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We consider nonlinear moment restriction semiparametric models where both the
dimension of the parameter vector and the number of restrictions are divergent with
sample size and an unknown smooth function is involved. We propose an estimation
method based on the sieve generalized method of moments (sieve-GMM). We establish
consistency and asymptotic normality for the estimated quantities when the number
of parameters increases modestly with sample size. We also consider the case where
the number of potential parameters/covariates is very large, i.e., increases rapidly with
sample size, but the true model exhibits sparsity. We use a penalized sieve GMM
approach to select the relevant variables, and establish the oracle property of our method
in this case. We also provide new results for inference. We propose several new test
statistics for the over-identification and establish their large sample properties. We
provide a simulation study and an application to data from the NLSY79 used by Carneiro
et al. (2011).

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

We consider a class of semiparametric models with Euclidean valued parameters and unknown function valued
arameters, where we allow the number of covariates and hence Euclidean valued parameters to be large, i.e., to increase
o infinity. In the first part of the paper we consider the case where the dimensionality is moderate, and in the second part
f the paper we consider the case where the number of possible covariates is extremely large. Large models are the focus
f much current research, see Athey et al. (2017), Belloni et al. (2014c). We suppose that the model is defined through a
et of unconditional moment conditions:

E[m(V , α
⊺

1X1, . . . , α
⊺

r Xr , g1(θ
⊺

1Z1), . . . , gs(θ
⊺

s Zs))] = 0, (1.1)

where m is a known vector of functions whose dimension q is large, α1, . . . , αr are unknown Euclidean-valued parameters
whose respective dimensions pj may be large, while g = (g1, . . . , gs) is a vector of unknown smooth functions and the
index vectors θ1, . . . , θs are unit vectors with positive first elements satisfying usual identification condition for single-
index model. Both r and s are fixed. The random variable V typically represents a dependent variable and possible
instrumental variables, while the vectors Xj(1 ≤ j ≤ r) and Zℓ(1 ≤ ℓ ≤ s) are explanatory variables. We suppose that
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j is of fixed finite dimension, but the dimension of X and V ) may be large, i.e., diverge. We suppose that a random
ample {Vi, Xji, Zℓi, 1 ≤ j ≤ r, 1 ≤ ℓ ≤ s, i = 1, . . . , n} is observed and that p = p(n) → ∞ and q = q(n) → ∞ as
→ ∞ with q > p ≡ p1 + · · · + pr where pj is the dimension of Xj. For our main inference results we consider the

ase where (at least) p/n → 0, similar to Portnoy (1984, 1985), Mammen (1989). The moment restriction model (1.1)
eatures high dimensionality in two ways: high dimensional Euclidean parameters (αj) and an unknown function vector
(·) with infinite dimensional parameter elements (gℓ); the number of moment conditions necessarily increases to infinity.
he setting includes as a special case the partial linear regression model with some weak instruments and endogeneity,
obinson (1988), except in our case the number of covariates in the linear part may be large, i.e., increase to infinity
ith sample size. There are sometimes many binary covariates whose effect can be restricted to be linear, perhaps after
transformation of response, but other continuous covariates whose effect is thought to be nonlinear. In panel data, one
ay wish to allow for many fixed effects in an essentially linear fashion, but capture the potential nonlinear effect of a
ritical covariate or a continuous treatment variable. If both the cross-sectional and time series dimension are large then
hese quantities are all estimable. See for example Connor et al. (2012).

We propose using the Generalized Method of Moments (GMM) to deliver simultaneous estimation of all unknown
uantities from a large dimensional moment vector. There is a considerable literature on GMM in parametric cases
ollowing Hansen (1982). There is a general theory available for non-smooth objective functions of finite dimensional
arameters (e.g., Pakes and Pollard (1989) and Newey and McFadden (1994, Section 7)). Some recent work has focused
n the extension to the case where there are many moment conditions but some conditions are more informative than
thers, the so-called weak instrument case, see Newey and Windmeijer (2009), Han and Phillips (2006). There is a large
iterature on semiparametric estimation problems with smooth objective functions of both finite and infinite dimensional
arameters (e.g., Bickel et al. (1993), Andrews (1994), Newey (1994), Newey and McFadden (1994, Section 8), Pakes and
lley (1995), Chen and Shen (1998), Ai and Chen (2003)). Chen et al. (2003) extended this theory to allow for non-smooth
oment functions. Other work has sharpened and broadened the applicability of the semiparametric case where the
umber of Euclidean parameters is finite but there are unknown function-valued parameters and endogeneity (see, for
xample Chen and Liao (2015)). Our work extends the semiparametric theory to the case where the parametric component
s growing in complexity, which is of particular relevance for modern big data settings.

We simultaneously estimate αj, gℓ and θℓ in the parameter spaces defined below. The parameters of interest are
articular functionals of αj and gℓ for which we have plug-in estimators once we obtain the estimates of αj and gℓ.
hen et al. (2003) study a fixed-dimensional moment restriction model containing an unknown function. They consider
oth two-step and profiled two-step methods. A similar approach is used in Chen and Liao (2015). Kernel estimation
echniques in particular require an additional (albeit related) estimating equation for the function valued part, and either
wo-step or profile methods are common, see, for example, Powell (1984). We use the sieve methodology (see Chen
2007) for a review) to estimate the model (1.1) in one step. By the method of sieve, unknown function is completely
arameterized, which enables us to estimate the parameter vectors αj, the functions gℓ(·) and the index vectors θℓ in model
1.1) simultaneously. This approach also avoids high level assumptions, such as in Chen et al. (2003) and Han and Phillips
2006). We establish the consistency and (self-normalized) asymptotic normality of the parameters of interest which are
eneral functionals of αj and gℓ) and provide a feasible CLT that allows normal based inference about the parameters of
nterest. We also propose some new test statistics to address the over-identification issue, and establish their large sample
roperties.
Even though the sieve method can parameterize unknown functions, the estimates of θℓ are still challenging. Note that

