soft 0.170(0.006) 0.169(0.006) 0.169(0.007) 1.025(0.009) 1.445(0.008) 1.768(0.008)
Dynamic A. LASSO 0.167(0.005) 0.168(0.006) 0.172(0.010) 1.022(0.008) 1.444(0.006) 1.776(0.012)

SCAD 0.182(0.012) 0.193(0.010) 0.204(0.014) 1.051(0.017) 1.505(0.028) 1.872(0.048)

Table 5.3(c): Average (standard error) losses at point (0.6, 0.6, 0.6) for Example 5.3

operator loss Frobenius loss
Method p = 100 p = 200 p = 300 p = 100 p = 200 p = 300

Static

Hard 0.365(0.009) 0.369(0.009) 0.370(0.008) 1.689(0.013) 2.398(0.017) 2.942(0.025)
Soft 0.430(0.028) 0.457(0.009) 0.461(0.008) 1.918(0.129) 2.875(0.066) 3.565(0.082)
A. LASSO 0.403(0.011) 0.413(0.011) 0.419(0.011) 1.789(0.037) 2.569(0.052) 3.180(0.072)
SCAD 0.437(0.013) 0.452(0.012) 0.459(0.010) 1.931(0.065) 2.818(0.085) 3.516(0.100)

Dynamic

Hard 0.336(0.071) 0.338(0.021) 0.362(0.104) 1.720(0.029) 2.439(0.028) 2.996(0.047)
Soft 0.386(0.023) 0.395(0.018) 0.405(0.045) 1.727(0.017) 2.492(0.074) 3.079(0.091)
A. LASSO 0.362(0.027) 0.382(0.027) 0.391(0.026) 1.726(0.029) 2.465(0.037) 3.046(0.041)
SCAD 0.342(0.053) 0.360(0.034) 0.384(0.076) 1.722(0.024) 2.475(0.075) 3.072(0.125)
Hard 0.388(0.063) 0.373(0.015) 0.410(0.147) 1.733(0.033) 2.459(0.116) 3.124(0.599)

Modified Soft 0.385(0.024) 0.379(0.009) 0.398(0.060) 1.727(0.022) 2.441(0.017) 3.022(0.044)
Dynamic A. LASSO 0.373(0.020) 0.369(0.034) 0.369(0.039) 1.729(0.019) 2.462(0.035) 3.018(0.058)

SCAD 0.363(0.046) 0.363(0.020) 0.383(0.073) 1.716(0.021) 2.454(0.042) 3.033(0.061)
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the curse of dimensionality problem in multivariate nonparametric estimation. The subsequent two-

stage semiparametric estimation method, combined with the general shrinkage technique commonly

used in high-dimensional data analysis, produces reliable dynamic covariance matrix estimation.

Under some mild conditions such as the approximate sparsity assumption, the developed covariance

matrix estimation is proved to be uniformly consistent with convergence rates comparable to those

obtained in the literature. In addition, a modified version of the semiparametric dynamic covariance

matrix estimation is introduced to ensure that the estimated covariance matrix is positive definite.

Furthermore, a new selection criterion to determine the optimal local tuning parameter is provided

to implement the proposed semiparametric large covariance matrix estimation for high-dimensional

weakly dependent time series data. Extensive simulation studies conducted in Section 5 show that

the proposed approaches have reliable numerical performance.

In the present paper, we limit attention to the case where the number of conditioning variables is

fixed. However, it is often not uncommon to have a very large number of conditioning variables in

practice. In this latter case, a direct application of the MAMAR approximation and the semiparametric

method proposed in Section 2.2 may result in poor and unstable matrix estimation results. Motivated

by a recent paper by Chen et al (2017) on high-dimensional MAMAR method, we can circumvent this

problem by assuming that the number of conditioning variables which make “significant” contribution

to estimating joint regression functions, m0
i (u) and c0ij(u), in (1.4) and (1.5) is relatively small, i.e., for

each i and j, when p is divergent, the number of nonzero weights bi,k and aij,k, 1 ≤ k ≤ p, is relatively

small. This makes equations (1.4) and (1.5) fall into the classic sparsity framework commonly used in

high-dimensional variable or feature selection literature. To remove the insignificant conditioning

variables, we combine the penalisation and MAMAR techniques when estimating m0
i (u) and c0ij(u).

