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Abstract

We propose several multivariate variance ratio statistics for “testing” the weak form
Efficient Market Hypothesis and for measuring the direction and magnitude of de-
partures from this hypothesis. We derive the asymptotic distribution of the statistics
and scalar functions thereof under the null hypothesis that returns are unpredictable
after a constant mean adjustment. We propose asymptotic standard errors that are
robust to departures from the “no leverage” assumption of Lo and MacKinlay
(1988), but are relatively simple and in particular do not require the selection of a
bandwidth parameter. We show the limiting behavior of the statistic under a multi-
variate fads model and under a moderately explosive bubble process: these alterna-
tive hypotheses give opposite predictions with regards to the long-run value of the
statistics. We apply the methodology to weekly returns for Center for Research in
Security Prices size-sorted portfolios from 1962 to 2013 in three subperiods. We find
evidence of a reduction of linear predictability in the most recent period, for small
and medium cap stocks, but we still reject the multivariate null hypothesis in the
most recent period. The main findings are not substantially affected by allowing for
a common factor time varying risk premium.
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1 INTRODUCTION

It is fair to say that the profession is divided on the evidence regarding the Efficient

Markets Hypothesis (henceforth for simplicity EMH). Authors like Fama (1970, 2013),

Malkiel (2015), and Ross (2002) argue that rejections of the EMH are: small, not scalable,

fleeting, statistically suspect, and not realizable profit opportunities. Furthermore, Fama

has emphasized the joint hypothesis problem whereby one must measure abnormal returns

relative to a market equilibrium return that provides compensation for bearing risk, so that

statistical rejections of the hypothesis are potentially due instead to rejection of the assumed

market equilibrium return. On the other hand, authors like Shiller (2013), Kahneman and

Tversky (2000), and others have argued that market participants are irrational, behave irra-

tionally, and that their interaction produces excess volatility in asset returns relative to fun-

damentals. Grossman and Stiglitz (1980) argue that even if market participants are fully

rational, if information acquisition is costly, then prices cannot perfectly reflect the infor-

mation which is available, since if it did, those who spent resources to obtain it would re-

ceive no compensation, leading to the conclusion that an informationally efficient market is

impossible. King (2016) emphasizes the “radical uncertainty” issue, whereby the future

states of the world are not perfectly knowable and formal concepts such as probability dis-

tributions and expectations that are core to EMH are of limited use. These are just some of

the many varied and nuanced points of view on this subject. Our purpose is not to provide

definitive evidence on this hypothesis one way or another, this is beyond our pay grade.

Instead we focus on some methodological issues. As Robert Shiller says in his Nobel lecture:

“Ultimately, the question in reconciling the apparently conflicting views comes down to

that of constructing the right statistical tests.” We contribute to this by investigating a cele-

brated class of tests of this hypothesis, which we think have been wrongly applied, and

making some modest proposals to improve best practice with regard to their use. Halbert

White made many fundamental contributions to the statistical underpinnings of hypothesis

testing as applied in economics and finance, and his (White, 2000) seminal contribution

provides a formal insight as to how common applications of statistical methodology can

lead to faulty conclusions regarding for example the EMH.

Variance ratio statistics (Lo and MacKinlay, 1988; Poterba and Summers, 1988) are

widely used in empirical finance as a way of testing the EMH and to measure the degree

and (cumulative) direction of departures from this hypothesis in financial time series.

Indeed, this work has been extremely influential in understanding predictability in asset pri-

ces and in measuring market quality. A key advantage of this methodology relative to say

Box-Pierce statistics is that variance ratios give information about the direction of depart-

ures from the null hypothesis that can be interpreted in meaningful economic terms (i.e.,

momentum versus contrarian), so that the analysis does not reduce to yes/no decision-

making on an uninformative test statistic. A lot of empirical work followed immediately

after the seminal contributions. Lo and MacKinlay (1988) presented evidence regarding

predictability of the U.S. stock market. They concluded that the EMH was soundly rejected

in weekly U.S. stock market returns based on their standard errors. The graduate textbook

Campbell, Lo, and MacKinlay (1997), henceforth CLM, presents variance ratios for weekly

value weighted and equal weighted Center for Research in Security Prices (CRSP) indexes

and five size sorted portfolios over the period 1962–1994; they argue that the EMH is

strongly rejected based on their standard errors, although they find that the magnitude of
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the violation is less in the later subperiod 1978–1994. On the other hand, Cochrane (2001,

p. 388) writing only 4 years later argues that: “daily, weekly, and monthly stock returns are

close to unpredictable”.1 One important recent direction for this methodology is in “high

frequency” settings, that is, intraday, where it has informed the debate on the evolution of

“market quality” in the U.S. stock market. Castura et al. (2010) investigate trends in mar-

ket efficiency in Russell 1000/2000 stocks over the period January 1, 2006, to December

31, 2009. Based on evidence from intraday variance ratios (they look at 10:1 second vari-

ance ratios as well as 60:10 and 600:60 second ratios), they argue that markets have be-

come more efficient at the high frequency over time. Chordia, Roll, and Subrahmanian

(2011) compared intraday variance ratios over the period 1993–2000 with the period

2000–2008 and found that the hourly to daily variance ratios of NYSE listed stocks came

closer to the EMH predicted values on average in the second period.2 One interpretation of

these studies is that the computerized trading systems that now dominate equity markets

have improved the functioning of those markets. Hasbrouck (2015) has recently used vari-

ance ratios to measure high frequency volatility in quoted prices, which also relates to this

question. Finally, given that variance ratios are a standard measure of market quality, they

are often used in cross-sectional or panel data regressions as dependent variables, see for ex-

ample O’Hara and Ye (2009). In short, variance ratios are the de facto measure of predict-

ability/market efficiency that is adopted universally by financial empiricists. It is important

therefore that this class of tests be given a firm foundation.

There have been some criticisms of the univariate variance ratio methodology as a test

of uncorrelatedness. Specifically, it is not consistent against all (fixed of given order) alter-

natives unlike the Box-Pierce statistics. It is a linear functional of the autocorrelation func-

tion and so provides no new information relative to that. It seems like a redundant test.

Faust (1992) provides some intellectual credibility: he shows that they can be given a likeli-

hood ratio (LR) test interpretation and are optimal against certain alternatives of the mean

reverting type. In that sense they are similar to the Durbin–Watson test. The advantage of

the variance ratio over the Box-Pierce statistic is that it gives some sense of the direction of

predictability, which is lost in the Box-Pierce or other portmanteau tests. Hillman and

Salmon (2007) have argued that the variance ratio (actually the related variogram) is better

suited to irregularly spaced data and some kinds of nonstationarity than correlogram tests.

Finally, there is a lot of work on improving the finite sample performance (size and power)

of both Box-Pierce statistics and variance ratio statistics, see for example Kim, Nelson, and

Startz (1991) and Kan and Wang (2010). See Charles and Darné (2009) for a recent review

of this methodology and its application.

We make several contributions. First, we develop a multivariate methodology. Many

tests of the EMH have been carried out using the univariate variance ratio approach, that

is, conducted one asset at a time. This article proposes a methodology for multivariate vari-

ance ratio tests. The rationale for the test is roughly the following. Suppose that the EMH

hypothesis is not rejected for asset i based on univariate variance ratio tests. Suppose how-

ever that returns on i are predicted by lags of some other variable. A univariate test could

fail to detect this violation of the EMH, although a multivariate test could detect it. This

1 He then emphasized the more recent work that had shown that low frequency returns (business

cycle and longer) are predictable from dividend price ratio and term premium variables.

2 See also Sheppard (2013) for some theoretical results using a continuous time framework.
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generic argument about the efficacy of multivariate versus univariate methods is widely ac-

cepted. There is a lot of work on multivariate portmanteau statistics, that is, generalizations

of the Box-Pierce statistic to multivariate time series, see for example, Chitturi (1974) and

Hosking (1981). The variance ratio statistics convey directional information about cross-

autocorrelations beyond that contained in the portmanteau statistics, that is, in the case of

a violation of the hypothesis they give some sense of the direction of departure. The univari-

ate variance ratios describe the behavior of the asset variances, whereas the multivariate

statistics also measure the behavior of the cross correlations and their cumulative direction.

This could be important for momentum-based portfolio trading strategies, for example.

Second, we propose an alternative distribution theory and standard errors (heteroske-

dasticity and leverage consistent HLCM) that are usually adopted (i.e., in the univariate

case). The limiting distribution established in Lo and MacKinlay (1988, Theorem 3) and re-

peated in CLM (and so used in most empirical studies) for the univariate variance ratio stat-

istics is incorrect under their stated assumptions H1–H4 (i.e., RW3).3 The correct

distribution would be much more complicated and would depend on a long-run variance

that may be hard to estimate well. Either one makes additional assumptions to ensure that

the variance is as claimed, which is what we propose below, or one has to use more compli-

cated inference methods based on long-run variance estimation, Newey and West (1987),

or self normalization, Lobato (2001). In fact, the omitted condition appears quite innocu-

ous, so their essential approach seems correct. However, we think that the no-leverage as-

sumption (Lo and MacKinlay’s H4) is untenable, empirically. Although this latter

condition is satisfied by GARCH volatility processes with symmetrically distributed innov-

ations, it is not satisfied by volatility processes that allow for leverage effects such as the

GJR GARCH process or the Nelson’s EGARCH process, and it is not even satisfied by

standard GARCH volatility processes where the innovation is asymmetric. The statistical

value of the restriction is that it simplifies the standard error calculation, although, as we

show, the standard errors that allow for violations of this condition do not entail an inor-

dinate increase in computation or complexity. Essentially, Lo and MacKinlay (1988)

imposed an unnecessary assumption but fail to impose a necessary one. We propose modi-

fied assumptions that still preserve the possibility of simple inference methods and allow

for leverage effects. Specifically, we establish the asymptotic distribution of our statistics

under two sets of assumptions: (a) a stationary martingale difference hypothesis with fourth

unconditional moments; (b) uncorrelatedness as in Lo and MacKinlay (1988) and with an

additional uncorrelatedness condition on the products of returns but without the additional

no-leverage condition. The asymptotic variance is the same under our two different sets of

assumptions but is different from that contained in Theorem 3 of Lo and MacKinlay

(1988) (and used in much subsequent empirical work). We remark that their theory essen-

tially imposes that the sample autocorrelations are asymptotically uncorrelated, which can

lead to inappropriate standard errors and p-values. This fact has been long appreciated in

the time series literature, see for example, Dufour and Roy (1985); Francq, Roy, and

Zakoian (2005) have provided a comprehensive theory for Box-Pierce statistics under sta-

tionarity and mixing conditions.

We propose a simple analog method for conducting inference that does not require the

selection of a bandwidth parameter. We note that the evidence about predictability of asset

3 It makes use of the CLT developed by White and Domowitz (1984) and used by many others.
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returns in a large number of papers has been based on the Lo and MacKinlay (1988) stand-

ard errors, which we argue should be replaced by standard errors that rely on weaker and

more plausible assumptions.4 We show that in practice the standard errors can make a dif-

ference, especially when the time series is short (such as when stationarity is of concern).

Third, we extend our null hypothesis limit theory to the long horizon and large dimen-

sion cases. We derive the null limiting distribution of the studentized statistics under the

increasing horizon framework, and show that asymptotic normality holds albeit with a

slower rate of convergence, extending the univariate results of Chen and Deo (2006). We

also establish the same result for the average scalar variance ratio statistic in the case where

the horizon is fixed but the dimensions of the vector time series increase with sample size.

Fourth, we also establish the asymptotic properties of our statistic under several plaus-

ible alternative models including a multivariate Muth (1960) fads model and the recently

developed bubble process of Phillips and Yu (2011). These alternatives yield quite different

predictions regarding the long-run value of the variance ratio statistics.

Finally, we apply our methods to weekly returns for CRSP size-sorted portfolios from

1962 to 2013 in three subperiods 1962–1978, 1978–1994 and 1994–2013; the first two

subperiods correspond to the data used in CLM. We show that the degree of inefficiency

has reduced over the most recent period, and in some cases this improvement is statistically

significant. Specifically, the univariate tests do not reject the null hypothesis for medium or

large stocks in the most recent period. However, the multivariate tests do reject, albeit with

a lower significance level. We have also extended our analysis to allow for a time varying

risk premium, but find that the main empirical results are sustained, and we omit these re-

sults here.5 This evidence is presented based on our HLCM standard errors that are robust

to leverage effects as well as heteroskedasticity. We also show that the degree of asymmetry

in the dependence structure has reduced, although it is still statistically significant. We fur-

ther investigate the variance ratios at the long horizon. Simulation experiments indicate

that our variance ratio tests are reliable, and powerful against some alternatives.

There is a substantial literature on testing for nonlinear predictability using information

beyond the simple autocorrelations, see for example, Hong (2000), Hong and Lee (2005),

Escanciano and Velasco (2006), and Phillips and Jin (2014). There is also a literature that

emphasizes structural breaks and rolling window analysis, see for example, Lo (2005) and

Pesaran and Timmermann (2007). Finally, there is a large literature on “predictive regres-

sions” using long horizons and covariates such as dividend price ratios, see Phillips (2015).

Our methodology and application hopefully complements this vast body of research.

In Section 2, we introduce the multivariate ratio population statistics in various forms.

In Section 3, we introduce the estimators, while in Section 4 we present the main central

limit theorem and inference methods. In Section 5, we consider a number of alternative

hypotheses, while in Section 6 we discuss the large dimensional case. We perform a small

4 At the current count, there were 3756 Google citations of that paper.

5 In the working paper version of this paper, we extend the theory to allow for a time varying risk

premium in two ways. One approach is to fit an observable common factor regression and compute

our statistics from the residuals. The second approach is to fit explicitly a nonparametric trend

model, which we also allow to vary across different “regimes” (such as days of the week), to each

series, and then to compute our statistics from the residuals. We show that with minor additional

conditions our distribution theory and inference method carry over to this case.
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simulation study in Section 7. In Section 8, we present our application, while Section 9 con-

cludes. The Appendix contains the proofs of all results.

2 MULTIVARIATE VARIANCE RATIOS

For expositional purposes we shall suppose in this section that we have a vector stationary

ergodic discrete time series Xt 2 R
d; formal assumptions regarding the data are given below

in Section 3. Let ~Xt ¼ Xt � l; where l ¼ EðXtÞ for all t. We are interested in testing the

(weak form) EMH and quantifying and signing departures from this hypothesis. According

to Fama (1970), this is that “risk adjusted stock returns are unforecastable using past

prices”. “Prices” are usually taken to mean just a sequence of past prices for the asset in

question, but the spirit of this hypothesis should allow the past history of other assets not to

matter either. Regarding the risk adjustment, we shall assume that the risk premium is con-

stant, unknown, and is denoted by l. In the working paper version we have extended the

theory to the case where lt is time varying and depends on multiple unknown quantities.

One interpretation of the EMH is to assume that the risk-adjusted return process

satisfies

Eð ~XtjF t�1Þ ¼ 0; (1)

where F t denotes the past history of the prices of all the assets. This is a stronger assump-

tion than that returns are uncorrelated with the past of all prices, that is,

Eð ~Xit
~Xjt�kÞ ¼ 0 (2)

for all i; j ¼ 1; . . . ;d and for all k 6¼ 0; which itself is a stronger assumption6 than that re-

turns are uncorrelated with their own past, that is,

Eð ~Xit
~Xit�kÞ ¼ 0 (3)

for all i and for all k 6¼ 0; which is what is adopted in Lo and MacKinlay (1988) [and

referred to as RW3 in Campbell, Lo, and MacKinlay (1997) and in much subsequent

work]. RW3 has the advantage that if one rejects it, then one rejects the martingale hypoth-

esis; on the other hand, if one does not reject RW3 then one can’t conclude that the martin-

gale hypothesis is valid.7 Throughout we work with at least the multivariate

uncorrelatedness hypothesis (2). We also develop a theory based on the stronger martingale

difference assumption (1), because the additional regularity conditions can be stated very

simply.