he importance of the involvement of single-index structure in conditional moment restriction model has been mentioned
n Ai and Chen (2003, p. 1796), but there is no explicit treatment for the estimation of index vector, as far as we are
ware, in the literature on moment or conditional moment restriction models. The reason might be, in our opinion, that
he commonly used profile method dealing with single-index structure in regression models is not applicable because the
oment function in general is no longer linear in its components. See, for example, Dong et al. (2016) and the reference

herein for the use of profile method in single-index regression. We offer a solution for this situation.
It is clear that when all vectors Zℓ are reduced to be scalar, the single-index structure in model (1.1) is reduced to

onparametric function gℓ(Zℓ), and hence a relatively simpler model is

E[m(V , α
⊺

1X1, . . . , α
⊺

r Xr , g1(Z1), . . . , gs(Zs))] = 0. (1.2)

owever, this model also has wide applications because the number of unknown functions can be any fixed integer. For
ome discussions we just consider the case where r = 1 and s = 1.
In the second part of the paper we consider the ultra-high dimensional case where the number of potential X variables

s extremely large, i.e., much larger than the sample size, but only a smaller subset of them are relevant, i.e., the parametric
art of the model possesses sparsity. That is, we suppose that p ≫ n but α contains many zero elements, although we do

not know a priori the location of these zeros. This case has been considered by a number of recent studies in econometrics,
such as Belloni et al. (2016b), and is the focus of recent research in statistics. To address this issue we combine the GMM
objective function with a specific penalty function, a folded concave penalty function (see Fan and Li (2001)). We show
that variable selection and estimation can be done simultaneously and our method achieves the oracle property, like Fan
and Liao (2014). We also provide a result on post model selection inference, which allows us to use the distribution

theory obtained in the first part of the paper. An alternative framework here is the approximate linear model (ALM)
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ramework considered in inter alia, Belloni et al. (2016b). In that setting there is no formal distinction between parametric
nd nonparametric components in the ALM and the methodology is built around the selection tools. Our more traditional
emiparametric approach is explicit about the model components and their relative complexity. In particular, we specify
hat g is nonparametric and has to be estimated simultaneously with the parametric part. We are consequently able to
ive inference results for a wider range of parameters.
A common genesis for the unconditional moment restrictions (1.1) is conditional moment restrictions perhaps

rom some economic model (Hansen, 1982). Let Wi be a sub-vector of (X
⊺

i , Z
⊺

i )
⊺
and let ρ(Yi, α

⊺
Xi, g(Zi)) be a known

J-dimensional vector residual. Then, suppose that (α, g) is determined by the conditional moment restriction

E[ρ(Yi, α
⊺
Xi, g(Zi))|Wi] = 0, almost surely,

which then implies E[m(Vi, α
⊺
Xi, g(Zi))] = 0 for any function m composed of the residual vector ρ multiplied by

instruments taken from the space generated by Wi. In fact, if m(Vi, α
⊺
Xi, g(Zi)) = ρ(Yi, α

⊺
Xi, g(Zi)) ⊗ ΦK (Wi), where

K (w) = (h1(w), . . . , hK (w))
⊺
is a vector of basis functions in some function space, Vi = (Yi,W

⊺

i )
⊺
and ‘‘⊗’’ denotes

he Kronecker product, then this can deliver semiparametrically efficient estimation of α in the finite dimensional case.
otice that the dimension of the function m is q = JK , which increases with K . Therefore, the pair (α, g) can be solved
rom the unconditional moment equation E[m(Vi, α

⊺
Xi, g(Zi))] = 0.

Before we conclude this section we give some important examples. One is the partial linear model with many
ndogenous covariates. Let Yi = α

⊺
Xi + g(Zi) + ei, i = 1, . . . , n, where α ∈ Rp and ei is an error term such that

[ei] = 0 for all i. Here, Xi is endogenous in the sense that E[ei|Xi] ̸= 0. To deal with the endogeneity, let Wi be
vector of instrumental variables and define a set of valid instruments λi = λ(Zi,Wi) with dimension q (q > p).
enote m(Vi, α

⊺
Xi, g(Zi)) = (Yi − α

⊺
Xi − g(Zi))λ(Zi,Wi) with Vi = (Yi,W

⊺

i )
⊺
. Then, we have the moment condition

E[m(Yi,Wi, α
⊺
Xi, g(Zi))] = 0, which can be used to identify the parameter α and the nonparametric function g(·).

Motivated by Robinson (1988) and Belloni et al. (2012) an alternative moment condition in this case is

m(Vi, α
⊺
Xi, g(Zi)) =

(
Yi − gY (Zi) − α

⊺
(Xi − gX (Zi)) , Yi − gY (Zi), (Xi − gX (Zi))

⊺)
⊗ λ(Zi,Wi),

where gY (Zi) = E(Yi|Zi) and gX (Zi) = E(Xi|Zi). Essentially this is the efficient score function for α in a special case, Bickel
et al. (1993). One can jointly estimate α, gY , gX from this moment condition and then obtain g(Z) = gY (Z) − α

⊺
gX (Z).

Another example is the model studied in Carneiro et al. (2011) where the authors consider the following in their
equation (9):

E[Y − X
⊺
δ − P(Z)X

⊺
α − R(Z)|X, Z] = 0,

E[I(S = 1) − P(Z)|Z] = 0,
(1.3)

where P(·) and R(·) are nonparametric, I(·) is the indicator function, and S is the selection indicator. The outcome variable
is the log wage, and X, Z are observed individual characteristics. Here, because the dimension of Z in general is greater
than three, a single-index structure is adopted for the nonparametric function P(Z), i.e., P(Z) := Λ(θ

⊺

0Z). Furthermore, the
function R(z) = g(P(z)), where g is unknown. The dimension of X may be large. We consider this model in our application.