Specifically, for each 1 ≤ i ≤ d, to estimate
(
b?i,1, . . . , b

?
i,p

)ᵀ
, we define the penalised objective function:

Qi(bi,1, . . . , bi,p) =
n−1∑
t=1

[
Xc
t+1,i −

p∑
k=1

bi,km̂
c
i,k(Utk)

]2
+ n

p∑
k=1

pλ1(|bi,k|), (6.1)

where Xc
t+1,i = Xt+1,i − 1

n−1
∑n−1

s=1 Xs+1,i, m̂
c
i,k(Utk) = m̂i,k(Utk)− 1

n−1
∑n−1

s=1 m̂i,k(Usk), and pλ1(·) is a

penalty function with a tuning parameter λ1. The solution to the minimisation of Qi(bi,1, . . . , bi,p)
is the penalised estimator of the optimal weights and is denoted by (bi,1, . . . , bi,p)

ᵀ
. The subsequent

intercept estimate, denoted by bi,0, can be calculated in the same way as b̂i,0 in (2.11), but with b̂i,k

replaced by bi,k, k = 1, . . . , p. Similarly, for each 1 ≤ i, j ≤ d, to estimate
(
a?ij,1, . . . , a

?
ij,p

)ᵀ
, we define

the penalised objective function:

Qij(aij,1, . . . , aij,p) =
n−1∑
t=1

[
Xc
t+1,(i,j) −

p∑
k=1

aij,kĉ
c
ij,k(Utk)

]2
+ n

p∑
k=1

pλ2(|aij,k|), (6.2)

22



where Xc
t+1,(i,j) = Xt+1,iXt+1,j − 1

n−1
∑n−1

s=1 Xs+1,iXs+1,j, ĉ
c
ij,k(Utk) = ĉij,k(Utk) − 1

n−1
∑n−1

s=1 ĉij,k(Usk),

and pλ2(·) is a penalty function with a tuning parameter λ2. The solution to the minimisation of

Qij(aij,1, . . . , aij,p) is denoted by (aij,1, . . . , aij,p)
ᵀ

, and the intercept estimate, aij,0, can be obtained

accordingly by replacing âij,k with aij,k, k = 1, . . . , p, on the right hand side of the equation for âij,0

in (2.12). By Theorem 2(ii) in Chen et al (2017), under the sparsity assumption and some technical

conditions, the zero optimal weights can be estimated exactly as zeros with probability approaching

one. After obtaining bi,k and aij,k, 0 ≤ k ≤ p, we can calculate the penalised estimates of the optimal

MAMAR approximation to c0ij(u) and m0
i (u) as

cij(u) = aij,0 +

p∑
k=1

aij,kĉij,k(uk), mi(u) = bi,0 +

p∑
k=1

bi,km̂i,k(uk),

and subsequently the penalised estimate of σ0
ij(u) as

σij(u) = cij(u)−mi(u)mj(u). (6.3)

Finally, we apply the shrinkage technique detailed in Section 2.2 to σij(u) to obtain the estimate

of the dynamic covariance matrix. Their asymptotic property and numerical performance will be

explored in a separate project.

Another feasible way to deal with high-dimensional conditioning variables is to impose the so-called

approximate factor modelling structure on Ut (Bai and Ng, 2002). Instead of directly using Ut whose

size can be very large, we may use the relatively low-dimensional latent common factors Ft (c.f., Stock

and Watson, 2002), which can be estimated (up to a possible rotation) by some classic approaches like

the principal component analysis and maximum likelihood method. As a result, our semiparametric

dynamic covariance matrix estimation method may be still applicable after replacing Ut by the

estimates of Ft.

Appendix A: Proofs of the main limit theorems

In this appendix, we provide the detailed proofs of the main asymptotic theorems. We start with

some technical lemmas whose proofs will be given in Appendix B.

Lemma 1. Suppose that Assumptions 1, 2(i) and 3 in Section 3.1 are satisfied. Then we have

max
1≤i≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

|m̂i,k(uk)−mi,k(uk)| = OP

(√
log(d ∨ n)/(nh1) + h21

)
, (A.1)
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and

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

|ĉij,k(uk)− cij,k(uk)| = OP

(√
log(d ∨ n)/(nh2) + h22

)
, (A.2)

where h? = h1 ∨ h2.