We next define the population versions of the multivariate variance ratios. Let XtðKÞ ¼
Xt þXt�1 þ � � � þXt�Kþ1 for each K, and define the following population quantities:

R ¼ varðXtÞ ¼ Eð ~Xt
~X
>
t Þ (4)

6 This is not quite correct, since the martingale hypothesis only requires E jXt j < 1; whereas the

autocovariance of a stationary process requires EX 2
t < 1 in order to be well defined in general.

7 We note that there are many tests of the martingale hypothesis that make use of more information,

Hong and Lee (2005) and Escanciano and Velasco (2006), and thereby obtain power against a larger

class of alternatives.
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D ¼ diagfE ~X
2

1t

� �
; . . . ;E ~X

2

dt

� �
g (5)

R Kð Þ ¼ var Xt Kð Þð Þ ¼ E
�

Xt Kð Þ � KE Xtð Þ
��

Xt Kð Þ � KE Xtð Þ
�>� �

(6)

C jð Þ ¼ cov Xt;Xt�j

� �
¼ E ~Xt

~X
>
t�j

� �
(7)

R jð Þ ¼ R�1=2C jð ÞR�1=2 (8)

RL jð Þ ¼ C jð ÞR�1; RR jð Þ ¼ R�1C jð Þ (9)

Rd jð Þ ¼ D�1=2C jð ÞD�1=2; (10)

for j ¼ 0; 6 1; . . . : Here, A1=2 denotes a symmetric square root of a symmetric matrix A.

We shall assume that R is strictly positive definite.

2.1 Two-Sided Variance Ratios

Under Condition (2), the variance covariance matrices obey the scaling law varðXtðKÞÞ ¼ K

varðXtÞ; where K is some positive integer, from which we may obtain a number of different

variance ratio statistics. These will have different merits and drawbacks depending on the

purpose to which the estimation/testing is directed.

We define the two-sided matrix normalized multivariate ratio (population) statistic as

VRðKÞ ¼ varðXtÞ�1=2varðXtðKÞÞvarðXtÞ�1=2=K: (11)

Clearly, under the null hypothesis (2) we should have VRðKÞ ¼ Id. Under the generic (sta-

tionary) alternative hypothesis we have

VR Kð Þ ¼ I þ
XK�1

j¼1

1� j

K

� �
R jð Þ þ R jð Þ>
� �

; (12)

which is a symmetric matrix. The off-diagonal elements should be zero under the null hy-

pothesis of no predictability. Both representations (11) and (12) can be used as the basis for

estimation.8

An alternative multivariate normalization is given by

VRaðKÞ ¼ varðXtðKÞÞvarðXtÞ�1=K;

which can likewise generically be written

VRaðKÞ ¼ I þ
XK�1

j¼1

1� j

K

� ��
RLðjÞ þ RRðjÞ>

�
: (13)

This has a regression interpretation, see Chitturi (1974) and Wang (2003, p. 62). Note that

VRðKÞ ¼ I if and only if VRaðKÞ ¼ I: We shall not say anything further about this quantity

VRaðKÞ. Some discussion is given in the working paper version of the paper.

8 One can interpret the variance ratio matrix as a (scalar) affine transformation of the least squares

closest value of R in an approximating model for the autocorrelations of the form: RðjÞ ¼ 1� j
K

� �
R; j ¼ 1; . . . ; K andRðjÞ ¼ 0 for j > K :
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A third quantity is the diagonally normalized variance ratio

VRdðKÞ ¼ D�1=2varðXtðKÞÞD�1=2=K (14)

¼ Rdð0Þ þ
XK�1

j¼1

1� j

K

� �
ðRdðjÞ þ RdðjÞ>Þ; (15)

where Rdð0Þ ¼ D�1=2Cð0ÞD�1=2 is the d�d contemporaneous correlation matrix. Under

the null hypothesis that the series is uncorrelated, we should have VRdðKÞ ¼ Rdð0Þ the

contemporaneous correlation matrix, whose off-diagonal elements are unrestricted by the

null hypothesis. The diagonal elements of VRdðKÞ correspond to the univariate variance

ratio statistics, while the off-diagonal elements provide information about the cumulative

cross-dynamics between the assets. Note that if VRðKÞ ¼ I; then VRdðKÞii ¼ 1 for all i, but

not vice versa. This suggests that if one rejects a univariate test then one would reject the

multivariate test but not necessarily vice versa. Specifically, suppose that Xt are i.i.d. but

X1t ¼ X2;t�1 then the univariate tests would fail but the multivariate one would not.

2.2 One-Sided Variance Ratios

In the univariate case, the variance ratio process and the autocorrelation function contain

the same information and one can recover the autocorrelation function from the variance

ratio function. This is not so in the multivariate case because VRðKÞ and VRdðKÞ are both

symmetric matrices whereas the autocorrelation function Rd(j) is not necessarily symmet-

ric. In fact, one can only recover Rdð�Þ þ Rdð�Þ> or Rð�Þ þ Rð�Þ> from the variance ratio

functions VRdð�Þ and VRð�Þ: This means that information about lead lag relations are elim-

inated. Instead we propose the following quantities:

VRþðKÞ ¼ I þ 2
XK�1

j¼1

1� j

K

� �
RðjÞ ; VRdþðKÞ ¼ Rdð0Þ þ 2

XK�1

j¼1

1� j

K

� �
RdðjÞ;

and the negative counterparts VR�ðKÞ ¼ VR>þðKÞ and VRd�ðKÞ ¼ VRd>þðKÞ; which have the

property that: VRðKÞ ¼ ðVRþðKÞ þ VR>þðKÞÞ=2 and VRdðKÞ ¼ ðVRdþðKÞ þ VRd>þðKÞÞ=2:
One can compare the two statistics, VRdþðKÞ; VRd�ðKÞ; to quantify the asymmetry in lead lag

effects.

2.3 Univariate Parameters of Interest

We discuss here some univariate parameters of interest both for statistical purposes and

economic interpretability.

2.3.1 Trace and determinant

The determinant and trace are commonly used univariate functions of covariance matrices

that feature in a lot of LR testing literature, see for example, Szroeter (1978). The trace stat-

istic is widely used to capture the average effect of many individual variance ratios, see for

example Table 2.3 in Lo and MacKinlay (1999), and Castura et al. (2010). The

Generalized Variance Ratio (Anderson, 2003) statistic would be

det
�
VRðKÞ

�
¼

det
�
RðKÞ=K

�
det ðRÞ ¼

det
�
RðKÞ

�
Kddet ðRÞ :
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Cho and White (2014) Lemma 1 says that VRðKÞ ¼ I if and only if det
�
VRðKÞ

�
¼ 1 and

tr
�
VRðKÞ

�
¼ d; so from a statistical point of view these quantities capture the meaning of

the null hypothesis.

2.3.2 Eigenvalues

Let k1ðKÞ ¼ kmax ðKÞ� � � � �kdðKÞ ¼ kmin ðKÞ denote the eigenvalues of VRðKÞÞ arranged in

decreasing order. Under the null hypothesis, kjðKÞ ¼ 1; j ¼ 1; . . . ;d; but under the alterna-

tive hypothesis they can take any non-negative values. These quantities give univariate

measures of the predictability obtainable within the series as we next show. Consider a

portfolio of assets with fixed weights w 2 R
d: Denoting VRKðztÞ by the univariate variance

ratio of the scalar series zt; and letting ~w ¼ R1=2w and Yt ¼ R�1=2Xt, we have

VRKðw>XtÞ ¼ VRKðw>R1=2R�1=2XtÞ ¼ VRKð ~w>YtÞ ¼
~w>VRðK; YtÞ ~w

~w> ~w

¼ ~w>VRðK; XtÞ ~w
~w> ~w

�k1ðVRðK; XtÞÞ:

This follows because VRðK; XtÞ ¼ VRðK; R�1=2XtÞ ¼ VRðK; YtÞ: This says that the largest

eigenvalue of the variance ratio matrix is an upper bound on the univariate variance ratio

of any portfolio with fixed ex post weights. Likewise, the smallest eigenvalue of the vari-

ance ratio matrix provides a lower bound on the variance ratio of any portfolio with fixed

weights. The weights that achieve it are given by the corresponding rescaled eigenvectors of

the variance ratio matrix. Compare with Lo and MacKinlay (1999, p. 258). The portfolio

that gives minimal predictability corresponds to the eigenvalue kjðKÞ that is closest to one.

2.3.3 Global minimum variance

The variance ratio matrix can also tell us about other portfolios constructed from the

underlying assets. The variance of the portfolio w>XtðKÞ is w>RðKÞw: The global min-

imum variance portfolio weights are wmvðKÞ ¼ RðKÞ�1i=i>RðKÞ�1i; which results in global

minimum variance 1=i>RðKÞ�1i: By plotting this as a function of K one sees the variation of

the least risk portfolio by horizon. This comparison does not depend on the matrix R so if

we consider the normalized returns YtðKÞ ¼ K�1=2R�1=2ðXtðKÞ � KlÞ then the variance of

w>YtðKÞ is w>R�1=2RðKÞR�1=2w=K ¼ w>VRðKÞw and the best portfolio is wmvðKÞ ¼ VR
ðKÞ�1i=i>VRðKÞ�1i with resulting variance

GMVðKÞ ¼ 1

i>VRðKÞ�1i
: (16)

Under the null hypothesis, this should be equal to 1=d for all K.

2.3.4 Off-diagonal elements

We are also interested in several other univariate parameters based on VRdþðKÞ: First, the

diagonal elements of VRdþðKÞ correspond to the univariate variance ratio statistics.

Second, the off-diagonal elements of VRdþðKÞ provide the information about the

directional lead lag pattern between the assets. Third, the differences between two corres-

ponding off-diagonal elements of VRdþðKÞ indicate the asymmetry in the lead lag relation-

ships between the assets. If one of the assets is a common factor portfolio, the
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corresponding off-diagonal elements of VRdþðKÞ and VRd�ðKÞ give an idea of the dy-

namic comovement of the asset with the common factor portfolio, which could be used in

cross-sectional regression analysis.

Another parameter of interest is the average of the off diagonal elements of VRdðKÞ;
which is

CSðKÞ ¼ 2

dðd � 1Þ
Xd�1

i¼1

Xd

j¼iþ1

VRdijðKÞ ¼
1

dðd � 1Þ i>VRdðKÞi� trðVRdðKÞÞ
� 	

; (17)

see Solnik (1991) and Bailey, Kapetanios, and Pesaran (2012) who consider the case of

K¼ 0 and large d. Under the null hypothesis, CSðKÞ ¼ CSð1Þ for all K. This measures in

some average sense the cross dependence at different lags.

2.3.5 Dynamic momentum/contrarian portfolio profit

We consider a generalization of the Lo and MacKinlay (1990) type arbitrage portfolio con-

trarian strategies. Specifically, consider the following portfolio weights applied to the nor-

malized investments Zt ¼ D�1=2ðXt � lÞ

~witðKÞ ¼ 6
2

dðK� 1Þ
XK�1

j¼1

1� j

K

� �
ðZi;t�j � Zt�jÞ; (18)

where Zs ¼
Xd

i¼1
Zis=d ¼ i>Zs=d so that

Xd

i¼1
~witðKÞ ¼ 0: This strategy considers all the

“signals”: Zi;t�1 � Zt�1; . . . ;Zi;tþ1�K � Ztþ1�K; and combines them with weights according

to their lag. If the 6 factor is positive, this can be considered a momentum strategy, while if

it is negative, this can be considered a contrarian strategy. The total investment of the strat-

egy at time t is ItðKÞ ¼
Xd

i¼1
j ~witðKÞj=2: The expected profit of this strategy is

p6 ðKÞ¼E ~w>t ðKÞZt ¼ 6
2

dðK�1Þ
XK�1

j¼1

1� j

K

� �
E½ðZt�j�Zt�jiÞ>Zt�

¼ 6
2

d2ðK�1Þ
XK�1

j¼1

1� j

K

� �
E½i>Zt�jZ

>
t i�� 6

2

dðK�1Þ
XK�1

j¼1

1� j

K

� �
E½Z>t�jZt�

" #

¼ 6
2

d2ðK�1Þ i
>
XK�1

j¼1

1� j

K

� �
RðjÞ>i� 6

2

dðK�1Þ tr
XK�1

j¼1

1� j

K

� �
RðjÞ

 !" #
¼ 6

1

d2ðK�1Þ i
>VRdðKÞi� 6

1

dðK�1Þ tr
�
VRdðKÞ

�
 �
6

1

K�1
1� 1

d2
i>Rð0Þi

� �
¼ 6

2

d2ðK�1Þ
Xd�1

i¼1

Xd

j¼iþ1

½VRdijðKÞ�qij�6
d�1

d2ðK�1Þ tr
�

I�VRdðKÞ
�
:

Under the martingale hypothesis, p6 ðKÞ¼ 0 for all K. This quantity weights diagonal de-

partures and off diagonal departures similarly. If p6ðKÞ>0; then the strategy should make

money (in the absence of transaction costs).

3 ESTIMATION OF VARIANCE RATIO MATRICES

Suppose that we observe the return vectors fXt; t ¼ 1; . . . ;Tg equally spaced in discrete

time. We may estimate the variance ratios in several ways, for example by estimating the
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sample covariance matrix of the K frequency data and the original observations and then

forming the ratio.9 We can alternatively explicitly use the population connection with the

autocorrelation matrix process in Equation (12) for example.

We estimate the population quantities by sample averages:

X ¼ 1

T

XT

t¼1

Xt; bC jð Þ ¼ 1

T

XT

t¼jþ1

ðXt�XÞðXt�j�XÞ>; j¼ 0;1;2; . . .

bR Kð Þ ¼ 1

T

XT

t¼K

�
XtðKÞ�KX

��
XtðKÞ�KX

�>
bR ¼ bCð0Þ; bD ¼ diag½bCð0Þ�; bRðjÞ ¼ bR�1=2bCðjÞbR�1=2

; bRdðjÞ ¼ bD�1=2bCðjÞ bD�1=2
;

dVR Kð Þ ¼ Iþ
XK�1

j¼1

1� j

K

� � bR jð Þþ bRðjÞ>� �
; dVRd Kð Þ ¼ Iþ

XK�1

j¼1

1� j

K

� � bRd jð Þþ bRdðjÞ>
� �

dVR&
Kð Þ ¼ bR�1=2bR Kð ÞbR�1=2

=K; dVRþ Kð Þ ¼ Iþ2
XK�1

j¼1

1� j

K

� �bR jð Þ:

Note that by construction dVRðKÞ; dVRdðKÞ; and dVR&
ðKÞ are symmetric and positive

semidefinite.

We may also calculate the univariate quantities by analogy. For example, define the esti-

mated ordered eigenvalues bk1ðKÞ� � � � �bkdðKÞ of dVRðKÞ:
4 ASYMPTOTIC THEORY AND INFERENCE

4.1 Regularity Conditions

We present two alternative non-nested sets of sampling assumptions, which we denote by A

and MH�: Assumptions A center on the martingale difference assumption and require sta-

tionarity and ergodicity. The theory makes use of arguments presented in Hall and Heyde

(1980), and applied in Guo and Philips (2001); see Escanciano and Lobato (2009) for a re-

view of the literature surrounding martingale-based testing. Assumptions MH� are modi-

fied versions of the assumptions in Lo and MacKinlay (1988) adapted to the multivariate

case and corrected for what appears to be an error; these conditions do not require statio-

narity although certain averages need to converge. Most treatments of variance ratios em-

ploy the Lo and MacKinlay (1988) assumption H, which includes a mixing condition and

some further restriction on the structure of the higher moments (their condition H4), which

purportedly implies that the sample autocorrelations are asymptotically independent.10 In

the multivariate context, their assumption H4 would be that

E½ ~Xit
~Xjt

~Xkr
~Xls� ¼ 0 for all i; j;k; l; t; and r; s with r < s < t: (19)

This assumption rules out leverage type effects, for example, E½ ~X2

itj ~Xir
~Xis� 6¼ 0, which may

be important for some assets, see Nelson (1991). This assumption is not necessary for the

9 As pointed out by Hillman and Salmon (2007) with unequally spaced data, this approach can yield

a “natural” variance ratio by classifying observations on the duration since the previous trade.