The rest of the paper is organized as follows. Section 2 develops an estimation procedure. Section 3 establishes the
large sample theory for the proposed estimators. In Section 4, we provide two methods for testing over-identification.
Section 5 proposes and studies selection procedures for choosing covariates/parameters under sparsity. In Section 6, we
evaluate the finite sample performance of the proposed estimation procedures using simulations. In Section 7, we apply
our method to investigate the effect of schooling on earnings using the model and data of Carneiro et al. (2011). The last
section concludes.

Throughout, ∥ · ∥ can be either Euclidean norm for vector or Frobenius norm for matrix, or the norm of functions in
function space that would not arise any ambiguity in the context; ⊗ denotes Kronecker product for matrices or vectors;
:= means equal by definition; Ir is the identity matrix of dimension r .

2. Estimation procedure

2.1. Moment restriction without single-index structure

We start with model (1.2). Since sieve method is used to tackle the nonparametric functions, as can be seen in the
sequel sections the general case of model (1.2) with r ≥ 1 and s ≥ 1 is theoretically equivalent to its special case where
r = s = 1. The only price we pay for r > 1 and/or s > 1 is the complexity of notation. This is the same for model (1.1),
that is, the theory on the special case with r = s = 1 of model (1.1) can be extended to the general case straightforwardly.
Our asymptotic theory and inference then mainly focus on the special cases for both (1.1) and (1.2) where r = s = 1,
but for completion both the estimation procedure and the associated theory for the general model setting are given in
Appendix E of the supplementary file of this paper.

Consider
⊺

E[m(V , α X, g(Z))] = 0. (2.1)

3
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ere, we suppose that g ∈ L2(Z, π ) = {f :
∫
Z f 2(z)π (z)dz < ∞} a Hilbert function space, Z ⊂ Rd, where π (·) is a

ser-chosen density function on Z. The choice of the density π relates to how large the Hilbert space is expected, since
he thinner the tail of the density is, the larger the space is. For example, L2(R, 1/(1 + z2)) ⊂ L2(R, exp(−z2)). An inner
roduct in the Hilbert space is given by ⟨f1, f2⟩ =

∫
Z f1(z)f2(z)π (z)dz, and hence the induced norm ∥f ∥ =

√
⟨f , f ⟩ for any

f1(z), f2(z), f (z) ∈ L2(Z, π ). Two functions f1, f2 ∈ L2(Z, π ) are called orthogonal if ⟨f1, f2⟩ = 0, and further are orthonormal
if ∥f1∥ = 1 and ∥f2∥ = 1.

Assumption 2.1. Suppose that {ϕj(·)} is a complete orthonormal function sequence in L2(Z, π ), that is, ⟨ϕi(·), ϕj(·)⟩ = δij
the Kronecker delta.

Recall that any Hilbert space has a complete orthogonal sequence (see Theorem 5.4.7 in Dudley (2003, p. 169)). For the
multivariate function setting, the orthonormal sequence {ϕj(·)} can be constructed from the tensor product of univariate
orthogonal sequences. See, e.g. Chapter one of Gautschi (2004), Chen (2007) for more discussion.

For the function g(z) ∈ L2(Z, π ), we may have an infinite orthogonal series expansion

g(z) =

∞∑
j=0

βjϕj(z), where βj = ⟨g, ϕj⟩, (2.2)

where the convergence is in the norm sense in the space. Moreover, if g is smooth, establishing pointwise convergence
is possible. See Dong et al. (2016). For positive integer K , define gK (z) =

∑K−1
j=0 βjϕj(z) as a truncated series and γK (z) =∑

∞

j=K βjϕj(z) the residue. Then, gK (z) → g(z) as K → ∞. For better exposition, denote ΦK (z) = (ϕ0(z), . . . , ϕK−1(z))
⊺
and

β = (β0, . . . , βK−1)
⊺
two K -vectors. Thus, gK (z) = β

⊺
ΦK (z).

Our primary goal is to estimate the unknown parameters (α, g) and functionals thereof. Define Θ = {(a, f ) : a ∈

Rp, f ∈ L2(Z, π )}, the parameter space for model (2.1) and

∥(a, f )∥ = ∥a∥E + ∥f ∥L2 , (2.3)

where ∥ · ∥E denotes the Euclidean norm on Rp and ∥f ∥L2 signifies the norm on the Hilbert space, of which the subscript
may be suppressed whenever no ambiguity is incurred. The consistency studied below is defined in terms of this topology.

In order to facilitate the implementation of nonlinear optimization, α should be confined to a compact subset of
Rp and the truncated series gK (z) should be included in an expanding finite dimensional bounded subset of L2(Z, π ).
It is noteworthy that in an infinite dimensional space, a bounded set may not necessarily be compact. See Chen and
Pouzo (2012) for detailed discussion on the compactness. The following assumption ensures that our optimization is
implemented over a compact set, so that our estimation does not suffer from the ill-posededness issue that is encountered
in the literature, such as Chen (2007), Blundell et al. (2007).

Assumption 2.2. Suppose that B1n and B2n are positive real numbers diverging with n such that α in model (1.1) is included
in Θ1n := {a ∈ Rp

: ∥a∥ ≤ B1n} and for sufficient large n, gK (z) is included in Θ2n := {b⊺
ΦK (z) : ∥b∥ ≤ B2n}. Define

Θn = Θ1n ⊗ Θ2n.

Here, unlike in a standard single-index model, we do not require ∥α∥ = 1 for identification. This is because the function
m(·) is known and hence we are able to identify any scaling for α. Assumption 2.2 allows for the bounds of α to diverge
with the sample size that entertains the divergence of its dimensionality. Furthermore, since ∥gK∥ ≤ ∥g∥ it is clear that
there exists an integer n0 such that gK (z) ∈ Θ2n for all n ≥ n0. On the other hand, Θ2n, the so-called linear sieve space in
the literature, can approximate the entire function space with the increase of the sample size, because any f (z) ∈ L2(Z, π )
can be approximated by a combination of this type, b⊺

ΦK (z), arbitrarily in the sense of norm. Thus, Θ can be approximated
by Θn as n → ∞. More importantly, our setting is similar to but broader than that discussed in Newey and Powell (2003).