Lemma 2. Suppose that Assumptions 1–3 in Section 3.1 are satisfied. Then we have

max
1≤i,j≤d

p∑
k=0

∣∣âij,k − a?ij,k∣∣ = OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
, (A.3)

and

max
1≤i≤d

p∑
k=1

∣∣∣̂bi,k − b?i,k∣∣∣ = OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh1) + h21

)
. (A.4)

The following proposition gives an uniform consistency (with convergence rates) for the nonpara-

metric conditional covariance matrix estimation via the MAMAR approximation.

Proposition 1. Suppose that Assumptions 1–3 in Section 3.1 are satisfied. Then we have

max
1≤i,j≤d

sup
u∈U

∣∣σ̂ij(u)− σ?ij(u)
∣∣ = OP (τn,d), (A.5)

where τn,d is defined in Assumption 4, and σ?ij(u) = c?ij(u)−m?
i (u)m?

j(u), c?ij(u) is the (i, j)-entry of

C?

A(u) and m?
i (u) is the i-th element of M?

B(u), C?

A(u) and M?

B(u) are defined in Section 2.1.

Proof of Proposition 1. By (A.2) and (A.3), we have

ĉij(u)− c?ij(u) =

[
âij,0 +

p∑
k=1

âij,kĉij,k(uk)

]
−

[
a?ij,0 +

p∑
k=1

a?ij,kcij,k(uk)

]

=
(
âij,0 − a?ij,0

)
+

p∑
k=1

(
âij,k − a?ij,k

)
cij,k(uk) +

p∑
k=1

a?ij,k [ĉij,k(uk)− cij,k(uk)] +

p∑
k=1

(
âij,k − a?ij,k

)
[ĉij,k(uk)− cij,k(uk)]

= OP

(√
log(d ∨ n)/(nh2) + h22

)
(A.6)

uniformly for 1 ≤ i, j ≤ d and u ∈ Uh? . On the other hand, note that

m̂i(u)m̂j(u)−m?
i (u)m?

j(u) = [m̂i(u)−m?
i (u)]m?

j(u)−m?
i (u)

[
m̂j(u)−m?

j(u)
]

+

[m̂i(u)−m?
i (u)]

[
m̂j(u)−m?

j(u)
]

(A.7)
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with

m̂i(u)−m?
i (u) =

(
b̂i,0 − b?i,0

)
+

p∑
k=1

(
b̂i,k − b?ij,k

)
mi,k(uk) +

p∑
k=1

b?i,k [m̂i,k(uk)−mi,k(uk)] +

p∑
k=1

(
b̂i,k − b?i,k

)
[m̂i,k(uk)−mi,k(uk)]

= OP

(√
log(d ∨ n)/(nh1) + h21

)
(A.8)

uniformly for 1 ≤ i ≤ d and u ∈ Uh? , where (A.1) and (A.4) have been used.

Therefore, by (A.6)–(A.8), we have

max
1≤i,j≤d

sup
u∈Uh?

∣∣σ̂ij(u)− σ?ij(u)
∣∣

= max
1≤i,j≤d

sup
u∈Uh?

∣∣ĉij(u)− c?ij(u)
∣∣+ max

1≤i,j≤d
sup
u∈Uh?

∣∣m̂i(u)m̂j(u)−m?
i (u)m?

j(u)
∣∣

= OP

(√
log(d ∨ n)/(nh1) +

√
log(d ∨ n)/(nh2) + h21 + h22

)
, (A.9)

completing the proof of Proposition 1. �

Proof of Theorem 1. From the definition of Σ̃(u) and σ̃ij(u), we have

sup
u∈Uh?

∥∥∥Σ̃(u)−Σ
?

A(u)
∥∥∥
O
≤ sup

u∈U
max
1≤i≤d

d∑
j=1

∣∣σ̃ij(u)− σ?ij(u)
∣∣

= sup
u∈Uh?

max
1≤i≤d

d∑
j=1

∣∣sρ(u) (σ̂ij(u)) I (|σ̂ij(u)| > ρ(u))− σ?ij(u)
∣∣

= sup
u∈Uh?

max
1≤i≤d

d∑
j=1

∣∣sρ(u) (σ̂ij(u)) I (|σ̂ij(u)| > ρ(u))−

σ?ij(u)I (|σ̂ij(u)| > ρ(u))− σ?ij(u)I (|σ̂ij(u)| ≤ ρ(u))
∣∣

≤ sup
u∈Uh?