10 Some papers including Whang and Kim (2003) dispense with this latter assumption but maintain

the mixing and moment assumption.
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distribution theory; imposing it (along with other conditions) would simplify the asymp-

totic variance to be single finite sums rather than double finite sums, but in practice this is

not a big issue. We shall dispense with this assumption below, but we shall make a further

assumption that appears to have been omitted by mistake from Lo and MacKinlay (1988).

Namely, implicit in their analysis is that ~Xt
~Xt�j is uncorrelated with ~Xs

~Xs�j; but this does

not follow from ~Xt being an uncorrelated sequence (although it does follow if ~Xt were a

martingale difference sequence).

Define for j; k ¼ 0; 1; 2; . . . :

Njk ¼ lim
T!1

1

T

XT

t¼1

E½ð ~Xt�j
~X
>
t�k 	 ~Xt

~X
>
t Þ�; cj;K ¼ 2 1� j

K

� �

QðKÞ ¼
XK�1

j¼1

XK�1

k¼1

cj;Kck;KðR�1=2 	 R�1=2ÞNjkðR�1=2 	 R�1=2Þ

QdðKÞ ¼
XK�1

j¼1

XK�1

k¼1

cj;Kck;KðD�1=2 	D�1=2ÞNjkðD�1=2 	D�1=2Þ:

We shall assume that the matrices R; Q(K) and Qd(K) are strictly positive definite. We con-

sider the following sets of alternative assumptions:

Assumption A.:

A1. The process ~Xt is a stationary ergodic Martingale Difference sequence;

A2. The process ~Xt has finite fourth moments, that is, for all i; j;k; l;

E½j ~Xit
~Xjt

~Xkt
~Xltj��C < 1.

ASSUMPTION MH*:

MH1. (i) For all t, ~Xt satisfies E ~Xt ¼ 0; E½ ~Xt
~X
>
t�j� ¼ 0 for all j 6¼ 0; (ii) for all t, s with

s 6¼ t and all j;k ¼ 1; . . . ;K; E½ ~Xt
~X
>
t�j 	 ~Xs

~X
>
s�k� ¼ 0.

MH2. ~Xt is a-mixing with coefficient aðmÞ of size r=ðr� 1Þ, where r> 1, such that for

all t and for any j�0, there exists some d > 0 for which supt

Ej ~Xit
~Xk;t�jj2ðrþdÞ < D < 1 for all i; k ¼ 1; . . . ; d.

MH3. For all j, k, the following limits exist: lim T!1
1
T

XT

t¼1
E½ ~Xt

~X
>
t � ¼: R < 1 and

MH4. lim T!1 T�1
XT

t¼1
E½ ~Xt�j

~X
>
t�k 	 ~Xt

~X
>
t � ¼: Njk < 1:

Chen and Deo (2006) work with martingale difference sequences and also assume a no

leverage condition. Francq, Roy, and Zakoian (2005) assume both stationarity and mixing

in their analysis of Box-Pierce statistics. In MH�, we include the additional condition (ii)

E½ ~Xt
~X
>
t�j 	 ~Xs

~X
>
s�k� ¼ 0, for all s 6¼ t and all j;k ¼ 1; . . . ;K; this is not a consequence of

Equation (2) in general. Without this additional assumption the asymptotic variance of the

variance ratio statistics are much more complicated and hard to estimate, involving the se-

lection of a bandwidth parameter. Condition MH1(ii) is satisfied automatically under the

martingale hypothesis, which itself is consistent with any kind of nonlinear multivariate

(semi-strong) GARCH process. In assumption A, we have assumed strict stationarity,

whereas this is not required in MH� (although certain sums have to converge in MH3,
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which would rule out explosive nonstationarity). In MH�, we have assumed higher mo-

ments depending on the mixing decay rate, whereas for assumption A only four moments

are required and no explicit mixing conditions are employed. It should be noted therefore

that the conditions A and MH� are non-nested. We further note that under the assumption

that returns are i.i.d. (referred to as RW1 in Campbell, Lo, and MacKinlay, 1997), the uni-

variate versions of the CLTs below are valid under only second moments, Brockwell and

Davis (1991, Theorem 7.2.2), due to the self-normalization present in the sample autocor-

relations. For similar reasons, condition MH3 may not be strictly necessary in that mildly

trending moments may still permit a CLT at the same rate due to the cancellation of numer-

ator by denominator.

We remark that this theory is predicated on the existence of fourth moments, which

may be problematic for some financial time series. Provided only the population variance

exists, the matrix normalized variance ratio converges in probability to the identity, but

may have a non-standard limiting distribution and a slower rate of convergence to it,

Phillips and Solo (1992) and Mikosch and St�aric�a (2000).11 Even if the population variance

does not exist, the sample variance ratio may converge, due to the self-normalization, but

one can expect a different scaling law. For example, if the return process is i.i.d. with a sym-

metric stable distribution with parameter a 2 ½1; 2�; then the sample variances scale accord-

ing to K2=a; that is, as T !1; dVRðKÞ ! Kð2�aÞ=a for all K. This is a similar asymptotic

behavior to what is found under the bubble process of Section 5.2 when a ¼ 1. Wright

(2000) has proposed variance ratios based on signs and ranks that are robust to heavy tailed

distributions, although require stronger assumptions elsewhere.

4.2 Finite/Fixed Horizon Limiting Distribution Theory

We next present our main results. In this subsection, we consider the finite K framework.

THEOREM 1: Suppose that either Assumption A or MH� holds. Then, as T !1:ffiffiffiffi
T
p

vec
�dVRþðKÞ � Id

�
) Nð0;QðKÞÞffiffiffiffi

T
p

vec
� dVRdþðKÞ � cRdð0Þ

�
) Nð0;QdðKÞÞ:

It follows that for any vector x; x>vecðdVRþðKÞ � IdÞ is asymptotically normal with

mean zero and variance x>QðKÞx=T: Limiting distributions for smooth functions of the

variance ratio matrices can be obtained by the delta method.

For the ordered eigenvalues, we employ a different approach, as they are not smooth

functions of the variance ratio matrix under the null hypothesis. Specifically, we use

Eaton and Tyler (1991, Theorem 3.2) where it is shown that if the random symmetric

11 For stationary univariate linear processes, the sample autocorrelations can be root-T consistent

and asymptotically normal under only second moment assumptions, Brockwell and Davis (1991,

Theorem 7.2.2), but this result does not hold for nonlinear processes like GARCH, nor for multivari-

ate linear processes.
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matrix
ffiffiffiffi
T
p
ðdVRðKÞ � IdÞ converges in distribution to a matrix random variable, denoted U;

then with id ¼ ð1;1; . . . ; 1Þ> ffiffiffiffi
T
p �

uðdVRðKÞÞ � id

�
) uðUÞ; (20)

where uðdVRðKÞÞ and uðUÞ are d � 1 vectors of ordered eigenvalues bk j 2 uðdVRðKÞÞ and

k�j 2 uðUÞ, respectively. It follows for example thatffiffiffiffi
T
p
ðbkmax � 1Þ ) k�max ðUÞ;

whose distribution can be computed by simulation.

4.3 Standard Errors and Test Statistics

From the expressions in Theorem 1, we can obtain pointwise confidence intervals for scalar

functions of the matrices dVRðKÞ or dVRdðKÞ � cRdð0Þ or dVRaðKÞ: Let

bNjk ¼
1

T

XT

t¼max fj;kgþ1

Xt�j �XÞ Xt�k �XÞ> 	 Xt �XÞ Xt �XÞ>
����

(21)

bQðKÞ ¼XK�1

j¼1

XK�1

k¼1

cj;Kck;K
bR�1=2 	 bR�1=2
� �bNjk

bR�1=2 	 bR�1=2
� �

bQdðKÞ ¼
XK�1

j¼1

XK�1

k¼1

cj;Kck;K
bD�1=2

	 bD�1=2
� �bN jk

bD�1=2
	 bD�1=2

� �
;

(22)

and bSðKÞ ¼ Dþn
bQðKÞDþ>n and cSdðKÞ ¼ Dþn

dQdðKÞDþ>n ; where Dþn is the Moore–Penrose

pseudoinverse of the duplication matrix, Magnus and Neudecker (1980). Specifically, the

asymptotic variance of dVRdiiðKÞ can be estimated by

bQdiiiiðKÞ ¼
1br2
ii

XK�1

j¼1

XK�1

k¼1

cj;Kck;K
bN jk;iiii

bN jk;iiii ¼
1

T

XT

t¼max fj;kgþ1

Xit�j �Xi

� �
Xit�k �Xi

� �
Xit �Xi

� �2

brii ¼
1

T

XT

t¼1

Xit �Xi

� �2
:

(23)

Note that under the Lo and MacKinlay (1988) condition H4 (i.e., Equation (19)) we have

Njk ¼ 0 for j 6¼ k; so that the asymptotic variance in Theorem 1 simplifies, a little. The com-

monly used asymptotic variance matrix is

bQdLMðKÞ ¼
XK�1

j¼1

c2
j;K

bD�1=2
	 bD�1=2

� �bN jj
bD�1=2

	 bD�1=2
� �

; (24)

whose diagonal elements can be compared with Equation (23): they are the same except

that bN jk;iiii ¼ 0 for j 6¼ k. In the i.i.d. case, we further have Njj ¼ R	 R and:

QiidðKÞ ¼
XK�1

j¼1

c2
j;KId2 ; dQd iidðKÞ ¼

XK�1

j¼1

c2
j;KðcRdð0Þ 	 cRdð0ÞÞ: (25)

In the scalar case, both these quantities are nuisance parameter free.
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As we show in the application, the standard errors derived from Equations (22), (24),

and (25) can be quite different; although there is no necessary ordering, generally speaking

the standard errors from bQðKÞ are larger than the standard errors from bQLMðKÞ; which in

turn are larger than the standard errors from the i.i.d. special case bQiidðKÞ:
The standard errors for univariate quantities of interest can be obtained from Equation

(22). Let sf ¼ f ðvecðVRþðKÞÞÞ and sdf ¼ f ðvecðVRdþðKÞÞÞ be scalar parameters of inter-

est, where f is a continuously differentiable function with non-zero gradient, and let ef ¼ r
f ðvecðVRþðKÞÞÞ; edf ¼ rf ðvecðVRdþðKÞÞÞ 2 R

d2

denote the gradients of the functions at

the true value. Let Qf ðKÞ ¼ e>f QðKÞef and Qdf ðKÞ ¼ e>f QdðKÞef . Then, bQf ðKÞ ¼ e>f
bQðKÞ

ef and dQdf ðKÞ ¼ e>f
dQdðKÞef are consistent asymptotic variance estimators for bsf and bsdf ,

respectively. For example, define the column vectors: b that is 0 at the
�
ðl � 1Þðd þ 1Þ þ 1

�
th entries ðl ¼ 1; . . . ; dÞ and 1 otherwise; i is a conformable column vector of ones; c is a

column vector that is ð1� dÞ=ðd2ðK� 1ÞÞ at ððl � 1Þðd þ 1Þ þ 1Þth entries, and is 1=ðd2ðK
�1ÞÞ at other entries; and d ¼ vechðIdÞ. Then, specifically, let

bQCSðKÞ ¼
1

d2ðd � 1Þ2
b>dQdðKÞb

bQGMVðKÞ ¼ d�4i>bSðKÞi;bQpðKÞ ¼ c>dQdðKÞcbQtrðKÞ ¼ d>bSðKÞd ¼ bQdet ðKÞ:

We next define some test statistics. Let f be any continuously differentiable function with

nonzero gradient (e.g., CS; det; GM; tr; or pÞ; and let

Zf ðKÞ ¼
ffiffiffiffi
T
p � bQf ðKÞ

��1=2

½f ðvecðdVRþðKÞÞÞ � f ðvecðVRþðKÞÞÞ� (26)

Zdf ðKÞ ¼
ffiffiffiffi
T
p � bQdf ðKÞ

��1=2

½f ðvecð dVRdþðKÞÞÞ � f ðvecðcRdð0ÞÞÞ� (27)

WFðKÞ ¼ Tvech
�dVRðKÞ � I

�>bSðKÞ�1vech
�dVRðKÞ � I

�
(28)

WdFðKÞ ¼ Tvech
� dVRdðKÞ � cRdð0Þ

�>cSdðKÞ�1vech
� dVRdðKÞ � cRdð0Þ

�
: (29)

COROLLARY 1: Suppose that either Assumption A or MH� holds. Then (for each fixed K)

the estimator bQðKÞ is weakly consistent for Q(K) (likewise, bQdðKÞ are weakly consistent

for QdðKÞÞ, that is, as T !1,

bQðKÞ!P QðKÞ

Zf ðKÞ;Zdf ðKÞ ) Nð0; 1Þ

WFðKÞ;WdFðKÞ ) v2ðdðd þ 1Þ=2Þ:

In the application, we make use of a bias correction method based on asymptotic expan-

sions (under the i.i.d. assumption), which may give better performance for long lags. A

number of alternative inference methods such as self-normalization, or block bootstrap and
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subsampling have been suggested to accommodate the more general uncorrelatedness as-

sumption that allows E½ ~Xt
~X
>
t�j 	 ~Xs

~X
>
s�k� 6¼ 0 for some s 6¼ t. The readers are directed to

Lobato (2001) and Whang and Kim (2003) for description of these methods.

4.4 Increasing Horizon Limiting Distribution Theory

It has been reported in the literature that inferences based on the asymptotic theory of the

variance ratio statistic become unreliable in finite samples when the horizon K is large rela-

tive to the sample size T, see Lo and MacKinlay (1989). In view of this practical issue,

Richardson and Stock (1989) considered the framework in which K ¼ KðTÞ and

K=T ! d < 1, and showed that the limiting distribution is a function of Brownian motion.

However, Deo and Richardson (2003) pointed out the inconsistency of the univariate vari-

ance ratio test under this particular restriction against some important mean reverting alter-

natives. Consequently, Chen and Deo (2006) studied an alternative setting where K is set to

increase slower so that K/T tends to zero. Along with the ergodic martingale difference as-

sumption, they imposed a set of strong conditions on cross-moments (Assumption A3)

including the no-leverage condition, and some mixing-type conditions (Assumptions A5

and A6) that imply asymptotic independence of the process.

In this section, we investigate the increasing K asymptotics in the multivariate frame-

work. Although a d-dimensional analog of the conditions assumed in Chen and Deo (2006)

can be adopted, we shall consider a different set of conditions including stationarity in

Assumption A1 (but with a slightly higher moment condition). This is to be consistent with

the previous fixed K theory, and to allow simple derivations under mild assumptions.

ASSUMPTION A0: The process ~Xt is a stationary ergodic Martingale Difference sequence

having finite 4þ d moments, that is, Ej ~Xitj4þd�C < 1 for some d > 0 for all i.

ASSUMPTION T: The horizon K!1 as T !1 and K=T ! 0.

ASSUMPTION S: The following double sum is finite:
X1

a¼�1

X1
b¼�1 jjpqrl

ða; b;0; 0Þj < 1 for all p;q; r; l�d, where jpqrlðt1; t2; t3; t4Þ is the cumulant of fourth-order

between ð ~Xpt1
; ~Xqt2

; ~Xrt3
; ~Xlt4

Þ.

Along with stationarity, Assumption S guarantees the existence and positive definiteness

of the matrix limits Qð1Þ ¼ lim K!1 K�1QðKÞ and Qdð1Þ ¼ lim K!1 K�1QdðKÞ, both of

which will turn out to have simple forms as we will see below. Indeed, summability of the

cumulants is a common assumption in the time series literature, see Rosenblatt (1985). The

weak condition regulates the dependence structure of the process, and is implied by a mild

a -mixing and moment condition (strictly higher than 4 as we shall assume below) as shown

in Andrews (1991, Lemma 1), although it is stronger than ergodicity. For example,

Assumption MH2 with size of mixing strengthened to 3r=ðr� 1Þ is sufficient for summabil-

ity of cumulants under stationarity. Some relevant discussions can be found in the recent

paper Shao and Wu (2007), where an alternative sufficient condition is given in terms of

the notion of geometric moment contraction.