We estimate α and β by

(̂α, β̂) = argmin
a∈Rp,b∈RK

∥Mn(a, b)∥2, subject to ∥a∥ ≤ B1n and ∥b∥ ≤ B2n,

where Mn(a, b) =
1

√
q
1
n

n∑
i=1

m(Vi, a
⊺
Xi, b

⊺
ΦK (Zi)).

(2.4)

ere, the involvement of q in Mn(a, b) takes into account the divergent dimensions of the vector m in order to avoid the
ssue that ∥Mn(a, b)∥ could be large even if each element is small that would arise if we had not put q into Mn(a, b). This
ssue does not arise when the vector-valued m function has fixed dimension. Define for any z ∈ Z,

ĝ(z) = β̂
⊺
ΦK (z), (2.5)

hich is our estimator of g(z). In the next section we establish the asymptotic consistency of this estimator in the sense
hat ∥(̂α − α, ĝ − g)∥ → 0 as n → ∞, where the norm is defined in (2.3).
P
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.2. Moment restriction with single-index structure

Two approaches are introduced in this subsection to deal with the moment restriction models with a single-index
etting, one is direct and the other is indirect, but they are used for different situations.
Similar to the preceding section, we only focus on the estimation procedure for model (1.1) in the case where

= s = 1,

E[m(V , α
⊺
X, g(θ

⊺

0Z))] = 0. (2.6)

ur goal is to estimate α, θ0 and g where θ0 satisfies identification condition: ∥θ0∥ = 1 and the first element is positive.
e suppose that the function g has support R and g ∈ L2(R, exp(−w2)). Note that the Hilbert space L2(R, exp(−w2))

s sufficiently large that includes all polynomials, powers and bounded functions; the normalized Hermite polynomials
j(w) = (

√
π2jj!)−1/2Hj(w) form an orthonormal basis in L2(R, exp(−w2)), where Hj(w) is the jth Hermite polynomial,

nd
∫
hi(w)hj(w) exp(−w2)dw = δij; meanwhile, as a particular case of (2.2), g(w) also admits an orthogonal expansion,

(w) =
∑

∞

j=0 cjhj(w). Hence, by virtue of a property of Hermite polynomials given in Lemma A.4 and ∥θ0∥ = 1 with
0 = (θ01, . . . , θ0d)

⊺
, for any k ≥ 1, we have

g(θ
⊺

0Z) =

k−1∑
j=0

cjhj(θ
⊺

0Z) + γk(θ
⊺

0Z) =

k−1∑
j=0

∑
|u|=j

aju(θ0)Hu(Z) + γk(θ
⊺

0Z),

here γk(·) is the truncation residue, u is a multi-index, u = (u1, . . . , ud), |u| = u1 + · · · + ud and

aju(θ0) =
πd/42j/2j!

√
u1! · · · ud!

cjθu
0 , θu

0 =

d∏
j=1

θ
uj
0j , Hu(Z) =

d∏
j=1

huj (Zj).

This means that g(θ
⊺

0Z) can be approximated by a combination of β
⊺
ΦK (Z) where ΦK (Z) is a vector consisting of all

Hu(Z) for |u| = j and 0 ≤ j ≤ k − 1, and similarly β consists of all aju(θ0) in the same ordering as ΦK (Z), that is,
g(θ

⊺
Z) = β

⊺
ΦK (Z) + γk(θ

⊺

0Z) and γk(·) = o(1) as k → ∞ in a sense.
Therefore, similar to (2.4), we may estimate α and β by

(̂α, β̂) = argmin
a∈Rp,b∈RK

∥Mn(a, b)∥2, subject to ∥a∥ ≤ B1n and ∥b∥ ≤ B2n,

where Mn(a, b) =
1

√
q
1
n

n∑
i=1

m(Vi, a
⊺
Xi, b

⊺
ΦK (Zi))φ(∥Zi∥) and φ(v) = exp(−v2/2).

(2.7)

The involvement of φ(·) in Mn(a, b) is to deal with the rapid divergence of the fourth moment of hj(·). This technique
is also used in Dong et al. (2021). Notice that from β̂ , along with the identification condition on θ0 we can derive the
stimators of g(·) and θ0, as shown in the next section.
A straightforward algebra yields that the length of ΦK (Z) is about O(kd), that limits the dimension of Z in a narrow

ange. If d is relatively large, this method would fail to work since kd grows extremely fast. Thus, the direct method is
pplicable to the case where d is small. This is the reason why we are going to introduce an indirect method as another
pproach.
Indeed, as far as we are aware, in some economic theory though a single-index structure is involved, one may be able

o estimate the unknown index vector by another equation. With the estimate of θ0 at hand, model (2.6) is reduced to
odel (2.1), so that α and g can be estimated by the procedure (2.4). We shall give a detailed description on the estimation
f θ0 in an economic context in the next section.

. Asymptotic theory

.1. Consistency

Before establishing our asymptotic theory for model (2.1), we state with some assumptions that we rely on in the
equel.

ssumption 3.1. Suppose that

(a) For each n, {(Vi, X
⊺

i , Z
⊺

i ), i = 1, . . . , n} is an independent and identically distributed (i.i.d.) sequence (although the
distribution depends on n, which we suppress notationally in the sequel) from (2.1);

(b) For the density fZ of Z , there exist two constants, 0 < c < C < ∞, such that cπ (z) ≤ fZ (z) ≤ Cπ (z) on the support
Z of Z , where π (z) is given in the preceding section;