max
1≤i≤d

d∑
j=1

∣∣sρ(u) (σ̂ij(u))− σ̂ij(u)
∣∣ I (|σ̂ij(u)| > ρ(u)) +

sup
u∈Uh?

max
1≤i≤d

d∑
j=1

∣∣σ̂ij(u)− σ?ij(u)
∣∣ I (|σ̂ij(u)| > ρ(u)) +

sup
u∈Uh?

max
1≤i≤d

d∑
j=1

∣∣σ?ij(u)
∣∣ I (|σ̂ij(u)| ≤ ρ(u))

=: I1 + I2 + I3. (A.10)
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From Proposition 1, we define an event

E =

{
max

1≤i,j≤d
sup
u∈Uh?

∣∣σ̂ij(u)− σ?ij(u)
∣∣ ≤M1τn,d

}
,

where M1 is a positive constant such that P (E) ≥ 1 − ε with ε > 0 being arbitrarily small. By

Property (iii) of the shrinkage function and Proposition 1, we readily have

I1 ≤ sup
u∈Uh?

ρ(u)

[
max
1≤i≤d

d∑
j=1

I (|σ̂ij(u)| > ρ(u))

]
(A.11)

and

I2 ≤M1τn,d sup
u∈Uh?

max
1≤i≤d

d∑
j=1

I (|σ̂ij(u)| > ρ(u)) (A.12)

conditional on the event E . Note that on E ,

|σ̂ij(u)| ≤ |σ?ij(u)|+ |σ̂ij(u)− σ?ij(u)| ≤ |σ?ij(u)|+M1τn.

Recall that ρ(u) = M0(u)τn,h in Assumption 4 and choose M0(u) such that infu∈UM0(u) = 2M1.

Then, it is easy to see the event {|σ̂ij(u)| > ρ(u)} indicates that {|σ?ij(u)| > M1τn,d} holds. As

Σ
?

A(·) ∈ S(q, cd,M?,U) defined in (3.4), we may show that

I1 + I2 ≤ τn,d

[
sup
u∈U

M0(u) +M1

][
sup
u∈Uh?

max
1≤i≤d

d∑
j=1

I (|σ̂ij(u)| > M1τn,d)

]

≤ τn,d

[
sup
u∈U

M0(u) +M1

][
sup
u∈U

max
1≤i≤d

d∑
j=1

∣∣σ?ij(u)
∣∣q

M q
1 τ

q
n,d

]
= O

(
cd · τ 1−qn,d

)
(A.13)

on the event E .

On the other hand, by the triangle inequality, we have for any u ∈ Uh? ,

|σ̂ij(u)| ≥ |σ?ij(u)| − |σ̂ij(u)− σ?ij(u)| ≥ |σ?ij(u)| −M1τn

on the event E . Hence, we readily show that {|σ̂ij(u)| ≤ ρ(u)} indicates{
|σ?ij(u)| ≤

(
sup
u∈U

M0(u) +M1

)
τn,d

}
.
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Then, for I3, by Assumption 4 and the definition of S(q, cd,M?,U), we have

I3 ≤ sup
u∈Uh?

max
1≤i≤d

d∑
j=1

∣∣σ?ij(u)
∣∣ I (|σ?ij(u)| ≤ (sup

u∈U
M0(u) +M1)τn,d

)

≤ (sup
u∈U

M0(u) +M1)
1−qτ 1−qn,d sup

u∈U
max
1≤i≤d

d∑
j=1

∣∣σ?ij(u)
∣∣q

= OP

(
cd · τ 1−qn,d

)
. (A.14)

The proof of (3.5) in Theorem 1(i) can be completed by (A.10), (A.13) and (A.14).

Note that

sup
u∈Uh?

∥∥∥Σ̃−1

(u)−Σ
?−1

A (u)
∥∥∥
O

= sup
u∈Uh?

∥∥∥Σ̃−1

(u)Σ
?

A(u)Σ
?−1

A (u)− Σ̃
−1

(u)Σ̃(u)Σ
?−1

A (u)
∥∥∥
O

≤ sup
u∈Uh?

∥∥∥Σ̃−1

(u)
∥∥∥
O

sup
u∈Uh?

∥∥∥Σ̃(u)−Σ
?

A(u)
∥∥∥
O

sup
u∈Uh?

∥∥∥Σ?−1

A (u)
∥∥∥
O
.