We derive the limiting distribution under the stationary ergodic martingale difference

assumption. Note that one could alternatively work with mixing (Assumption MH�) or
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near epoch dependence, for example, to obtain a similar result, but we shall not proceed to

this direction in this paper.

THEOREM 2: Suppose that Assumptions A0, T, and S hold. Then, as T !1 :ffiffiffiffi
T

K

r
vec
�dVRðKÞþ � Id

�
) N 0;

4

3
J

� �
ffiffiffiffi
T

K

r
vec
�dVRðKÞþ � Id

�
) N 0;

4

3
Jd

� �
;

and

Zf ðKÞ;Zdf ðKÞ ) Nð0; 1Þ

WFðKÞ;WdFðKÞ ) v2ðdðd þ 1Þ=2Þ;

where J is the identity matrix of dimension d2 � d2, and Jd ¼ ðD�1=2 	D�1=2Þ
ðR	 RÞðD�1=2 	D�1=2Þ is the matrix whose diagonal entries are one.

This says that the inference methods we apply in the finite K case can be carried over to

the increasing K case, at least where K is not too large relative to the sample size.

5 ALTERNATIVE HYPOTHESES

There are many plausible alternative hypotheses to the null hypothesis (2), and it is not pos-

sible in general to have power against all such departures. We can understand a little bit

better the type of alternatives against which the variance ratio has power by looking at

Equation (12). We have VRðKÞ ¼ I if and only if

XK�1

j¼1

cj;K

�
RðjÞ þ RðjÞ>

�
¼ 0:

This says that the test will have power against alternatives for which the Bartlett-weighted

autocorrelations do not sum identically to zero. This seems like a reasonable class of alter-

native, because if the autocorrelations change sign enough that they cancel out, this hardly

seems like a propitious setting to make excess returns from a trading strategy that treats

these autocorrelations as signals. One wants not just departures from zero but some kind of

reliable direction of dependence on which to bet. By contrast, the Box-Pierce statistic will

also pick up highly oscillatory variation in the autocorrelations, which one might prefer to

exclude from consideration.

We look in detail at several alternative models in this section. In general, they yield a

prediction of the form

RTðKÞ ¼ KRþ DðK;TÞ; (30)

where DðK;TÞ is a symmetric matrix such that RTðKÞ > 0.

5.1 Local Alternatives

We first extend the arguments presented by Faust (1992) to the multivariate case and show

that a trace test will be optimal against a certain class of alternatives. The type of mean
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reversion that the test is best at detecting will be shown to be a special case of vector

autoregressive processes of order K – 1. The main idea is to find a statistic that is asymptot-

ically equivalent to the LR statistic, since in such a case the test based on that statistic will

possess the same local large-sample optimality properties of LR tests, see Engle (1984).

Below we show that the statistic based on trðdVRðKÞÞ (defined formally below) is optimal

(under normality) for testing the null hypothesis of no predictability/serial correlation,

against the alternative hypothesis that each marginal process fXjtgt; j ¼ 1; . . . ; d belongs to

what is called the /-best class proposed by Faust (1992). The /-best class is a particular

class of ARðK� 1Þ models, and is defined as the set of those having AR polynomials qqðLÞ
that satisfy

qqðzÞqqðz�1Þ ¼ að1þ q/ðzÞ/ðz�1ÞÞ (31)

for some constants q and a > 0, and z inside the unit circle; the coefficients for the moving

average filter /ðLÞ are /j ¼ þ1 for all j ¼ 0; . . . ;K� 1: From the definition we see that

under the alternative hypothesis, fXtg essentially belongs to a (particular) class of vector

autoregressive process VARðK� 1Þ. We note that when q¼0 the process is a white noise.

Denote by X the T� d matrix of sample observations. Then formally, the null and alterna-

tive hypotheses can be written as

H0 : X 
 N T
d ðil>; IT 	 RÞ ½Uncorrelatedness�

H1 : X 
 N T
d ðil>;Rq� 	 RÞ ½0/�best0 temporal dependence �;

where Rq� refers to the variance–covariance matrix of the /-best class process with the

index of the process q ¼ q� > 0. The notation N T
d stands for a matrix normal variable;

each matrix (separated by the Kronecker product) in the variance represents the contribu-

tion from cross-sectional and temporal sides, respectively. So essentially, this is a one-sided

test of the index q being zero versus q being a strictly positive constant. Examination of

the local large-sample optimality is done by letting the index q� ¼ q�ðTÞ ¼ d=
ffiffiffiffi
T
p

in the al-

ternatives, where d determines the direction to which the test departs from the null

hypothesis.

Theorem 3: Suppose that the data are normally distributed. Then, the trace test is lo-

cally most powerful invariant against alternatives in the /-best class of the form

q�T ¼ d=
ffiffiffiffi
T
p

.

It may be possible to characterize the class of alternatives against which other tests, such

as the determinant test, are optimal, but we leave this for future research.

The trace test, while optimal against the specific class above, may have zero power

against some alternatives, as we next discuss. Suppose that DðK;TÞ ¼ DðKÞ=
ffiffiffiffi
T
p

; then

ffiffiffiffi
T
p �

VRðKÞ � I
�
¼ 1

K
R�1=2DðKÞR�1=2;

ffiffiffiffi
T
p �

VRdðKÞ � Rdð0Þ
�
¼ 1

K
D�1=2DðKÞD�1=2:

Provided DðKÞ is strictly definite, some tests based on these matrices will have positive

power against this alternative. On the other hand, in some cases, the power may be zero.

Specifically, suppose we take the trace test applied to the diagonally normalized variance
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ratio matrix, that is, compare trðdVRdðKÞÞ � d (c.f. Castura et al., 2010) with the critical

values from its normal limit given above, then if DðKÞ is of the form

DijðKÞ ¼
dðKÞ if i 6¼ j

0 if i ¼ j

(

for some nonzero dðKÞ; then this particular test will have zero power.

5.2 Multivariate Fads Model

We consider an alternative to the efficient market hypothesis (2), which allows for tempor-

ary mispricing through fads but assures that the rational price dominates in the long run.

Consider the multivariate fads model for log prices:

p�t ¼ lþ p�t�1 þ et (32)

pt ¼ p�t þ gt; (33)

where et is i.i.d. with mean zero and variance matrix Xe; while gt is a stationary weakly de-

pendent process with unconditional variance matrix Xg; and the two processes are mutually

independent. It follows that the observed return satisfies

Xt ¼ pt � pt�1 ¼ lþ et þ gt � gt�1: (34)

This is a multivariate generalization of the scalar Muth (1960) model, which was also

adopted in Poterba and Summers (1988). It allows actual prices p to deviate from funda-

mental prices p� and only in the short run through the fad process gt: This process is a

plausible alternative to the EMH. If gt were i.i.d., then Xt would be (to second order) an

MA(1) process, which is a structure implied by a number of market microstructure issues

(Hasbrouck, 2007). In this case,

VRðKÞ ¼ I þ ð1� 1

K
ÞðRð1Þ þ Rð1Þ>Þ ¼ I � 2ð1� 1

K
ÞðXe þ 2XgÞ�1=2XgðXe þ 2XgÞ�1=2;

and likewise for VRdðKÞ: In general, however, gt might have any type of weak dependence

structure.

We next derive a restriction on the long-run variance ratio statistic that reflects the pres-

ence of fads. We do not restrict the fads process, and so can only obtain long-run

implications.

THEOREM 4: Suppose that the multivariate fads model (32)–(33) holds and suppose that

covðgtþj; gtÞ ! 0 as j!1. Then, VRð1Þ ¼ lim K!1 VRðKÞ ¼ I þ
X1

j¼1
ðRðjÞ þ RðjÞ>Þ

exists. Further suppose that Xgð1Þ > 0: Then,

VRð1Þ < Id

in the matrix partial order sense. Likewise, VRdð1Þ ¼ lim K!1 VRdðKÞ exists, and

VRdð1Þ < Rdð0Þ:

This result generalizes the existing results for the scalar fads process, which amount to VR
diið1Þ�Rdiið0Þ for i ¼ 1; . . . ;d: In Theorem 4, we obtain stronger constraints on the off
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diagonal elements of VRdð1Þ and VRð1Þ: Note that we also obtain GMVðKÞ !
GMVð1Þ > 1=d as a corollary.

We consider what happens to the long horizon sample variance ratio statistic under the

fads model. We will consider the case where K!1 as T !1 such that K=T ! 0 (in con-

trast with the framework of Richardson and Stock, 1989). The consistency follows from

the theory for the long-run variance ratio, Parzen (1957), Andrews (1991), and Liu and Wu

(2010). We adopt the framework of Liu and Wu (2010) and suppose that

Xt ¼ Wð. . . ; et�1; etÞ;

where et are i.i.d. random vectors of length p�d; and W : Rp � R
p � � � � ! R

d: This includes

a wide range of linear and nonlinear processes for gt; et. Then define

dt ¼ E½jj
�
Wð. . . ; e0; . . . ; et�1; etÞ �Wð. . . ; e00; . . . ; et�1; etÞ

�
jj�;

where e0t is an i.i.d. copy of et and jj:jj denotes the Euclidean norm.

Assumption B: The vector process Xt is stationary with finite fourth moments and

weakly dependent in the sense that
X1

t¼1
dt < 1:

Theorem 5: Suppose that the multivariate fads model (32)–(33) holds along with

Assumption B, and suppose that K!1 as T !1 such that K=T ! 0: Then,

dVRðKÞ!P VRð1Þ:
Likewise, dVRdðKÞ consistently estimates VRdð1Þ: More generally, we could obtain the

limiting distribution of dVRðKÞ � VRðKÞ under either fixed K or K increasing asymptotics

applying the methods of Liu and Wu (2010), but the limiting variance in either case is going

to be very complicated.

5.3 Bubble Process

Several authors argue that the frequently observed excessive volatility in stock prices may

be attributed to the presence of speculative bubbles. Blanchard and Watson (1982) and

Flood and Hodrick (1986), inter alia, demonstrate in a theoretical framework that bubble

components potentially generate excessive volatility. There is some debate about whether

these constitute rational adjustment to fundamental pricing rules or arise from more behav-

ioral reasons. Recently, Phillips and Yu (2011) and Phillips, Shi, and Yu (2012) have con-

sidered the following class of “bubble processes” for (log) prices pt

pt ¼ lþ pt�11 t < seð Þ þ dT1 se�t�sf

� �
pt�1 þ

Xt

s¼sfþ1

es þ p�sf

0@ 1A1 t > sf

� �
þ et1 t�sf

� �
;

(35)

where p�sf
represents the restarting price after the bubble collapses at time sf, and dT ¼ 1

þc=Ta for a 2 ð0; 1Þ and c > 0: The process is consistent with the EMH during ½1; se� and

½sf ;T� but has an explosive “irrational” moment in the middle. They propose econometric

techniques to test for the presence of a bubble and indeed multiple bubbles. One can
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imagine this model also holding for a vector of asset prices caught up in the same bubble,

so that et is a vector of shocks, the indicator function is applied coordinatewise, and the co-

efficient dT is replaced by a diagonal matrix.

In the Appendix, we show that in the univariate bubble process with nontrivial bubble

epoch (i.e., ðsf � seÞ=T ! s0 > 0), that, as T !1

dVRðKÞ!P K (36)

for all K, so that the variance ratio statistic is greater than one for all K and gets larger with

horizon. Essentially, the bubble period dominates all the sample statistics, and all return

autocorrelations converge to one inside the bubble period, thereby making the ratio equal

to the maximum it can achieve. In the multivariate case, T. Magdalinos (2014, Personal

Communication) has shown that in some special cases, kmax ðdVRðKÞÞ!P K: However, the

multivariate case is more complicated because other eigenvalues may not behave in the

same way.

In practice, rolling window versions of the variance ratio statistics can detect the bubble

period in a similar way to the Phillips, Shi, and Yu (2012) statistics (although they are not

explicitly designed for this purpose and are not optimal for it). Our point here is just that

these two different alternative models generate opposite predictions with regard to the vari-

ance ratio. We will check this empirically below.

5.4 Time Varying Expected Return

We briefly consider a simple statistical model for time varying expected return. This model

could be consistent with rational pricing where the risk premium evolves slowly over time

and has small variation relative to the shocks to risk-adjusted returns. Specifically, suppose

that observed returns are composed of a slowly varying risk premium lt and an i.i.d. shock

et; that is,

Xt ¼ lþ lt þ et; (37)

lt ¼ lt�1 þ gt; (38)

where l0 ¼ ð0; 0; . . . ;0Þ> and gt is an i.i.d. mean zero shock that is “small” relative to et. In

this case, observed returns are nonstationary so we must index populations by T. This speci-

fication is similar to that of equation (7.1.30) of CLM. We establish the following result.

THEOREM 6: Suppose that the model (37)–(38) holds with gt i.i.d. mean zero with

Egtg
>
t ¼ Rg=T > 0 and et i.i.d. mean zero with Eete>t ¼ Re > 0. Then

lim
K!1

K�1 lim
T!1

VRTðKÞ ! Rg
1

2
þ Re

� ��1=2 1

2
Rg Rg

1

2
þ Re

� ��1=2

< Id:

This model gives a similar prediction to the bubble model, except it says that all eigenvalues

should grow linearly with the horizon with a slope less than one.

In the working paper version of this paper we consider several alternative approaches to

capturing time varying expected returns including nonparametric mean model and linear

factor models.
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5.5 Locally Stationary Alternatives

Suppose that Xt ¼ Xt;T can be approximated by a family of locally stationary processes

fXtðuÞ; u 2 ½0; 1�g (Dahlhaus, 1997). For example, suppose that Xt ¼ et þHðt=TÞet�1;

where Hð�Þ is a matrix of smooth functions and et is i.i.d. This allows for zones of departure

from the null hypothesis, say for u 2 U; where U is a subinterval of ½0; 1�; for example, HðuÞ
6¼ 0 for u 2 U. For example, during recessions the dependence structure may change and de-

part from efficient markets, but return to efficiency during normal times. This is consistent

with the Adaptive Markets Hypothesis of Lo (2004, 2005) whereby the amount of ineffi-

ciency can change over time depending on “the number of competitors in the market,

the magnitude of profit opportunities available, and the adaptability of the market

participants”.

Let ~XtðuÞ ¼ XtðuÞ � EXtðuÞ and :

RðuÞ ¼ varðXtðuÞÞ ¼ Eð ~XtðuÞ ~X
>
t ðuÞÞ

DðuÞ ¼ diagfEð ~X
2

1tðuÞÞ; . . . ;Eð ~X
2

dtðuÞÞg

Cðj; uÞ ¼ Eð ~XtðuÞ ~X
>
t�jðuÞÞ:

The sample autocovariances converge, under some conditions, to the integrals of the auto-

covariances, for example, bCðjÞ ! ð1

0

Cðj; uÞdu: Then, define

RðjÞ ¼
�ð1

0

RðuÞdu
��1=2

ð1

0

Cðj; uÞdu
�ð1

0

RðuÞdu
��1=2

:

It follows that under local stationarity

dVRðKÞ!P VRðKÞ ¼ I þ
XK�1

j¼1

1� j

K

� �
ðRðjÞ þ RðjÞ>Þ:

The test will have power against some alternatives where CuðjÞ 6¼ 0 for u 2 U and CuðjÞ ¼ 0

for u 2 Uc: The test will not detect alternatives where VRðKÞ ¼ I but VRðK; uÞ ¼

I þ
XK�1

j¼1
ð1� j

K
ÞðRðj; uÞ þ Rðj; uÞ>Þ 6¼ 0; where Rðj; uÞ ¼ RðuÞ�1=2Cðj; uÞRðuÞ�1=2:

5.6 Nonlinear Processes

In general, the class of statistics we consider will not have power against all nonlinear alter-

natives. In that case, one may work with nonlinear transformations Yt ¼ sðXtÞ such as the

quantile hit process, Han et al. (2014), and then calculate the “variance ratio” equivalent

through Equations (12)–(14). Wright (2000) has proposed variance ratios based on signs

and ranks that have similar objectives.