(c) Each moment function mj(·, ·, ·), j = 1, . . . , q, is continuous in the second and third arguments;
(d) q(n) − p(n) ≥ K .
5
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The i.i.d. property in Assumption 3.1(a) simplifies the presentation and some of the calculations, although it is possible
to relax it to a weakly dependent data setting. Regarding Assumption 3.1(b), the relation between the density of the
variable Z and the function space is widely used in the literature. See, e.g. Condition A.2 and Proposition 2.1 of Belloni
t al. (2015, p. 347). This condition is used to bound the eigenvalues of the Gram matrix for the sieve method. When the
upport is compact, the existing literature simply imposes that the density fZ (z) is bounded away from zero and above
rom infinity that is a special case where π (z) ≡ 1 in our setting. Our theory allows for unbounded support for Z provided
he density π is chosen appropriately. In the unbounded support case this assumption amounts to having an upper and
ower bound on the tails of the covariate density. There is a large literature concerned with estimation of tail thickness
arameters in statistics and financial econometrics, see for example Embrechts et al. (1999), which could be adapted to
rovide guidance on suitable choices of π . Regarding Assumption 3.1(c), the continuity of the m function is weak, and
ommonly used moment functions satisfy this, including those of the quantile-type. In Assumption 3.1(d) we allow for
ossible overidentification of the parameter vector in the moment conditions, and we shall discuss this issue further in
he next section.

ssumption 3.2. Suppose that there is a unique function g(·) ∈ L2(Z, π ) and for each n there is a unique vector α ∈ Rp

uch that for any δ > 0, there is a sufficiently small constant ϵn ≡ ϵn(δ) > 0 such that

inf
(a,f )∈Θ

∥(a−α,f−g)∥≥δ

q−1
∥Em(Vi, a

⊺
Xi, f (Zi))∥2 > ϵn,

nd possibly ϵn → 0 as n → ∞ but with a rate slower than max(∥γK∥, n−1).

The squared norm is scaled down by its dimension due to the same reason as in the formulation of Mn in the
ast section. This type of conditions and global identifications, is commonly made in the conventional literature with
n = ϵ > 0 independent of n, such as Pakes and Pollard (1989, p. 1308) and Chen et al. (2003, p. 1593). It guarantees
he uniqueness of the true parameter in the parameter space satisfying the moment condition and hence ensures the
onsistency. However, our assumption is much weaker than the conventional one by allowing ϵn → 0 with some rate.
uch ϵn enables us to identify the parameter because in a neighbourhood of the true parameter the criterion function
ttenuates to zero at rate max(∥γK∥, n−1) shown in Lemma A.1.

ssumption 3.3. Suppose that for each n , there is a measurable positive function A(V , X, Z) such that

q−1/2
∥m(V , a

⊺

1X, f1(Z)) − m(V , a
⊺

2X, f2(Z))∥ ≤ A(V , X, Z)[∥a1 − a2∥ + |f1(Z) − f2(Z)|]

or any (a1, f1), (a2, f2) ∈ Θn, where (V , X, Z) is a realization of (Vi, Xi, Zi) and A(·, ·, ·) satisfies that E[A2(Vi, Xi, Zi)] < ∞.

This is a kind of Lipschitz condition. We note that this condition can be substituted by some high level condition
such as stochastic equicontinuity, in order to study the large sample behaviour of the estimators. See, for instance, Pakes
and Pollard (1989), Chen et al. (2003). As argued in Chen et al. (2003, p. 1597), when the moment function is Lipschitz
continuous, the covering number with bracketing is bounded above by the covering number for the parametric space, so
stochastic equicontinuity condition holds. Among others, Chen and Shen (1998) used this approach. We would like to
keep this low level condition because additionally it facilitates calculation in some situations.

The positive function A(V , X, Z) may be viewed as the upper bound of the norm of the partial derivatives of
q−1/2m(V , a⊺

X, w) with respect to the vector a and the scalar w, respectively, and thus the condition is fulfilled if
the second moment of A(V , X, Z) is bounded. The assumption guarantees the approximation of m(Vi, α

⊺
Xi, β

⊺
ΦK (Zi)) to

m(Vi, α
⊺
Xi, g(Zi)), because

∥m(Vi, α
⊺
Xi, β

⊺
ΦK (Zi)) − m(Vi, α

⊺
Xi, g(Zi))∥

≤A(Vi, Xi, Zi)∥g(Zi) − β
⊺
ΦK (Zi)∥ = OP (1)∥γK∥ = oP (1)

by virtue of Assumption 3.1(b). Also, it ensures that ∥Em(Vi, α
⊺
Xi, β

⊺
ΦK (Zi))∥ = o(1), since Em(Vi, α

⊺
Xi, g(Zi)) = 0. More

importantly,

q−1E∥m(Vi, a
⊺
Xi, f (Zi))∥2

≤2q−1E∥m(Vi, 0, 0)∥2
+ 2E[A(Vi, Xi, Zi)2][∥a∥2

+ Ef (Zi)2] = O(B2
1n + B2

2n)

uniformly on (a, f ) ∈ Θn.

Theorem 3.1 (Consistency). Suppose that Assumptions 2.1–2.2 and 3.1–3.3 hold, and that B2
1n + B2

2n = o(n). Then, we have
∥(̂α − α, ĝ − g)∥ →P 0 as n → ∞ for (̂α, ĝ) given by (2.4).
The proof is given in Appendix B.
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.2. Limit distributions of the estimators

Since the dimension of α diverges in model (2.1), we cannot establish a limit distribution for α̂ − α itself. Instead, we
hall consider some finite dimensional transformations of α, for which plug-in estimators are used. Likewise, we consider
unctionals of g(·). In many applications both types of quantities are of interest. For example, the weighted average
arginal treatment effect (MTE) parameter in Carneiro et al. (2011) depends on both α and g . In financial econometrics
leading example is the conditional value at risk parameter, which depends on the parameters of the dynamic mean and
ariance model and on the quantile of the error distribution.
Let L be a transformation from Rp

↦→ Rµ with µ ≥ 1 fixed, and let F = (F1, . . . , Fν)
⊺
with fixed ν be a vector of

unctionals on L2(Z, π ). Though in the literature one usually takes linear L with µ = 1 (see, e.g. Theorem 4.2 in Belloni
t al. (2015, p. 352) and several results such as Theorems 2 and 6 in Chang et al. (2015)), we allow that L may have
ither linear or nonlinear components or both with µ ≥ 1. The elements of F can be, for example, as described in Newey
1997, p. 151), the integral of ln[g(z)] on some interval, which stands for consumer’s surplus in microeconomics. Other
xamples include: the partial derivative function, the average partial derivative, and the conditional partial derivative.
hus, we shall consider the limit distributions of L (̂α)−L (α) and F (̂g)−F (g). Towards this end, we need the following
ssumptions.