It is easy to prove (3.7) in Theorem 1(ii) from (3.6) and (3.5) in Theorem 1(i). �

Proof of Theorem 2. By the definition of sρ(u)(·), it is easy to show that
{
σ̃ij(u) = sρ(u)(σ̂ij(u)) 6= 0

}
is equivalent to {|σ̂ij(u)| > ρ(u)} for any u ∈ Uh? and 1 ≤ i, j ≤ d. Hence,

{
σ̃ij(u) 6= 0 and σ?ij(u) = 0

}
indicates that ∣∣σ̂ij(u)− σ?ij(u)

∣∣ > ρ(u). (A.15)

Note that ρ(u) = M0(u)τn,d with infu∈UM0(u) ≥ cM > 0. From (A.15) and Proposition 1 above,

taking cM > 0 sufficiently large, we have

P
(
σ̃ij(u)) 6= 0 and σ?ij(u) = 0 for u ∈ Uh? and 1 ≤ i, j ≤ d

)
≤ P

(
max

1≤i,j≤d
sup
u∈Uh?

∣∣σ̂ij(u)− σ?ij(u)
∣∣ > cMτn,d

)
→ 0,

completing the proof of Theorem 2. �

Appendix B: Proofs of the technical lemmas

We next give the detailed proofs of the lemmas used in Appendix A to prove the main results.

Proof of Lemma 1. We next only give a detailed proof of (A.2) as the proof of (A.1) is similar. By
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the definitions of ĉij,k(uk) and cij,k(uk), we have

ĉij,k(uk)− cij,k(uk) =

{
n−1∑
t=1

K

(
Utk − uk

h2

)
[Xt+1,iXt+1,j − cij,k(uk)]

}
/

{
n−1∑
t=1

K

(
Utk − uk

h2

)}

=

{
n−1∑
t=1

K

(
Utk − uk

h2

)
ξt+1,ij,k

}
/

{
n−1∑
t=1

K

(
Utk − uk

h2

)}
+{

n−1∑
t=1

K

(
Utk − uk

h2

)
[cij,k(Utk)− cij,k(uk)]

}
/

{
n−1∑
t=1

K

(
Utk − uk

h2

)}
=: I

(1)
ij,k(uk) + I

(2)
ij,k(uk), (B.1)

where ξt+1,ij,k = Xt+1,iXt+1,j − cij,k(Utk).

We first consider I
(1)
ij,k(uk) and prove that

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)
ξt+1,ij,k

∣∣∣∣∣ = OP

(√
log(d ∨ n)/(nh2)

)
, (B.2)

and

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)
− fk(uk)

∣∣∣∣∣ = OP

(
h22 +

√
log n/(nh2)

)
. (B.3)

In fact, by (B.2) and (B.3) and noting that fk(·) is positive and uniformly bounded away from zero in

Assumption 1(iii), we readily have

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣I(1)ij,k(uk)
∣∣∣ = OP

(√
log(d ∨ n)/(nh2)

)
. (B.4)

We next only prove (B.2) as (B.3) can be proved in a similar (and simpler) way. Define

ξ∗t+1,ij,k = ξt+1,ij,kI (|ξt+1,ij,k| ≤ nι) , ξ�t+1,ij,k = ξt+1,ij,k − ξ∗t+1,ij,k, (B.5)
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where I(·) is an indicator function and ι is defined as in Assumption 3(ii). Observe that

1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)
ξt+1,ij,k =

1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)
ξ∗t+1,ij,k +

1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)
ξ�t+1,ij,k

=
1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]
+

1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)[
ξ�t+1,ij,k − E(ξ�t+1,ij,k)

]
(B.6)

as E(ξt+1,ij,k) = E(ξ∗t+1,ij,k) + E(ξ�t+1,ij,k) = 0.