6 LARGE DIMENSIONAL DATA

We briefly consider some issues that arise when the dimensions d are large. In this case, the

covariance matrices R and RðKÞ may be ill conditioned, and so forming the ratio (11) may

not be practically feasible or theoretically valid; likewise for any functions derived thereof

such as the smallest eigenvalues. The diagonal variance ratio matrix and simple univariate
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quantities derived from it like CS(K) may fare better in this situation, since the marginal

variances should be bounded away from zero. We remark that Castura et al. (2010) report

the average variance ratio of the Russell 1000 and Russell 2000 stocks, which amounts toXd

i¼1
dVRdiiðKÞ=d. They do not report standard errors for this quantity, perhaps on the

grounds that d is large (since d¼ 3000). However, when the individual stocks are contem-

poraneously correlated, which they typically are,12 the averaging will not reduce the order

of magnitude of the standard error. Specifically, under the i.i.d. assumption, the correlation

between dVRdiiðKÞ and dVRdjjðKÞ will be proportional to q2
ij; where qij is the contemporan-

eous correlation between the returns on stock i and stock j. We show below how to calcu-

late the standard errors for
Xd

i¼1
dVRdiiðKÞ=d in the large d, T case. However, for nonlinear

functions of VRdðKÞ such as its eigenvalues, or for quantities derived from VRðKÞ; the large

d theory is more complicated.

We present a simple result for the average trace statistic in the case where d grows but at

a rate slower than T. We suppose that Assumption A0 holds for the d-dimensional vector

process ~Xt, and impose Assumption SD to ensure that the limiting variance is well-defined.

Assumption Td: The dimension d ¼ dðTÞ ! 1 in such a way that d=T ! 0 as T !1.

Assumption Sd: The limit of the quadruple sum qdð1Þ� 2 ð0;1Þ exists, where

qd 1ð Þ� :¼ lim
d!1

1

d2

Xd

i¼1

Xd

r¼1

XK�1

j¼1

XK�1

k¼1

cj;Kck;K

riirrr
E ~Xit

~Xrt
~Xi;t�j

~Xr;t�k


 � !
; (39)

where rii are the diagonal elements of R:

Under these conditions, we can derive the following asymptotic normality result:

Theorem 7: Suppose that Assumptions A0, S, TD, and SD hold. Then:

ZdtrðKÞ ) Nð0;1Þ:

We remark that the cross-sectional standard deviation of the individual variance ratios,

a quantity that is often reported along with the average variance ratio, see for example

CLM Table 2.7, is not necessarily related in any simple way to the true asymptotic standard

deviation of the estimator that we report here.

An alternative strategy in the large d case may be to calculate scalar ratios from the ma-

trix scaling law RðKÞ ¼ KR: Specifically, we may look at quantities like kmax ðKÞ=Kkmax ð1Þ
whose properties may follow from generalizations of results in Jin et al. (2014). However,

when d is comparable with T, one must use some sparsity structure or shrinkage method to

obtain reasonable performance for complicated nonlinear functions of the covariance

matrices. Johnstone and Onatski (2015) develop a comprehensive theory for multivariate

testing in large dimensional situations.

12 Although for very high frequency data, the correlation maybe quite small, Sheppard (2013).
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7 SIMULATION STUDY

We perform a small simulation study to assess the reliability of our multivariate variance

ratio test statistics (the earlier version of this article contains additional results not reported

here for brevity). In particular, we examine two multivariate variance ratio tests: the trace

(ZtrðKÞ) and the determinant (Zdet ðKÞ) tests.

We first simulate empirical size of nominal 5% multivariate variance ratio tests based

on ZtrðKÞ and Zdet ðKÞ statistics for the null hypothesis H0: Xt ¼ ðX1;t;X2;tÞ> is m.d.s.

specified by the following bivariate constant conditional correlation (CCC)-GARCH (1,1)

model:

X1;t ¼
ffiffiffiffiffiffiffi
h1;t

p
e1;t;X2;t ¼

ffiffiffiffiffiffiffi
h2;t

p
e2;t

h1;t ¼ 0:2þ 0:05X2
1;t�1 þ 0:9h1;t�1

h2;t ¼ 0:1þ 0:08X2
2;t�1 þ 0:9h2;t�1

e1;t

e2;t

0@ 1A 
 N 0;
1 q

q 1

0@ 1A0@ 1A; q ¼ 0:5:

Based on 10,000 replications, we have the results in Table 1.

Table 1 shows that the empirical sizes of variance ratio tests using ZtrðKÞ and Zdet ðKÞ
statistics are all close to the nominal value 5%. We then examine the power of multivariate

variance ratio tests based on Z
ðiidÞ
tr ðKÞ and Z

ðiidÞ
det ðKÞ statistics, at a 5% nominal level, against

the alternative hypotheses H1: bivariate fads model for log prices, specified as Equations

(32) and (33) with l¼ 0 and gt ¼ bgt�1 þ nt; where et 
 i:i:d:Nð0;XeÞ; nt 
 i:i:d:Nð0; IdÞ; et

and gt are mutually independent, b ¼
0:95 0:02

0:05 0:9

" #
. We consider three cases: Xe ¼ 2Id;

Xe ¼ Id, and Xe ¼ 1
2 Id; so that the conditional variability of the random walk relative to the

stationary component is two, one, and one-half, respectively. We consider Z
ðiidÞ
tr ðKÞ and

Z
ðiidÞ
det ðKÞ statistics which are similarly defined as ZtrðKÞ and Zdet ðKÞ but using bQ iidðKÞ:

Based on 10,000 replications, we have the results in Table 2.

Table 2 shows that the power of the tests increases with K. In addition, as the condi-

tional variability of the random walk relative to the stationary component decreases, the

power of tests increases, for example, when Xe ¼ 1
2 Id and K¼ 16, the power of tests is very

Table 1. Empirical size of nominal 5% multivariate variance ratio tests [using ZtrðK Þ and Zdet ðK Þ
statistics]

Size of 5% test

Sample size K ZtrðKÞ Zdet ðKÞ

1024 2 0.0488 0.0481

1024 4 0.0478 0.0455

1024 8 0.0467 0.0437

1024 16 0.0507 0.0422
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high which goes beyond 80%. Furthermore, we found the tests based on Z
ðiidÞ
tr ðKÞ statistics

are more powerful than those based on Z
ðiidÞ
det ðKÞ statistics across all cases.

8 APPLICATION

We apply our methodology to U.S. stock return data. In particular, we use weekly size-

sorted equal-weighted portfolio returns from the CRSP from June 7, 1962, to December

27, 2013.13 Essentially we are using the extension of the same data that were used in Lo

and MacKinlay (1988) and Campbell, Lo, and Mackinlay (1997), which allows us to make

comparison with their results, and to extend it to the more recent period. In the following

parts, we first test the linear predictability for size-sorted CRSP portfolio returns at short to

medium horizon; then, we investigate the long-run behavior of variance ratio statistics.

8.1 Short-to-Medium Horizon

8.1.1 Evidence on linear predictability

Consider weekly returns for three size-sorted CRSP portfolios Xt ¼ ðX1t;X2t;X3tÞ>, where

X1t is for the portfolio of small-size firms (first quintile), X2t is for the portfolio of medium-

size firms (third quintile), and X3t is for the portfolio of large-size firms (fifth quintile).dVRdþðKÞ and cRdð0Þ of Xt can be estimated based on the method in Section 3.

We first test the absence of serial correlation in each of these 3 weekly size-sorted port-

folio returns. As we stated above, the diagonal elements of VRdþðKÞ correspond to the uni-

variate variance ratio statistics, for example, ½VRdþðKÞ�11 is the variance ratio of small-size

portfolio returns. For each i ¼ 1; 2;3; we test the hypotheses of H0 : ½VRdþðKÞ�ii ¼ 1

against H1 : ½VRdþðKÞ�ii 6¼ 1: To compare with the results reported in Campbell, Lo, and

Mackinlay (1997, p. 71, Table 2.6), we report ½ dVRdþðKÞ�ii at K ¼ 2; 4;8; 16 and the corres-

ponding ZdðKÞ; ZdLMðKÞ, and ZdiidðKÞ statistics14 in three subsamples: 62:07:06–78:09:29

(848 weeks), 78:10:06–94:12:23 (847 weeks), and 94:12:30–13:12:27 (992 weeks).

Subsamples are considered to see whether there has been changes in variance ratio over

Table 2. Power of multivariate variance ratio tests at a 5% nominal level [using Z
ðiidÞ
tr ðK Þ and

Z
ðiidÞ
det ðK Þ statistics]

Xe ¼ 1
2 Id Xe ¼ Id Xe ¼ 2Id

Sample size K Z
ðiidÞ
tr ðKÞ Z

ðiidÞ
det ðKÞ Z

ðiidÞ
tr ðKÞ Z

ðiidÞ
det ðKÞ Z

ðiidÞ
tr ðKÞ Z

ðiidÞ
det ðKÞ

1024 2 0.2021 0.1971 0.1357 0.1324 0.0844 0:0813

1024 4 0.3933 0.3806 0.2399 0.2273 0.1317 0:1216

1024 8 0.6334 0.6183 0.3932 0.3658 0.1980 0:1728

1024 16 0.8229 0.8009 0.5331 0.4716 0.2653 0:2061

13 The data are obtained from Kenneth French’s Data Library. It was created by CMPT_ME_RETS

using the 2013/12 CRSP database. We compute weekly returns of portfolios by linearly adding up

Monday to Friday’s daily returns.

14 For testing ½VRdþðK Þ�ii ¼ 1; the ZdðK Þ; ZdLMðK Þ, and ZdiidðK Þ statistics are calculated by setting

ef as a column vector that is 1 at the dði � 1Þ þ i entry and 0 otherwise.
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Table 3. (A) Variance ratios for weekly small-size portfolio returns; (B) Variance ratios for weekly

medium-size portfolio returns; and (C) Variance ratios for weekly large-size portfolio returns

Lags

Sample period Number of observation K¼ 2 K ¼ 4 K¼ 8 K¼ 16

A

62:07:06–78:09:29 848 1.43 1.93 2.46 2.27

ð8:82Þ� ð8:49Þ� ð7:00Þ� ð5:59Þ�

ð8:82Þ� ð10:81Þ� ð11:00Þ� ð9:33Þ�

ð12:46Þ� ð14:47Þ� ð14:39Þ� ð11:70Þ�

78:10:06–94:12:23 847 1:43 1:98 2:65 3:19

ð6:20Þ� ð7:07Þ� ð7:37Þ� ð6:48Þ�

ð6:20Þ� ð8:62Þ� ð10:69Þ� ð10:70Þ�

ð12:52Þ� ð15:25Þ� ð16:26Þ� ð14:45Þ�

94:12:30–13:12:27 992 1:21 1:47 1:7 1:82

ð3:30Þ� ð3:58Þ� ð3:35Þ� ð2:50Þ�

ð3:30Þ� ð4:13Þ� ð4:15Þ� ð3:44Þ�

ð6:59Þ� ð7:91Þ� ð7:43Þ� ð5:82Þ�

B

62:07:06–78:09:29 848 1:25 1:54 1:79 1:91

ð5:41Þ� ð5:55Þ� ð4:35Þ� ð3:22Þ�

ð5:41Þ� ð6:41Þ� ð5:93Þ� ð4:69Þ�

ð7:37Þ� ð8:42Þ� ð7:78Þ� ð6:05Þ�

78:10:06–94:12:23 847 1:20 1:37 1:54 1:56

ð3:29Þ� ð3:35Þ� ð3:18Þ� ð2:14Þ�

ð3:29Þ� ð3:72Þ� ð3:90Þ� ð2:93Þ�

ð5:73Þ� ð5:80Þ� ð5:36Þ� ð3:74Þ�

94:12:30–13:12:27 992 0:99 1:05 1:02 0:89

ð�0:02Þ ð0:38Þ ð0:10Þ ð�0:38Þ
ð�0:02Þ ð0:43Þ ð0:11Þ ð�0:48Þ
ð�0:04Þ ð0:78Þ ð0:20Þ ð�0:78Þ

C

62:07:06–78:09:29 848 1:05 1:15 1:21 1:19

ð1:05Þ ð1:64Þ ð1:23Þ ð0:68Þ
ð1:05Þ ð1:54Þ ð1:32Þ ð0:84Þ
ð1:59Þ ð2:33Þ� ð2:06Þ� ð1:29Þ

78:10:06–94:12:23 847 1:03 1:06 1:08 1:01

ð0:63Þ ð0:61Þ ð0:54Þ ð0:03Þ
ð0:63Þ ð0:65Þ ð0:59Þ ð0:04Þ
ð0:95Þ ð0:91Þ ð0:75Þ ð0:04Þ

94:12:30–13:12:27 992 0:93 0:94 0:89 0:81

ð�0:99Þ ð�0:46Þ ð�0:53Þ ð�0:62Þ
ð�0:99Þ ð�0:52Þ ð�0:61Þ ð�0:77Þ
ð�2:05Þ� ð�1:01Þ ð�1:14Þ ð�1:35Þ

Notes: ½ dVRdþðKÞ�ii for i ¼ 1; 2; 3 are reported in the main rows. Test statistics (ZdðKÞ, ZdLMðKÞ, and

ZdiidðKÞ) in parentheses marked with asterisks indicate that the variance ratios are statistically different from

one at 5% level of significance.
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time. Table 3(A) reports the results for small-size portfolio, Table 3(B) reports the results

for medium-size portfolio, and Table 3(C) reports the results for large-size portfolio.

The results for the earlier sample periods are broadly similar to those in Campbell, Lo,

and Mackinlay (1997, p. 71, Table 2.6) who compared the period 1962–1978 with the

period 1978–1994 as well as the combined period 1962–1994. The variance ratios are

greater than 1 and deviate further from 1 as the horizon lengthens. The departure from the

random walk model is strongly statistically significant for the small- and medium-sized

firms, but not so for the larger firms.

When we turn to the later period 1994–2013 we see that the variance ratios all reduce

in magnitude. For the smallest stocks the statistics are still significantly greater than one

and increase with horizon. However, they are much closer to one at all horizons and the

statistical significance of the departures is substantially reduced. For medium-sized firms,

the variance ratios are reduced. They are in some cases below 1 and also no longer increas-

ing with horizon. They are insignificantly different from 1. For the largest firms, the ratios

are all below 1 but are statistically inseparable from this value. One interpretation of these

results is that the stock market (at the level of these portfolios) has become closer to the effi-

cient benchmark. This is consistent with the evidence presented in Castura et al. (2010) for

high frequency stock returns. The biggest improvements seem to come in the most recent

period, especially for the small stocks.

The test statistics change quite a lot depending on which covariance matrixbQðKÞ; bQLMðKÞ, or bQ iidðKÞ one uses, and in some cases this could affect one’s conclusions,

for instance, for large-size portfolio, test statistics based on bQ iidðKÞ in some periods are

statistically significant. Our sample size is relatively large, and for smaller samples, the dif-

ferences could matter a lot more.

We test whether the variance ratio has “improved” significantly from one period (A) to

the next (B). For this purpose, we consider statistics of the form

sAB ¼ f
� dVRd

A

þðKÞ
�
� f
� cRd

A
ð0Þ
�
� f
� dVRd

B

þðKÞ
�
þ f
� cRd

B
ð0Þ
�
; (40)

where dVRd
j

þðKÞ and cRd
j
ð0Þ denote the variance ratio statistic and the sample correlation

matrix computed in period j ¼ A;B; while f is some scalar-valued smooth function such as

the trace or determinant. Under the martingale null hypothesis (and assuming each sub-

sample is large), the two subsample variance ratio statistics are asymptotically independent

and the asymptotic variance of
ffiffiffiffi
T
p

vecðsABÞ is just the sum of the subperiod covariance

matrices QdA
f ðKÞ þQdB

f ðKÞ: For example, we may consider the single element of statistic

½ dVRd
A

þðKÞ�ii � ½ dVRd
B

þðKÞ�ii and compare it with the square root of the sum of the square of

the associated standard errors to obtain a test of the hypothesis that the efficiency has not

improved across subperiods. For example, in Table 3(A), the change of the variance ratio

for small stocks of 1.43 in the period 78:10:06–94:12:23 to 1.21 during 94:12:30–13:12:27

is statistically significant according to this calculation.