ssumption 3.4. (a). Suppose that each element function mj of the m function is differentiable with respect to its
econd and third arguments up to the second order; the second derivative functions satisfy a Lipschitz condition in a
eighbourhood of the (α, g):

|∂ (u)mj(V , α
⊺
X, g(Z)) − ∂ (u)mj(V , a

⊺
X, f (Z))| ≤ Bj(V , α

⊺
X, g(Z))(∥a − α∥ + ∥g − f ∥)τ

or some τ ∈ (0, 1], where u is two-dimensional multiple index with |u| = 2, ∂ (u) stands for the partial derivative of the
unction with respect to the second and third arguments and Bj are positive functions such that max1≤j≤q E[Bj(V , α

⊺
X,

(Z))2] < ∞.
(b). Let the g function be smooth with the smoothness order required being spelt out later.

The Lipschitz condition for the components of the m function enables us to approximate the Hessian matrix within a
eighbourhood of the true parameter, which in turn facilitates the derivation of the limit theory. It is well known that
certain smoothness order of the g function is required to get rid of the truncation residues. Such a requirement is

mplicitly spelt out in Assumption 3.6.

ssumption 3.5. Suppose that

(a) E
m(V , α

⊺
X, g(Z))

2 = O(q), E∥X∥
2

= O(p) and E∥ΦK (Z)∥2
= O(K );

(b) E
 ∂

∂um(V , α
⊺
X, g(Z))

2 = O(q), and E
 ∂

∂w
m(V , α

⊺
X, g(Z))

2 = O(q);

(c) E
 ∂

∂um(V , α
⊺
X, g(Z)) ⊗ X

2 = O(pq), and
E
 ∂

∂w
m(V , α

⊺
X, g(Z)) ⊗ ΦK (Z)

2 = O(Kq);

(d) E
 ∂2

∂u2
m(V , α

⊺
X, g(Z)) ⊗ XX

⊺
2 = O(p2q), and

E
 ∂2

∂w2 m(V , α
⊺
X, g(Z)) ⊗ ΦK (Z)ΦK (Z)

⊺
2 = O(K 2q).

We have the following comments. It is not necessary that all elements of the m vector have uniformly bounded second
moments to satisfy the first supposition in 3.5(a). Because the dimension p of X diverges with n, in 3.5(a) we allow that
he second moment E∥X∥

2 diverges too; moreover, E∥ΦK (Z)∥2
= O(K ) can be true for many orthogonal sequences given

he relation between the densities of Z and the L2 space in Assumption 3.1. In 3.5(b) we impose a similar condition for
he norm of the function’s first partial derivatives, while in 3.5(c) and (d) we stipulate moment conditions for the norms
f the tensor product for regressor and the partial derivatives (the first and second, respectively) of the m function. These
old similarly as (a) and (b) but with larger dimensions, particularly when the m function is linear in its arguments.

ssumption 3.6. Suppose that

(a) ∥γK∥p = o(1), n−1p2 = o(1);
(b) ∥γK∥K = o(1), n−1K 2

= o(1).

Assumption 3.6 stipulates the relation between the truncation parameter K , the diverging dimension p of the regressor,
nd the sample size. Normally, ∥γK∥

2
= O(K−a), where a > 0 is related to the smoothness order of the function g . See,

for example, Newey (1997). Thus, the assumption implicitly puts some conditions on the smoothness. Notice that the
combination of 3.6(a) and (b) implies that ∥γK∥

2pK = o(1) and n−1pK = o(1), which are used in the proof of the lemmas
in the supplemental material.
7
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ssumption 3.7. The partial derivatives of m(v, u, w) satisfy

(a) q−1/2
 ∂

∂um(V , a⊺

1X, f1(Z)) −
∂
∂um(V , a⊺

2X, f2(Z))
 ≤ A1(V , X, Z)[∥a1 − a2∥ + |f1(Z) − f2(Z)|], where E[A1(V , X, Z)2] <

∞ and E[A1(V , X, Z)2∥X∥
2
] = O(p).

(b) q−1/2
 ∂

∂w
m(V , a⊺

1X, f1(Z)) −
∂

∂w
m(V , a⊺

2X, f2(Z))
 ≤ A2(V , X, Z)[∥a1 −a2∥+|f1(Z) − f2(Z)|], where E[A2(V , X, Z)2] <

∞ and E[A2(V , X, Z)2∥ΦK (Z)∥2
] = O(K ).

The assumption is similar to Assumption 3.3 but is stipulated for the partial derivatives with extra requirements that
E[A1(V , X, Z)2∥X∥

2
] = O(p) and E[A2(V , X, Z)2∥ΦK (Z)∥2

] = O(K ). This is due to the divergence of the dimensions and the
argument in Assumption 3.5

Recall the Fréchet derivative operator for an operator from one Banach space to another. It is a bounded linear operator.
The Fréchet derivative of F at g(·) is an s-vector of functionals, denoted by F ′(g), such that

F (̂g) − F (g) = F ′(g) ◦ (̂g − g) + λ(g, ĝ − g),

where λ(g, ĝ − g) = o(∥̂g − g∥).

Assumption 3.8. (a) The transformation L possesses continuous second partial derivatives and the Hessian matrix of each
component Lj of L has uniformly bounded eigenvalues in a neighbourhood of α, i.e. λmax(∂2Lj) < ∞ over n; moreover,
the first partial derivative of L at α, ∂L (α), has full rank. (b) The functional F possesses Fréchet derivative at g(·).