By the moment condition (3.1) in Assumption 1(ii), we have

E
(∣∣ξ�t+1,ij,k

∣∣) = E [|ξt+1,ij,k|I (|ξt+1,ij,k| > nι)] = O
(
n−ιM1

)
, (B.7)

where M1 can be arbitrarily large. Then, by (B.7), Assumptions 1(ii), 2(i) and 3(iii) and the definition

P

(
max

1≤i,j≤d
max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)[
ξ�t+1,ij,k − E(ξ�t+1,ij,k)

]∣∣∣∣∣ > M0

√
log(d ∨ n)/(nh2)

)

≤ P

(
max

1≤i,j≤d
max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)
ξ�t+1,ij,k

∣∣∣∣∣ > 1

2
M0

√
log(d ∨ n)/(nh2)

)

≤ P

(
max

1≤i,j≤d
max
1≤k≤p

max
1≤t≤n−1

∣∣ξ�t+1,ij,k

∣∣ > 0

)
≤ P

(
max

1≤i,j≤d
max
1≤k≤p

max
1≤t≤n−1

|ξt+1,ij,k| > nι
)

≤ P

(
max

1≤i,j≤d
max

1≤t≤n−1
|Xt+1,iXt+1,j | > nι − c̄

)
≤ P

(
max

1≤i,j≤d
max

1≤t≤n−1

(
X2
t+1,i +X2

t+1,j

)
> 2(nι − c̄)

)
≤ 2P

(
max
1≤i≤d

max
1≤t≤n−1

X2
t+1,i > nι − c̄

)
≤ 2

d∑
i=1

n−1∑
t=1

P
(
X2
t+1,i > nι − c̄

)
= OP

(
dn exp{−snι} max

1≤i≤d
E
[
exp

{
sX2

ti

}])
= o(1) (B.8)

for 0 < s < s0, where c̄ = max1≤i,j≤d max1≤k≤p supak≤uk≤bk |cij,k(uk)| is bounded by Assumption 2(i).

We next consider covering the set Uk by some disjoint intervals Uk,l, l = 1, . . . , q with the center

uk,l and length h22n
−ι
√

log(d ∨ n)/(nh2). It is easy to find that q is of order nιh−22

√
(nh2)/ log(d ∨ n).
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Note that

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣
≤ max

1≤i,j≤d
max
1≤k≤p

max
1≤l≤q

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣+
max

1≤i,j≤d
max
1≤k≤p

sup
uk∈Uk,l

∣∣∣∣∣ 1

nh2

n−1∑
t=1

[
K

(
Utk − uk

h2

)
−K

(
Utk − uk,l

h2

)] [
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣
≤ max

1≤i,j≤d
max
1≤k≤p

max
1≤l≤q

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣+
max
1≤k≤p

sup
uk∈Uk,l

2nι

nh2

n−1∑
t=1

∣∣∣∣K (Utk − ukh2

)
−K

(
Utk − uk,l

h2

)∣∣∣∣
≤ max

1≤i,j≤d
max
1≤k≤p

max
1≤l≤q

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣+OP

(√
log(d ∨ n)/(nh2)

)
,

where Assumption 3(i) and the definition of ξ∗t+1,ij,k in (B.5) are used.

By the exponential inequality for the α-mixing dependent sequence such as Theorem 1.3 in Bosq

(1998), we may show that

P

(
max

1≤i,j≤d
max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣ > M0

√
log(d ∨ n)/(nh2)

)

≤
d∑
i=1

d∑
j=1

p∑
k=1

q∑
l=1

P

(∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk,l

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣ > M0

√
log(d ∨ n)/(nh2)

)

= O
(
d2pq exp {−M∗ log(d ∨ n)}

)
+O

(
d2pq

[
n5+2ι/(h2 log3(d ∨ n))

]1/4
γ
√
M� log(d∨n)

)
= oP (1).

where M∗ and M� are two positive constants which could be sufficiently large, and 0 < γ < 1 is

defined in Assumption 1(i). Therefore, we have

P

(
max

1≤i,j≤d
max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

K

(
Utk − uk

h2

)[
ξ∗t+1,ij,k − E(ξ∗t+1,ij,k)

]∣∣∣∣∣ > M0

√
log(d ∨ n)/(nh2)

)
= o(1).

(B.9)

By (B.8) and (B.9), we can complete the proof of (B.2).
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Similarly, we can also show that

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣∣ 1

nh2

n−1∑
t=1

{
K

(
Utk − uk

h2

)
cij,k(Utk)− E

[
K

(
Utk − uk

h2

)
cij,k(Utk)

]}∣∣∣∣∣
= OP

(√
log(d ∨ n)/(nh2)

)
, (B.10)

and by Taylor’s expansion for cij,k(·) and fk(·)

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣∣ 1

h2
E

[
K

(
Utk − uk

h2

)
cij,k(Utk)

]
− cij,k(uk)fk(uk)

∣∣∣∣ = OP

(
h22
)
. (B.11)

By (B.3), (B.10) and (B.11), we have

max
1≤i,j≤d

max
1≤k≤p

sup
ak+h?≤uk≤bk−h?