We have carried out this calculation using the Friday-to-Friday weekly returns as the base

series, but we have also done it for other days of the week and for the two parameter statistic.

Qualitatively the results are similar. Results are available from the authors upon request.
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8.1.2 Lead lag relationships

In addition to the autocorrelation for each asset, the predictability can also come from the

cross-autocorrelation (lead–lag relationship) between the assets. As we stated earlier, the

off-diagonal elements of VRdþðKÞ � Rdð0Þ provide information about the cumulative

cross-dynamics between the assets. We test the hypothesis of ½VRdþðKÞ � Rdð0Þ�ij ¼ 0; for

i; j ¼ 1; 2;3; i 6¼ j; using the test statistics Zd(K).15 The results are reported in Table 4.16

The results suggest there are strong lead–lag relationships, where medium and large firms

lead and small firms lag for all horizons for both sample periods, although the evidence at-

tenuates in the later period, especially at the longer horizon. Nevertheless, there is statistical

significance at the 5% level in all such cases. The sign of these terms is all positive and in-

crease with horizon. Also, the size of the coefficients decreases substantially in the later sam-

ple period. The evidence is weaker for cross-autocorrelation between current returns of

medium-sized firms and past returns of small and large ones. We do find that there is evidence

of such relationships in the earlier sample period. However, in the later period, none of these

effects is significant. Finally, with regard to cross-autocorrelation between current returns of

large firms and past returns of small- and medium-sized ones, in no period do we find evi-

dence of this.17 These results may be interpreted as being consistent with the explanations

given in Campbell, Lo, and Mackinlay (1997). This is also inconsistent with the random walk

hypothesis, but the declining statistical significance may be consistent with improvements in

the efficiency/reduction in microstructure effects of these markets.

We also check if the lead–lag patterns are asymmetric. We test the null hypotheses that

½VRdþðKÞ � Rdð0Þ�ij �½VRdþðKÞ � Rdð0Þ�ji ¼ 0; for i; j ¼ 1; 2;3; i > j; using the test stat-

istics ZdðKÞ.18 The results are reported in Table 5.

These results can be compared with Campbell, Lo, and Mackinlay (1997, p. 71,

Table 2.9) who look at the asymmetry of the cross-autocorrelation matrices. We find the

same direction of asymmetry consistent with their results. The statistical significance does

decline in the second period, but is still quite strong.

8.1.3 Multivariate tests

The above univariate variance ratio tests (Table 3(A)–(C)) provide evidence of linear pre-

dictability in returns for small- and medium-size portfolios. We next test for the absence of

serial correlation in the whole return vector of three size-sorted portfolios, based on uni-

variate parameters derived from the variance ratio matrices VRðKÞ and VRdðKÞ of Xt:

Specifically, we consider the trace and determinant of these matrices, as well as CSðKÞ;
GMVðKÞ; and pþðKÞ. Test results based on these statistics are reported in the following

table (Table 6).

15 For testing ½VRdþðK Þ � Rdð0Þ�ij ¼ 0; the Zd(K) statistics are calculated by setting ef as a column

vector that is 1 at the dðj � 1Þ þ i entry and 0 otherwise.

16 In this examination, we divide the whole sample into two sub-samples: 62:07:06–94:12:23 and

94:12:30–13:12:27.

17 This test is related to the Granger noncausality test proposed in Pierce and Haugh (1977), where

the series are prewhitened before testing zero cross-autocorrelation.

18 For testing ½VRdþðK Þ � Rdð0Þ�ij � ½VRdþðK Þ � Rdð0Þ�ji ¼ 0; the Zd(K) statistics are calculated

by setting ef as a column vector that is 1 at the dðj � 1Þ þ i entry, –1 at the dði � 1Þ þ j entry

and 0 otherwise.
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Table 4. Lead–lag patterns between weekly size-sorted portfolio returns

dVRdþðKÞ � cRdð0Þ To

Lags Sample period From Small Medium Large

K¼ 2 62:07:06–94:12:23 Small 0:20 ð5:74Þ� 0:04 ð1:15Þ
Medium 0:39 ð9:61Þ� 0:05 ð1:47Þ
Large 0:32 ð8:21Þ� 0:21 ð5:42Þ�

94:12:30–13:12:27 Small �0:02 ð�0:33Þ �0:07 ð�1:01Þ
Medium 0:20 ð3:32Þ� �0:05 ð�0:83Þ
Large 0:17 ð2:74Þ� �0:01 ð�0:08Þ

K¼ 4 62:07:06–94:12:23 Small 0:406 ð5:42Þ� 0:08 ð1:14Þ
Medium 0:84 ð10:39Þ� 0:12 ð1:756Þ
Large 0:67 ð9:03Þ� 0:41 ð5:75Þ�

94:12:30–13:12:27 Small �0:00 ð�0:00Þ �0:09 ð�0:63Þ
Medium 0:43 ð3:54Þ� �0:05 ð�0:38Þ
Large 0:34 ð2:93Þ� 0:04 ð0:38Þ

K¼ 8 62:07:06–94:12:23 Small 0:57 ð4:11Þ� 0:10 ð0:73Þ
Medium 1:38 ð10:21Þ� 0:18 ð1:53Þ
Large 1:07 ð9:29Þ� 0:59 ð5:24Þ�

94:12:30–13:12:27 Small �0:05 ð�0:25Þ �0:16 ð�0:72Þ
Medium 0:60 ð3:28Þ� �0:13 ð�0:61Þ
Large 0:51 ð2:81Þ� 0:05 ð0:27Þ

K¼ 16 62:07:06–94:12:23 Small 0:54 ð2:39Þ� �0:03 ð�0:11Þ
Medium 1:77 ð9:11Þ� 0:13 ð0:68Þ
Large 1:36 ð8:42Þ� 0:64 ð3:80Þ�

94:12:30–13:12:27 Small �0:21 ð�0:62Þ �0:28 ð�0:83Þ
Medium 0:67 ð2:45Þ� �0:26 ð�0:86Þ
Large 0:61 ð2:22Þ� �0:03 ð�0:10Þ

Note: Test statistics in parentheses marked with asterisks indicate that null hypothesis is rejected at 5% level of

significance.

Table 5. Asymmetry of lead–lag patterns

½ dVRdþðKÞ � cRdð0Þ�ij � ½ dVRdþðKÞ � cRdð0Þ�ji

Lags Sample period ðS! MÞ � ðM! SÞ ðS! LÞ � ðL! SÞ ðM! LÞ � ðL!MÞ

K¼ 2 62:07:06–94:12:23 �0:19 ð�8:75Þ� �0:28 ð�8:58Þ� �0:16 ð�8:10Þ�

94:12:30–13:12:27 �0:22 ð�6:62Þ� �0:23 ð�6:38Þ� �0:05 ð�2:31Þ�

K¼ 4 62:07:06–94:12:23 �0:44 ð�9:63Þ� �0:59 ð�8:68Þ� �0:29 ð�7:46Þ�

94:12:30–13:12:27 �0:43 ð�7:15Þ� �0:43 ð�6:32Þ� �0:09 ð�2:37Þ�

K¼ 8 62:07:06–94:12:23 �0:81 ð�10:58Þ� �0:97 ð�8:98Þ� �0:40 ð�7:02Þ�

94:12:30–13:12:27 �0:68 ð�7:19Þ� �0:67 ð�5:79Þ� �0:17 ð�3:00Þ�

K¼ 16 62:07:06–94:12:23 �1:23 ð�10:16Þ� �1:38 ð�8:18Þ� �0:51 ð�6:05Þ�

94:12:30–13:12:27 �0:88 ð�6:26Þ� �0:89 ð�5:27Þ� �0:23 ð�3:03Þ�

Notes: S is for small-size portfolio, M is for medium-size portfolio, and L is for large-size portfolio. Test statis-

tics marked with asterisks indicate that the lead–lag relationship is statistically asymmetric at 5% level of

significance.
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Table 6. Multivariate variance ratio tests for weekly size-sorted portfolio returns

Lags

K¼ 2 K¼ 4 K¼ 8 K¼ 16

First period: 62:07:06–78:09:29

cCSðKÞ � cCSð1Þ 0:21 0:46 0:69 0:81

ð5:04Þ� ð5:23Þ� ð4:15Þ� ð3:09Þ�dGMVðKÞ 0:39 0:42 0:43 0:41

ð4:30Þ� ð3:53Þ� ð2:08Þ� ð1:01Þ
p̂ðKÞ 0:0209 0:0180 0:0124 0:0065

ð5:20Þ� ð7:10Þ� ð6:59Þ� ð5:01Þ�

trðdVRðKÞÞ 3:61 4:16 5:22 5:44

ð6:59Þ� ð7:79Þ� ð6:89Þ� ð4:90Þ�

det ðdVRðKÞÞ 1:62 2:67 3:61 3:57

ð6:72Þ� ð8:95Þ� ð8:10Þ� ð5:15Þ�

WFðKÞ 128:51� 122:06� 86:39� 52:06�

Second period: 78:10:06–94:12:23

cCSðKÞ � cCSð1Þ 0:19 0:38 0:59 0:65

ð3:49Þ� ð3:72Þ� ð3:68Þ� ð2:64Þ�dGMVðKÞ 0:39 0:42 0:41 0:37

ð4:24Þ� ð3:19Þ� ð1:87Þ ð0:49Þ
p̂ðKÞ 0:0210 0:0197 0:0162 0:0119

ð4:05Þ� ð5:99Þ� ð7:17Þ� ð6:94Þ�

trðdVRðKÞÞ 3:46 4:27 5:33 6:45

ð5:08Þ� ð7:31Þ� ð8:06Þ� ð7:57Þ�

det ðdVRðKÞÞ 1:37 1:94 2:48 2:82

ð4:03Þ� ð5:38Þ� ð5:11Þ� ð3:99Þ�

WFðKÞ 114:27� 124:62� 123:80� 103:19�

Third period: 94:12:30–13:12:27

cCSðKÞ � cCSð1Þ 0:04 0:11 0:14 0:08

ð0:63Þ ð0:91Þ ð0:71Þ ð0:29ÞdGMVðKÞ 0:34 0:35 0:33 0:27

ð0:42Þ ð0:47Þ ð�0:14Þ ð�0:77Þ
p̂ðKÞ 0:0067 0:0090 0:0065 0:0039

ð2:19Þ� ð3:89Þ� ð3:36Þ� ð2:53Þ�

trðdVRðKÞÞ 3:09 3:46 3:79 4:08

ð0:87Þ ð2:30Þ� ð2:36Þ� ð2:03Þ�

det ðdVRðKÞÞ 1:03 1:28 1:38 1:36

ð0:31Þ ð1:39Þ ð1:12Þ ð0:69Þ
WFðKÞ 67:28� 73:23� 61:90� 48:20�

Notes: The estimates of statistics are reported in the main rows. Test statistics [ZdCSðKÞ;ZGMVðKÞ;ZdpðKÞ; Ztr

ðKÞ;Zdet ðKÞ as defined in Equations (26–27)] in parentheses marked with asterisks indicate statistically signifi-

cant at 5% level. WFðKÞ [defined in Equation (28)] is marked with asterisks if it is larger than 12:592; the 5%

critical value of v2ð6Þ:
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There are some differences of opinion between the measures in the most recent period.

Specifically, the momentum profit measure is statistically significant at all horizons, and the

trace statistic is significant at horizons K ¼ 4; 8; and 16, while the other univariate quanti-

ties such as the determinant are not significantly different from their null values. In most

cases, the univariate statistics are above their predicted values consistent with the earlier re-

sults. Although the momentum profit measure is significant in all three periods, the magni-

tude of the parameter has reduced substantially. The joint test of all the restrictions is

strongly significant in all three periods and for all horizons.

We next check whether our results are driven by the choice of subsamples, which we

have chosen to match the choices made by CLM for the purpose of replication and com-

parison. We carry out a rolling window analysis with a (trailing) window of 500 weeks

from the beginning of the sample to the end. Below we show the time series of (standard

normal) test statistics ZdCSðKÞ;ZGMVðKÞ, and ZdpðKÞ for K¼4. This shows that for dGMV

ðKÞ and cCSðKÞ the sustained decline in statistical significance happened in the decade end-

ing in 2008, although there was an earlier dip in significance in the decade ending in 1999.

The profits measure bpðKÞ has shown a slower but equally sustained drop in statistical sig-

nificance. There are some sudden jumps (both up and down) to the level of this statistic in

particular, which may be a cause for concern in practice. The dGMVðKÞ statistic seems less

affected by such movements (Figure 1).

8.2 Long Horizon

We further investigate the variance ratios at longer horizons. We still use the weekly returns

for three size-sorted CRSP portfolios (first, third, and fifth quintiles). Here, we work with

the bias-corrected estimators
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Figure 1. Trends of test statistics based on 10 year rolling windows.
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dVRbc
ðKÞ ¼dVRðKÞ 1þ K� 1

T

� �
; dVRd

bc
ðKÞ ¼ dVRdðKÞ 1þ K� 1

T

� �
: (41)

The ordered eigenvalues may suffer an even larger bias under the null hypothesis, because

their limiting distribution is not centered at zero, and so we propose to modify the esti-

mated eigenvalues by

bkbc

j ðKÞ ¼ bkj

�dVRbc
ðKÞ
�
� 1ffiffiffiffi

T
p Ek�j ðUKÞ;

where UK is the limiting matrix distribution of
ffiffiffiffi
T
p
ðdVRðKÞ � IÞ: We calculate Ek�j ðUKÞ by

simulation.

First, we show below the three eigenvalues bkbc

j ðKÞ of dVRbc
ðKÞ against K for the three sub-

samples: the first panel is for bkbc

j ðKÞ in the first sub-sample (62:07:06–78:09:29), the second

panel shows bkbc

j ðKÞ in the second sub-sample (78:10:06–94:12:23), and the third panel showsbkbc

j ðKÞ in the third sub-sample (94:12:30–13:12:27). We also use the dashed lines to indicate

the 95% pointwise confidence intervals of the largest eigenvalues for each period centered at

the null hypothesis. We show out to 2 years (100 lags), which is quite a long horizon relative

to the sample size, and we urge caution in interpreting the results (Figure 2).

We see that the largest eigenvalue increases steadily out to the 2 year horizon we con-

sider in all three subperiods. In fact, the increase appears to be linear in lag, although the

slope is far less than one. The last subperiod has the lowest values throughout, while sur-

prisingly, the second period 1978–1994 seems to have the largest amount of potential linear

predictability that could have been exploited during this period. In all cases, the eigenvalues

are statistically significant. The apparent increase in predictability at long horizons that this

indicates is consistent with the results discussed in the predictive regression literature, see

Phillips (2015), in which XtðKÞ is regressed on covariates such as (annual) dividend price

ratio dated t � 1: The second and third eigenvalues are quite flat and close to one through-

out. This evidence does not seem to be consistent with the fads model, or even the bubble

process, although the confidence intervals are quite wide at the longer lags.

We next evaluate the long-run behavior of the CS(K) statistics. Specifically, we consider

two one-sided statistics:

cCS6ðKÞ ¼
2

dðd � 1Þ
Xd�1

i¼1

Xd

j¼iþ1

½ dVRd
bc

6 ðKÞ�ij:

These statistics measure in some average sense the cross dependence for certain directions.