The above conditions are quite natural and standard. Given the conditions in Assumption 3.8(a), L (̂α) can be
approximated well by the linear form L (α)+ ∂L (α)

⊺
(̂α −α). The condition is fulfilled in particular when L is a linear or

quadratic transform. Indeed, if L (a) = Aa, then ∂L (a) ≡ A a constant matrix and ∂2L (a) ≡ 0 for any vector a; especially
if r = 1, a linear transform L will map a vector into a scalar, L (a) = a

⊺

0a, with some a0 ∈ Rp and a0 ̸= 0. This is the case
commonly encountered in the literature. See, for example Chang et al. (2015), Belloni et al. (2015). When L is quadratic,
such as L (a) = ∥a∥2, we then have ∂L (a) = 2a and ∂2L (a) ≡ 2Ip for any a.

We are now ready to establish an asymptotic normality result. Define

Σ2
n :=Γn[ΨnΨ

⊺

n ]
−1ΨnΞnΨ

⊺

n [ΨnΨ
⊺

n ]
−1Γ

⊺

n , in which (3.1)

Γn :=

(
∂L (α)

⊺
0

0 F ′(g) ◦ ΦK
⊺

)
(µ+ν)×(p+K )

,

Ξn := E[m(V , α
⊺
X, g(Z))m(V , α

⊺
X, g(Z))

⊺
]q×q,

Ψn := E
(

∂
∂um(V , α

⊺
X, g(Z))

⊺
⊗ X

∂
∂w

m(V , α
⊺
X, g(Z))

⊺
⊗ ΦK (Z)

)
(p+K )×q

,

provided that ΨnΨ
⊺

n is invertible; here u and w stand for the second and the third arguments of the vector function
m(v, u, w), respectively.

Theorem 3.2 (Normality). Let Assumptions 2.1–2.2, 3.1–3.8 hold. Suppose also that B2
1n + B2

2n = o(n). Then for (̂α, ĝ) given
y (2.4), as n → ∞

√
nΣ−1

n

(
L (̂α) − L (α)
F (̂g) − F (g)

)
d

→ N(0, Iµ+ν), (3.2)

rovided that
√
nΣ−1

n (0
⊺

µ, (F ′(g) ◦ γK )
⊺
)
⊺

= o(1), where Σn is given by the square root of Σ2
n defined in (3.1).

The proof of the theorem is given in Appendix B. Note that the conditions in the theorem imply the consistency of the
estimator in Theorem 3.1. Apart from the diverging dimensions of Ψn and Ξn and the use of the transformation L and
he functional F , the form of the covariance matrices Σ2

n is the same as in the standard semiparametric literature, such
s Hansen (1982), Pakes and Pollard (1989), Chen et al. (2003).
In general the convergence order of F (̂g)−F (g) is proportional to (F ′(g)◦ΦK (z)

⊺
F ′

⊺
◦ΦK (z))1/2n−1/2, which is similar

o the result in Theorem 2 of Newey (1997). Here, the matrix in the front of n−1/2 is of dimension ν × ν and is associated
ith the derivative of the functional F . To understand how it affects the rate, consider a special case that ν = 1 and
(g) = g(z) for some particular z, implying F (̂g) − F (g) = ĝ(z) − g(z) and F ′(g) ≡ 1. Then, the matrix is a scalar and

he rate becomes ∥ΦK (z)∥n−1/2, which coincides with the conventional nonparametric rate of convergence established in
he literature. See, for example, Dong and Linton (2018).

In general, the convergence order of L (̂α) − L (α) is n−1/2
; however, Theorem 3.2 does not rule out the mildly weak

nstrument case where the matrix Σn is close to singular, i.e., |Σn| ̸= 0 but |Σn| → 0 with n at a certain rate; this would
educe the convergence rate of the estimators but the self-normalized distribution theory we have presented continues
o hold under our conditions. However, we do rule out the more extreme cases considered in Han and Phillips (2006),
hich would change the limiting distribution.
The requirement that

√
nΣ−1

n (0
⊺

µ, (F ′(g) ◦ γK )
⊺
)
⊺

= o(1) is an ‘‘undersmoothing’’ condition, playing a similar role to,
for example, the condition

√
nV−1K−p/d

= o(1) in Corollary 3.1 of Chen and Christensen (2015, p. 454) and Comment
K

8
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.3 of Belloni et al. (2015). The precise form of the condition may vary according to the parameters of interest and the
nderlying model; it reflects the bias variance trade-off that is relevant for estimation of those quantities in the particular
odel. In the large dimensional α case, the bias variance trade-off can be different from usual since the parametric part
an contribute a large variance; the presence of weak instruments may also affect the bias variance trade-off for certain
arameters. For inference results about g(z) it is a common practice to undersmooth/overfit to avoid the bias term. Some
ecent research advocates using extreme undersmoothing for better inference about finite dimensional parameters in
emiparametric models. See, for example Cattaneo et al. (2018). Cattaneo et al. (2018) recently develop heteroskedasticity
obust inference methods for the finite dimensional parameters of a linear model in the presence of a large number of
inearly estimated nuisance parameters in the case where essentially p is fixed but K (n) ∝ n. In this case, the function
(·) is not consistently estimated. In our methodology we pay equal attention to the function g , which itself can be of
nterest. Our methodology is also robust to conditional heteroskedasticity.

xample 3.1. Suppose that Y = α
⊺
X + g(Z) + ε, where E[ε|X, Z] = 0 and the dimension of X is p. By the Robinson

1988) transformation, Ỹ = α
⊺
X̃ + ε, where Ỹ = Y − E[Y |Z] and X̃ = X − E[X |Z]. The Robinson estimator of α is

asymptotically normal with asymptotic variance equal to (under homoskedasticity) σ 2
[E(X̃ X̃

⊺
)]−1 when p is fixed, where

σ 2
= var(ε|X, Z). If ε is i.i.d. Gaussian, this is the semiparametric efficiency bound. See Ai and Chen (2003), Chen et al.

(2003), Chen (2007), Chen and Pouzo (2009) for discussion of this model under a range of different assumptions.