∣∣∣I(2)ij,k(uk)
∣∣∣ = OP

(√
log(d ∨ n)/(nh2) + h22

)
. (B.12)

Then the proof of (A.2) is completed in view of (B.1), (B.4) and (B.12). �

Proof of Lemma 2. From the definition of (âij,1, . . . , âij,p)
ᵀ

in (2.12), we have

(âij,1, . . . , âij,p)
ᵀ

= Ω̂−1ij V̂ij =
[
Ω̃ij +

(
Ω̂ij − Ω̃ij

)]−1 [
Ṽij +

(
V̂ij − Ṽij

)]
, (B.13)

where Ω̃ij is a p× p matrix with the (k, l)-entry being

ω̃ij,kl =
1

n− 1

n−1∑
t=1

ccij,k(Utk)c
c
ij,l(Utl), ccij,k(Utk) = cij,k(Utk)− E [cij,k(Utk)] ,

and Ṽij is a p-dimensional column vector with the k-th element being

ṽij,k =
1

n− 1

n−1∑
t=1

ccij,k(Utk)X
∗
t+1,(i,j), X∗t+1,(i,j) = Xt+1,iXt+1,j − E [Xt+1,iXt+1,j] .

Following the proof of (B.2) above, we may show that

max
1≤i,j≤d

max
1≤k≤p

∣∣∣∣∣ 1

n− 1

n−1∑
t=1

cij,k(Utk)− E [cij,k(Utk)]

∣∣∣∣∣ = OP

(√
log(d ∨ n)/n

)
(B.14)

and

max
1≤i,j≤d

max
1≤k≤p

∣∣∣∣∣ 1

n− 1

n−1∑
t=1

Xt+1,iXt+1,j − E [Xt+1,iXt+1,j]

∣∣∣∣∣ = OP

(√
log(d ∨ n)/n

)
. (B.15)
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By (B.14), (B.15) and Lemma 1, we readily have

max
1≤i,j≤d

∥∥∥Ω̂ij − Ω̃ij

∥∥∥
F

= OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
(B.16)

and

max
1≤i,j≤d

∥∥∥V̂ij − Ṽij

∥∥∥ = OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
. (B.17)

By (B.13), (B.16) and (B.17), we have

(âij,1, . . . , âij,p)
ᵀ

= Ω̃−1ij Ṽij +OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
. (B.18)

Again, following the proof of (B.2), we can easily show that

max
1≤i,j≤d

∥∥∥Ω̃ij −Ωij

∥∥∥
F

= OP

(√
log(d ∨ n)/n

)
(B.19)

and

max
1≤i,j≤d

∥∥∥Ṽij −Vij

∥∥∥ = OP

(√
log(d ∨ n)/n

)
, (B.20)

which together with (B.18), indicates that

max
1≤i,j≤d

p∑
k=1

∣∣âij,k − a?ij,k∣∣ = OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
. (B.21)

We finally consider âij,0. Note that uniformly for 1 ≤ i, j ≤ d,

âij,0 =
1

n− 1

n−1∑
t=1

Xt+1,iXt+1,j −
p∑

k=1

âij,k

[
1

n− 1

n−1∑
t=1

ĉij,k(Utk)

]

=
1

n− 1

n−1∑
t=1

Xt+1,iXt+1,j −
p∑

k=1

âij,k

[
1

n− 1

n−1∑
t=1

cij,k(Utk) +OP

(√
log(d ∨ n)/(nh2) + h22

)]

= E (XtiXtj) +OP

(√
log(d ∨ n)/n

)
−

p∑
k=1

âij,k

[
E (XtiXtj) +OP

(√
log(d ∨ n)/(nh2) + h22

)]
=

(
1−

p∑
k=1

a?ij,k

)
E (XtiXtj) +OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
= a?ij,0 +OP

(√
log(d ∨ n)/n+

√
log(d ∨ n)/(nh2) + h22

)
, (B.22)

where (B.14), (B.15) and (B.21) have been used.

From (B.21) and (B.22), we can complete the proof of (B.3). The proof of (B.4) is similar, so
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details are omitted here. The proof of Lemma 2 has been completed. �

References
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