We show below the cCSþðKÞ and cCS�ðKÞ statistics for three weekly size-sorted CRSP port-

folio returns against lag K in three sub-samples: the dark solid line is for cCSþðKÞ in the first

sub-sample (62:07:06–78:09:29), the dark dashed line is for cCSþðKÞ in the second sub-

sample (78:10:06–94:12:23), the dark marked line is for cCSþðKÞ in the third sub-sample

(94:12:30–13:12:27); the gray solid line is for cCS�ðKÞ in the first sub-sample, the gray

dashed line is for cCS�ðKÞ in the second sub-sample, and the gray marked line is for cCS�ðKÞ
in the third subsample (Figure 3).

In each subperiod, the cCSþðKÞ measures all exceed the cCS�ðKÞ measures over all lags,

which means that the average directional cross dependence from larger-size portfolios to
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Figure 2. The bias corrected eigenvalues of the bias corrected variance ratio matrix in three sub-sam-

ples as a function of lags.
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smaller-size portfolios are stronger than those in the opposite directions, up to 2 years. ThecCSþðKÞ measures decrease in the recent period over the long horizon. Also the shape of the

term structure is quite flat in the most recent period, whereas in the second period, and to a

lesser extent in the first period, there seems to be a hump-shaped curve suggesting this de-

pendence reaches a maximum somewhere between 10 and 30 weeks. We can further detect

that the average statistic, cCSðKÞ ¼ ½cCSþðKÞ þ cCS�ðKÞ�=2; measuring the average cross de-

pendence for both directions between three size-sorted CRSP portfolios, becomes weaker

(more efficient) in recent periods at the long horizon.

We then examine the long-run GMV(K) statistics. We show below dGMV against

K in the three sub-samples: the solid line is for dGMVðKÞ in the first sub-sample

(62:07:06–78:09:29) and the dashed line is for dGMVðKÞ in the second sub-sample

(78:10:06–94:12:23), and the marked line is for dGMVðKÞ in the third sub-sample

(94:12:30–13:12:27). For readability we have omitted the confidence intervals, which

are quite wide in this case and show that mostly this statistic is consistent with the null hy-

pothesis in the most recent period. In this most recent period there is a quite steep fall off

in the statistic out to about 3 months followed by a slower rate of decrease thereafter

(Figure 4).

We lastly investigate the pðKÞ statistics. We show below pþ against K in three sub-

samples: the solid line is for bpðKÞ in the first sub-sample (62:07:06–78:09:29) and the

dashed line is for bpðKÞ in the second sub-sample (78:10:06–94:12:23), and the marked line

is for bpðKÞ in the third sub-sample (94:12:30–13:12:27). Figure 5 shows that the profit

measures bpðKÞ are positive across all horizons and subsamples we considered (and are also

statistically significant for much of the time). We also see that the measures decrease with

the lags till around 40 weeks, and then keep at a relatively stable level. In addition, we

found the second period 1978–1994 has the largest measures that could have been ex-

ploited during this period.
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Figure 3. cCSþðK Þ and cCS�ðK Þ statistics in three sub-samples as a function of lags.
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9 CONCLUSIONS

The first methodological point we make is to propose confidence intervals that are consist-

ent under uncorrelatedness conditions alone and do not require an additional no leverage/

symmetric distribution assumption such as maintained in Lo and MacKinlay (1988), CLM,

and in much subsequent work. Our confidence intervals are often (although not necessarily
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Figure 5. p̂ðK Þ statistics in three sub-samples as a function of lags.
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Figure 4. dGMVðK Þ statistics in three sub-samples as a function of lags.
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so) larger than those used elsewhere, and therefore reduce the significance of any associated

test. We believe our theory is more credible with regard to the data generating process we

expect for daily or even lower frequency stock returns. The second contribution is about

embedding this theory in a multivariate framework. The multivariate variance ratios pro-

vide a basis for aggregating the cross correlation behavior of asset returns and providing

tests of the multivariate null hypothesis. It implies many more restrictions on the data than

the univariate ratios. We present our theory for a single K and for sequences of K growing.

One can also present result for the joint distribution of our test statistics over different hori-

zons, which would provide some control against multiple testing. However, in practice, it is

common to consider just a few horizons that have a specific practical meaning, and so there

is no real danger of K-snooping here, although this does again add caution to prevent over

interpretation.

Our empirical work reports that the U.S. size sorted stock portfolios seem to have come

closer to the efficient markets prediction, although there remains some statistically signifi-

cant linear predictability at the 2 weeks to 16 weeks horizon. Although many of the individ-

ual variance ratio statistics do not reject the null hypothesis with our standard errors, the

joint tests of the multivariate hypothesis reject at the 1% level in all cases, meaning for all

horizons. This is despite the fact that our standard errors are always larger than those of Lo

and MacKinlay (1988), which are themselves a lot larger than those based on the i.i.d. as-

sumption, which is the world where most applied studies still inhabit.

Typically, three competing explanations are advanced for the predictability in short

horizon returns based on past prices (Boudoukh, Richardson, and Whitelaw, 1994): First,

microstructure effects such as nonsynchronous trading and bid ask bounce. Second, time

varying risk premia reflecting rational behavior. Third, the irrational behavior of market

participants. It would seem that there is a lot of evidence that microstructure effects have

reduced considerably over time. For example, it is hard to find even small cap stocks that

do not trade now many times during a day. The microstructure explanation would imply

that the long horizon daily or weekly variance ratios should return to unity, but this is not

the case in our data even for the most recent period. There is also some evidence that the

level (and perhaps therefore the local time variation) of the market risk premium has

reduced in recent years, see for example, Hertzberg (2010). In the working paper version of

this paper, we provided a test of whether the autocorrelations could be explained by time

varying risk premia inside a Fama French factor model. We found that this approach could

not capture all the linear dependency in the data even in the earlier periods, where the viola-

tions were strongest. Therefore, the first two explanations do not seem to be able to match

the magnitude of the effects in the earlier periods, although both may make some contribu-

tion.19 On the other hand, the magnitude of the predictability has reduced in the most

19 There is a literature that provides bounds on the implied magnitude of autocorrelations caused by

specific microstructure imperfections such as nontrading and a similar literature that provides

bounds on the implied magnitude of autocorrelations caused by rational time varying risk premia

alone. In both cases strong assumptions are made, see for example, Kirby (1998) and Anderson

(2011), and Boudoukh, Richardson, and Whitelaw (1994), and one “cause” is investigated at a

time.
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recent period according to the statistical metrics we have presented here. The long horizon

analysis suggests that the largest eigenvalue of the variance ratio matrix grows linearly with

horizon, although the slope is far less than the unit slope predicted by the bubble process of

Section 5.3, which may in principle be consistent with very short bubbly episodes domi-

nated by longer calmer periods.20 Alternatively, this may be consistent with a very persist-

ent time varying risk premium of the sort outlined in Section 5.4. In any case, the trajectory

is flatter (and not statistically significant) in the more recent period, again supporting the

claim that market inefficiency has reduced. Although the statistical magnitudes seem to

have reduced, it is not clear whether the potential profit from exploiting linear predictabil-

ity across the whole market has reduced, since the number of tradeable assets has increased

and the transactions costs associated with any given trade seem to have reduced, Malkiel

(2015).

APPENDIX A

A.1 Proof of Main Results

Proof of Theorem 1. We first present the proof under Assumption A. For each j ¼ 1; . . . ;K,

ffiffiffiffi
T
p
� vecðbCðjÞÞ ¼ 1ffiffiffiffi

T
p

XT

t¼jþ1

ð ~Xt�j 	 ~XtÞ �
1ffiffiffiffi
T
p

XT

t¼jþ1

~Xt�j 	 ðX � lÞ � ðX � lÞ

	 1ffiffiffiffi
T
p

XT

t¼jþ1

~Xt þ
T � jffiffiffiffi

T
p ðX � lÞ 	 ðX � lÞ (42)

¼ 1ffiffiffiffi
T
p

XT

t¼jþ1

ð ~Xt�j 	 ~XtÞ þ opð1Þ (43)

because
PT

t¼jþ1
~Xt ¼ Opð

ffiffiffiffi
T
p
Þ by the CLT for stationary ergodic martingale difference.

Since ~Xt
~X
>
t is stationary ergodic, the Ergodic theorem and continuous mapping on T�1PT

t¼1
~Xt

~X
>
t yields bR�1=2 � R�1=2 ¼ opð1Þ. Consequently, we have

vecð bRðjÞÞ ¼ vec
�
½bR�1=2 � R�1=2 þ R�1=2�bCðjÞ½bR�1=2 � R�1=2 þ R�1=2�

�
¼ ðR�1=2 	 R�1=2ÞvecðbCðjÞÞ þ opð1Þ

(44)

20 Timmerman (2008) investigates the forecasting performance of a number of linear and nonlinear

models and says: “Most of the time the forecasting models perform rather poorly, but there is evi-

dence of relatively short-lived periods with modest return predictability. The short duration of the

episodes where return predictability appears to be present and the relatively weak degree of pre-

dictability even during such periods makes predicting returns an extraordinarily challenging task”.

Our (multivariate) evidence does not substantially contradict that; certainly using linear multivari-

ate methods the amount of predictability we have found and its durability is limited and has

reduced over time even through the recent financial crisis.
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for each j, and therefore

ffiffiffiffi
T
p

vec
�dVRþðKÞ � Id

�
¼

ffiffiffiffi
T
p
�
XK�1

j¼1

2 1� j

K

� �
� vec

� bRðjÞ�

¼ ðR�1=2 	 R�1=2Þ �
XK�1

j¼1

cj
1ffiffiffiffi
T
p

XT

t¼jþ1

~Xt�j 	 ~Xt þ opð1Þ

¼ ðR�1=2 	 R�1=2Þ � 1ffiffiffiffi
T
p

XT

t¼K

XK�1

j¼1

cjð ~Xt�j 	 ~XtÞ
" #

þ opð1Þ

¼: ðR�1=2 	 R�1=2Þ � 1ffiffiffiffi
T
p

XT

t¼K

Zt þ opð1Þ:

(45)

It now suffices to derive the limiting distribution of Zt. Take any d2-dimensional real con-

stant vector a ¼ ða1; . . . ; ad2 Þ>, and note that a>Zt is a martingale difference sequence.

Then, since by A2

Eða>ZtÞ2 ¼ a>varðZtÞa ¼ a>
XK�1

j¼1

XK�1

k¼1

cjckNjk

" #
a < 1;

where Njk ¼ E½ ~Xt�j 	 ~Xt�½ ~Xt�k 	 ~Xt�>, the CLT for stationary ergodic martingale differ-

ence gives

a>
1ffiffiffiffi
T
p

XT

t¼1

Zt

 !
) N 0; a>

XK�1

j¼1

XK�1

k¼1

cjckNjk

" #
a

 !
(46)

completing the proof in view of the Cramér–Wold device, continuous mapping and

Slutsky’s theorem.

Similar arguments apply when we work with Assumption MH*. We note that Expansion

(43) for
ffiffiffiffi
T
p
� vecðbCðjÞÞ is still valid because the summations in the second, third, and fourth

terms in Equation (42) still converge in probability to zero due to the CLT for mixing

sequence, Herrndorf (1985, Theorem 0) whose regularity conditions are satisfied by MH1–

MH3. Finally, conditions MH2 and MH3 allow for the LLN for mixing variables, hite

(1984, Corollary 3.48), yielding Equations (44) and (45) as before.

Now we are only left with verifying Equation (46). For any d2-dimensional constant vec-

tor a, a>Zt preserves the mixing property of ~Xt with the same rate, so by Herrndorf’s CLT

we have

a>
1ffiffiffiffi
T
p

XT

t¼1

Zt

 !
) N 0; a>

XK�1

j¼1

XK�1

k¼1

cjckNjk

" #
a

 !
;

where Njk ¼ lim T!1 T�1
PT

t¼1 E½ ~Xt�j 	 ~Xt�½ ~Xt�k 	 ~Xt�>. The CLT above holds provided

the following regularity conditions are ensured: Eða>ZtjÞ ¼ 0; sup t Eja>Ztjb < 1 for

some b > 2, and finally

lim
T!1

1

T
E
XT

t¼1

a>Zt

 !2

¼ lim
T!1

1

T

XT

t¼1

var a>Zt

� �
¼ a>

XK�1

j¼1

XK�1

k¼1

cjckNjk

" #
a
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is positive and finite. The first condition is trivial by MH1, and the second and third condi-

tions are satisfied by MH2, MH3, and positive definiteness of Q(K). The desired result

readily follows. The arguments for the diagonally normalized are identical everywhere

except that we have vecð bRdðjÞÞ ¼ D�1=2 	D�1=2
� �

vecðbCðjÞÞ þ opðT�1=2Þ instead of

Equation (44). The entire proof is now complete. �

PROOF OF COROLLARY 1: It suffices to show consistency of bN jk for each j and k. Writing

bNjk ¼
1

T

XT

t¼max fj;kgþ1

~Xt�j 	 ~Xt

� �
~Xt�k 	 ~Xt

� �>h i
þ opð1Þ:

We see that the desired result follows by applying either the Ergodic theorem or the Law of

Large Numbers for mixing variables depending upon the set of assumption being imposed.

The regularity conditions for each theorem are ensured by Assumptions A2 and MH3,

respectively. �

PROOF OF THEOREM 2: For later reference, we first derive the limiting distribution of

1ffiffiffiffi
T
p

XT

t¼K

1ffiffiffiffi
K
p

XK�1

j¼1

cjð ~Xt�j 	 ~XtÞ
" #

¼:
1ffiffiffiffi
T
p

XT

t¼K

ZTt: (47)

The asymptotic normality is established by applying the central limit theorem for triangular

arrays of martingale difference in Pollard (1984, p. 171) on fZTt;FTtg, where

FTt ¼ F t ¼ rð ~Xs; s�tÞ. Specifically, for some arbitrary non-zero constant vector a

¼ ða1; a2; . . . ; ad2 Þ> we check the following conditions:

ðiÞ T�1
X

t

Eðða>ZTtÞ2jF t�1Þ!P a>ga > 0;

ðiiÞ 8e > 0; T�1
X

t

Eðða>ZTtÞ21fja>ZTtj > e
ffiffiffiffi
T
p
gjF t�1Þ!P 0;

under which (via the Cramér–Wold Theorem) it will follow that

1ffiffiffiffi
T
p

XT

t¼K

ZTt ) Nð0; gÞ: (48)

As for the first condition (i), it suffices to show

1

T

XT

t¼K

Eða>ZTtÞ2 ! a>ga (49)

1

T

XT

t¼K

Eðða>ZTtÞ2jF t�1Þ � Eða>ZTtÞ2!
P

0: (50)

Denoting by ~Xit the ith element of the d-vector ~Xt, the moment–cumulant relationship for-

mula [see e.g. Hannan (1970, p. 23)] suggests that for any q;w; e; u ¼ 1; . . . ;d

1

K

XK�1

j¼1

XK�1

r¼1

cjcrEð ~Xq;t�j
~Xw;t�r

~Xet
~XutÞ
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¼ 1

K

XK�1

j¼1

XK�1

r¼1

cjcr½cqwðj� rÞceuð0Þ þ cqeðjÞcwuðrÞ þ cquðjÞcweðrÞ þ jqweuð�j;�r; 0;0Þ�

¼ cqwð0Þceuð0Þ
1

K

XK�1

p¼1

4ð1� p

K
Þ2 þ 1

K

XK�1

j¼1

XK�1

r¼1

jqweuð�j;�r;0; 0Þ ! 4

3
� cqwð0Þceuð0Þ;

where cqwðuÞ ¼ Eð ~Xqt
~Xw;t�uÞ. This is due to uncorrelatedness of ~Xt and double summabil-

ity of the fourth-order cumulant j (Assumption S). Consequently,

1

T

XT

t¼K

E½ða>ZTtÞ�2 ¼
1

T

XT

t¼K

E
1ffiffiffiffi
K
p

XK�1

j¼1

a>cjð ~Xt�j 	 ~XtÞ
" #2

¼ T � K

T

� �
a>½1

K

XK�1

j¼1

XK�1

r¼1

cjcrEð ~Xt�j
~X
>
t�r 	 ~Xt

~X
>
t Þ�a

¼ 4

3
a>ðR	 RÞaþO

K

T

� �
! a>ga:

which is strictly positive by the assumption that R is positive definite. This finite limit also

implies Equation (50) as a consequence of the ergodic theorem in view of the inherited sta-

tionary ergodicity through a measurable mapping, see for example, Karlin and Taylor

(1975, p. 487–488).

It remains to check the conditional Lindeberg condition (ii). By stationarity, law of total

expectations, the moment condition Ej ~Xtj4þd�C (where d is as in Assumption A0),

Minkowski’s inequality, and Burkholder’s inequality for martingale difference (e.g., Gut,

2005, p. 506–507) we have for any � > 0

P j 1
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where d�e is the ceiling function.
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Now, starting from the decomposition (42) in the proof of Theorem 1, we can easily see

using Chebyshev’s inequality, some results from Theorem 1 and elementary calculations

thatffiffiffiffi
T

K

r
vec dVR Kð Þþ � Id

� �
¼

ffiffiffiffi
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ZTt þ oP 1ð Þ: (51)

Now the desired asymptotic distribution holds in view of the results above and consistency

of standard error via the ergodic theorem, completing the proof. �

PROOF OF THEOREM 3: The proof proceeds by showing asymptotic equivalence of the

trace (of the multivariate variance ratio) test and the LR test under the null and alternative

hypotheses. That is,

f tr dVRðKÞ� �� �
� LR!P 0 (52)

for some function f, in which case the tests based on two statistics will possess the same

large sample properties.

Recall the alternative estimator dVR&
ðKÞ. From the definitions, it can be readily shown

that

dVRðKÞ �dVR&
ðKÞ ¼ 1

K

XK�2

r¼1

bR�1=2 ðK� rÞ 1

T

XK�1

t¼rþ1

Xt �X
� �

Xt�r �X
� �>" #bR�1=2

( )

þ 1

K

XK�2

r¼1

bR�1=2 ðK� rÞ 1

T

XK�1

t¼2

Xt�r �X
� �

Xt �X
� �>" #bR�1=2

( )
þ opð1Þ

(53)

converges in probability to zero because each term in square brackets is opð1Þ
by Chebyshev’s inequality and bR�1=2

� R�1=2 ¼ opð1Þ. Now that we have f ðtrðdVRðKÞÞÞ � f

ðtrðdVR&
ðKÞÞÞ ¼ opð1Þ due to linearity of trace, it remains to show that

f tr dVR&
ðKÞ

� �� �
� LR!P 0:
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Let the “coefficient matrix” U be the matrix of ones except for the ðT � KÞ � ðT � KÞ trian-

gular blocks in the northeast and southwest corners where the entries are all zero. Then

denoting by i a conformable column vector of ones, we have

bRðKÞ ¼ 1

T
UX� UiX

>� �>
UX� UiX

>� �
¼ 1

T
X� iX

>� �>
U>U X� iX

>� �
from which it follows that

dVR&
ðKÞ ¼ 1

K
½ðA>AÞ�1=2� � ½A>U>UA� � ½ðA>AÞ�1=2�

where A :¼ X� iX
>� �

.

The rejection region based on the LR statistic is given by

LR ¼ log
det½ X� ibl>1� �>

R�1
q� X� ibl>1� �

�

det½ X� iX
>� �>

X� iX
>� �
�

0B@
1CA < k

for some positive threshold constant k, where bl1 � ~X is the maximum-likelihood estimate

of the mean l ¼ EXt under the alternative hypotheses. Using a standard property of the

logarithmic determinant, we see that

LR ¼ log ðdetf½ X� iX
>� �>

X� iX
>� �
��1½ X� i ~X

>� �>
R�1

q� X� i ~X
>� �
�gÞ

�trð½ X� iX
>� �>

X� iX
>� �
��1½ X� i ~X

>� �>
R�1

q� X� i ~X
>� �
� � IÞ

�trðbR�1 � 1
T
½ X� i ~X

>� �>
R�1

q� X� i ~X
>� �
�Þ:

(54)

Besides, it follows by the cyclic property of the trace operator that

tr dVR&
ðKÞ

� �
¼ 1

K
trð½ðA>AÞ�1� � ½A>U>UA�Þ

¼ 1

K
trðT½ X� iX

>� �>
X� iX

>� �
��1 � 1

T
X� iX

>� �>
U>U X� iX

>� �
 �
Þ

¼ 1

K
trðbR�1 � 1

T
X� i ~X

> þ i ~X
> �X

>� �� �>
U>U X� i ~X

> þ i ~X
> �X

>� �� �
 �
Þ:

Now multiplying the last quantity by the horizon K, q> 0, adding d ¼ trðIdÞ, and then

lastly multiplying by some constant a > 0 give

trðbR�1 � 1
T

X� i ~X
> þ i ~X

> �X
>� �� �>

� faðI þ qU>UÞg � X� i ~X
> þ i ~X

> �X
>� �� �
 �

Þ

¼ trðbR�1 � 1
T

X� i ~X
> þ i ~X

> �X
>� �� �>

fR�1
q þ 0�g X� i ~X

> þ i ~X
> �X

>� �� �
 �
Þ;

(55)

where 0� is the matrix of zeros except for the ðK� 1Þ � ðK� 1Þ blocks in the northwest

and southeast corners. The reader is directed to Faust (1992, Lemma 1) for the proof of the

equivalence relationship aðI þ qU>UÞ � R�1
q þ 0�. Now replacing the sample estimator for
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the cross-sectional variance by its population version (with some negligible error), we see

that the difference between Equations (55) and (54) multiplied by
ffiffiffiffi
T
p

is given by

ffiffiffiffi
T
p
� trðR�1 � 1

T
i ~X

> �X
>� �� �>

� R�1
q � i ~X

> �X
>� �� �
 �

Þ þ opð1Þ

¼ tr R�1 �
ffiffiffiffi
T
p

~X
> �X

>� �>(i> � R�1
q � i

T

)
~X
> �X

>� �" # !
þ opð1Þ

because the trace is a linear mapping. It is trivial to show that the term inside f�g is bounded

in probability. Further, the proof of Proposition 2 in Faust (1992) suggests that the individ-

ual entries of the squared bracket converges in probability to zero (hence so does the entire

matrix), yielding ffiffiffiffi
T
p
jafd þ qK � tr dVR&

ðKÞ
� �

g � LRj!p 0: (56)

This suggests that there exist some a and q for which the trace test has the same large sam-

ple properties of the LR test against the /-best class alternatives. Since the sequence of the

LR tests with q� ¼ d=
ffiffiffiffi
T
p

is locally most powerful invariant, for example, Engle (1984), the

proof is complete. �

PROOF OF THEOREM 4: Consider the K period returns XtðKÞ ¼ Klþ pt � pt�K ¼
Xt

s¼t�K
es

þ
Xt

s¼t�K
ðgs � gs�1Þ ¼ Klþ

Xt

s¼t�K
es þ gt � gt�K: These have variance

RK ¼ varðXtðKÞÞ ¼ var
Xt

s¼t�K

es

 !
þ var gt � gt�Kð Þ

¼ KEese>s þ E ðgt � gt�KÞðgt � gt�KÞ>
� �

¼ KXe þ XgðKÞ;

where XgðkÞ ¼ var gt � gt�kð Þ�0; k ¼ 1; 2; . . . : Therefore, VRðKÞ ¼ R�1=2
1 RKR�1=2

1 =K and V
RdðKÞ ¼ D

�1=2
1 RKD

�1=2
1 =K: Note that as K!1; XgðKÞ ! 2Xg ¼ 2var gtð Þ: It follows that

as K!1

VRðKÞ ¼ K�1R�1=2
1 RKR�1=2

1 ¼ K�1R�1=2
1 KXe þ XgðKÞ

� �
R�1=2

1

! R�1=2
1 XeR

�1=2
1 ¼ R�1=2

1 R1 � Xgð1Þ

 �

R�1=2
1

¼ I � R�1=2
1 Xgð1ÞR�1=2

1 �I;

since R1 and Xgð1Þ are positive semidefinite. The strict inequality holds since Xgð1Þ is

assumed strictly positive definite. By similar arguments,

VRdðKÞ ¼ K�1D
�1=2
1 RKD

�1=2
1 ¼ K�1D

�1=2
1 KXe þ XgðkÞ

� �
D
�1=2
1

! D
�1=2
1 XeD

�1=2
1 ¼ D

�1=2
1 R1 � Xgð1Þ

� �
D
�1=2
1

¼ D
�1=2
1 R1D

�1=2
1 �D

�1=2
1 Xgð1ÞD�1=2

1

¼ Rd 0ð Þ �D
�1=2
1 Xgð1ÞD�1=2

1 �Rd 0ð Þ

which is the instantaneous correlation matrix of the return process. �
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Proof of Theorem 5: This follows from the multivariate extension of Theorem 1 of Liu

and Wu (2010) applied to the frequency h ¼ 0: The weighting scheme automatically satis-

fies their condition 1. See also Andrews (1991). �

Proof of Equation (36): For simplicity we suppose that pt ¼ dTpt�1 þ et with et i.i.d. with

variance r2
e , and dT ¼ 1þ c

kT
; where kT ¼ Ta; a 2 ð0;1=2Þ and some positive constant c.

According to Phillips and Magdalinos (2007, Theorem 4.3) we have

ðd�T
T =kTÞ

XT

t¼1

pt�1et; ðd�2T
T =k2

TÞ
XT

t¼1

p2
t�1

 !
) ðXY;Y2Þ;

where X, Y are i.i.d. copies of a Nð0; r2
e =2cÞ distribution.

Since the observed return Xt is the difference of the log prices we have Xt ¼ pt � pt�1

¼ c
kT

pt�1 þ et; and consequently the sum of the squared return is

XT

t¼1

X2
t ¼

c2

k2
T

XT

t¼1

p2
t�1 þ

2c

kT

XT

t¼1

pt�1et þ
XT

t¼1

e2
t

) c2

k2
T

k2
Td2T

T Y2 þ 2c

kT
kTdT

TXY þ Tr2
e

¼ c2d2T
T Y2 þ R;

where R is a generic remainder term that contains smaller order terms. The first term domi-

nates the others because d2T
T ¼ ð1þ c

kT
Þ2T !1 very fast. Therefore, we have

d�2T
T

XT

t¼1

X2
t ) c2Y2: (57)

Likewise,

Xtð2Þ ¼ pt � pt�2 ¼ ðd2
T � 1Þpt�2 þ et þ dTet�1 ’

2c

kT
pt�2 þ et þ dTet�1;

by the Binomial approximation because c=kT ¼ c=Ta becomes negligible as T gets bigger.

Therefore,

d�2T
T

XT

t¼1

Xtð2Þ2 ) 4c2Y2:

Similarly for general K, as T !1 we have:

XtðKÞ ¼ dK
T � 1

� �
pt�K þ

XK�1

j¼0

dj
Tet�j

d�2T
T

XT

t¼1

XtðKÞ2 ) K2c2Y2:

(58)
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In fact, using Cramér–Wold device it can be shown that the convergence in Equations (57)

and (58) is joint. Therefore, by the continuous mapping theorem

dVRðKÞ 

XT

t¼1

XtðKÞ2

K
XT

t¼1

X2
t

!P K;

as required. �

PROOF OF THEOREM 6: From Equations (37) and (38), it is straightforward to see that

Xtþi ¼ ðt þ iÞlþ l0 þ
Xtþi

j¼1

gj þ etþi

var ðXtþiÞ ¼ Re þ
t þ i

T
Rg and cov ðXtþi;XtþkÞ ¼

t þ i

T
Rg

for i;k ¼ 0;1; . . . ;K� 1 and i< k. Consequently, we have

var ðXt þXtþ1 þ � � � þXtþK�1Þ ¼ K2 Rg

T
t þ

XK�1

j¼1

1� j

K

� �2
 !

þ KRe

VRTðKÞ ¼ Rg
T þ 1

2T
þ Re

� ��1=2

KRg
T þ 1

2T
þ 1

T

XK�1

j¼1

1� j

K

� �2
 !

þ Re

" #
Rg

T þ 1

2T
þ Re

� ��1=2

so that

1

K
lim
T!1

VRTðKÞ ¼ Rg
1

2
þ Re

� ��1=2

Rg
1

2
þ 1

K
Re


 �
Rg

1

2
þ Re

� ��1=2

! Rg
1

2
þ Re

� ��1=2 1

2
Rg Rg

1

2
þ Re

� ��1=2

as K!1, completing the proof. �

PROOF OF THEOREM 7: It is straightforward to see that

ffiffiffiffi
T
p 1

d

Xd

i¼1

ð dVRdþ;iiðKÞ � 1Þ
" #

¼
ffiffiffiffi
T
p
� 1
d

Xd

i¼1

2
XK�1

j¼1

1� j

K

� �bciiðjÞbr ii

 !

¼ 1

d

Xd

i¼1

XK�1

j¼1

cj

rii

1ffiffiffiffi
T
p

XT

t¼jþ1

~Xit
~Xi;t�j � ½max 1�i�dðXi � liÞ� �

(
1

d

Xd

i¼1

XK�1

j¼1

cj

rii

1ffiffiffiffi
T
p

XT

t¼1þj

~Xit

)

� ½max 1�i�dðXi � liÞ� �
(

1

d

Xd

i¼1

XK�1

j¼1

cj

rii

1ffiffiffiffi
T
p

XT

t¼1þj

~Xi;t�j

)
þ 1

d

Xd

i¼1

XK�1

j¼1

cj

rii

T � j� 1ffiffiffiffi
T
p ðXi � liÞ2

þ opð1Þ

¼ 1ffiffiffiffi
T
p

XT

t¼K

1

d

Xd

i¼1

XK�1

j¼1

cj
~Xit

~Xi;t�j

rii

" # !
þ opð1Þ

(59)

because by uncorrelatedness of ~Xt
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P jmax 1�i�dðXi � liÞj > e
� �

�
Xd

i¼1

1

e2
E

1

T

XT

t¼1

~Xit

 !2

� d

e2

1

T2

XT

t¼1

max 1�i�dE ~X
2

it

� �
¼ O

d

T

� �
;

and by the moment–cumulant relationship formula and Assumption S, we have

P max 1�i�dj
1

T

XT

t¼1

~X
2

it � Eð ~X
2

itÞj > e

 !
� 1

e2

Xd

i¼1

1

T2

XT

t¼1

XT

s¼1

Covð ~X
2

it;
~X

2

isÞ

� 1

e2

Xd

i¼1

1

T2

XT

t¼1

XT

s¼1

½2ðciiðt � sÞÞ2 þ jiiiiðs; s; 0;0Þ� ¼ O
d

T

� �
;

from which it follows that max ijbrii � riij ¼ opð1Þ. The f:g terms can be easily shown to be

bounded in probability using Chebyshev’s inequality and uncorrelatedness of ~Xt.

It now suffices to derive the limiting distribution of Equation (59). We will only briefly

sketch the proof as the main arguments closely follow those of proof of Theorem 2. Since

the asymptotic variance

qdð1Þ� ¼ lim
d!1

1

d2
s>QdðKÞs ¼ lim

d!1

1

d2

Xd

i¼1

Xd

r¼1

XK�1

j¼1

XK�1

k¼1

cjck

riirrr
Eð ~Xit

~Xrt
~Xi;t�j

~Xr;t�kÞ
" #

; (60)

where s ¼ vecðIdÞ, is finite by Assumption SD, we see that upon checking the required con-

ditions the central limit theorem for martingale difference applies, yielding

1ffiffiffiffi
T
p

XT

t¼K

1

d

Xd

i¼1

XK�1

j¼1

cj
~Xit

~Xi;t�j

rii

" # !
) Nð0;qdð1Þ�Þ:

Note that the conditional Lindeberg condition can be shown to hold by repeatedly using

Minkowski’s inequality and by Assumption A0. The remaining consistency result follows by

the ergodic theorem and Assumption SD, completing the proof. �
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