Our approach considers an approximated version of the model, that is, Y = α
⊺
X + β

⊺
ΦK (Z) + e, where ΦK (Z) is a

K -vector of orthonormal basis functions on Z , e = δK (Z)+ ε and δK (Z) = g(Z)− β
⊺
ΦK (Z) that in some sense is negligible

under our conditions. Write Y = θ
⊺
λ + e, where θ = (α

⊺
, β

⊺
)
⊺
and λ = (X

⊺
, ΦK (Z)

⊺
)
⊺
. Using the moment conditions

E[ε λ] = 0, our approach gives θ̂ = (
∑n

i=1 λiλ
⊺

i )
−1∑n

i=1 Yiλi, where λi = (X
⊺

i , ΦK (Zi)
⊺
)
⊺
. This estimator has finite sample

covariance matrix conditional on Xi, Zi, i = 1, . . . , n) equal to σ 2(
∑n

i=1 λiλ
⊺

i )
−1. Making use of the block form of λ and the

orthonormality of ΦK (Z), we have the asymptotic covariance matrix for α̂: limK→∞[E(XX
⊺
) − E(XΦK (Z)

⊺
)E(ΦK (Z)X

⊺
)]−1.

Here, E(XΦK (Z)
⊺
) = E(E(X |Z)ΦK (Z)

⊺
) = E(h(Z)ΦK (Z)

⊺
) are the coefficients of the expansion of h(Z) := E(X |Z)

in terms of the orthogonal basis ΦK (Z), hence E(XΦK (Z)
⊺
)ΦK (Z) converges to E(X |Z) in some sense as K → ∞.

Finally, E(XΦK (Z)
⊺
)E(ΦK (Z)X

⊺
) → E(E(X |Z)E(X |Z)

⊺
) as K → ∞, which gives that the covariance of α̂ converges to

(E[XX
⊺
] − E(E(X |Z)E(X |Z)

⊺
))−1

= (E[̃XX̃⊺
])−1, the same as Robinson’s. We now consider the case where p → ∞. We

partition α = (α1, α
⊺
2)

⊺, where α1 is a scalar parameter of interest and α2 is of dimension p−1. It follows from Theorem 3.2
that our estimator of α1 is square root-n consistent (under our conditions) and has asymptotic variance given by σ 2/ω

(provided ω > 0), where ω = limp→∞ E
[{

X̃1 − E(X̃1X̃
⊺
2 )(E[X̃2X̃

⊺
2 ])

−1X̃2

}2]
, X̃1 = X1 − E(X1|Z) and X̃2 = X2 − E(X2|Z).

We expect this to be the semiparametric efficiency bound of α1 under Gaussian errors, although there is very little
work on efficiency bounds in the case where the parametric part is large. Under similar conditions, the Robinson estimator
achieves the same efficiency. However, one important difference between our method and Robinson’s method is that his
requires each function E(Y |Z) and E(Xj|Z), j = 1, . . . , p to satisfy smoothness conditions, whereas we only need to assume
smoothness directly on the single function g . More generally, our regularity conditions 2.1–2.2 and 3.1–3.8 can be verified
under primitive conditions similar to Robinson (1988). □

The limiting normal distribution involves unknown parameters in the matrix Σn. In practice one would need a
consistent estimator for this matrix. It is easily seen that the estimator, Σ̂n, in which we replace α and g(·) in Σn by
α and ĝ(·), as well as the expectations in Ξn and Ψn by their sample versions, is consistent. More precisely, let

Σ̂2
n = Γ̂n[Ψ̂nΨ̂

⊺

n ]
−1Ψ̂nΞ̂nΨ̂

⊺

n [Ψ̂nΨ̂
⊺

n ]
−1Γ̂

⊺

n ,

where Γ̂n is Γn with replacement of ∂L (α) by ∂L (̂α) and of F ′(g) by F ′ (̂g), and

Ξ̂n :=
1
n

n∑
i=1

[m(Vi, α̂
⊺
Xi, ĝ(Zi))m(Vi, α̂

⊺
Xi, ĝ(Zi))

⊺
], (3.3)

Ψ̂n :=
1
n

n∑
i=1

(
∂
∂um(Vi, α̂

⊺
Xi, ĝ(Zi))

⊺
⊗ Xi

∂
∂w

m(Vi, α̂
⊺
Xi, ĝ(Zi))

⊺
⊗ ΦK (Zi)

)
. (3.4)

hen, the feasible version of the CLT (3.2), with Σ̂n replacing Σn, follows by similar arguments to those in the proof of
heorem 3.2. This allows the construction of simultaneous confidence intervals and consistent hypothesis tests about
(α) and F (g).
We may improve efficiency by using a weight matrix. Let Wn be a q × q positive definite matrix that may depend

on the sample data. Then, ∥Mn(a, b)∥2, which measures the metric of Mn(a, b) from zero, can be substituted by
Mn(a, b)

⊺
WnMn(a, b) in the minimization of (2.4), which is also a measure of the metric for the vector Mn(a, b) from zero

but in terms of the weight matrix Wn. Meanwhile, ∥Mn(a, b)∥2 can be viewed as a special case that Wn is the identity
matrix. We require the matrix Wn to be not too close to be singular to prevent the possibility that Mn(a, b)

⊺
WnMn(a, b)

may be close to zero when (a, b) is far from (α, β).
9
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roposition 3.1. Suppose that the eigenvalues of Wn are bounded away from zero and above from infinity uniformly in
, and there exists a deterministic matrix W ∗ such that ∥Wn − W ∗∥ = oP (1) as n → ∞. Let (̃α, β̃) be the minimizer of

Mn(a, b)
⊺
WnMn(a, b) and define g̃(z) = ΦK (z)

⊺
β̃ .

Then, (1) Under the same conditions in Theorem 3.1, the consistency of the weighted estimator holds; (2) Under the same
conditions the normality for the weighted estimator in Theorem 3.2 holds with Σ2

n replaced by

Γn[ΨnW ∗Ψ
⊺

n ]
−1ΨnW ∗ΞnW ∗Ψ

⊺

n [ΨnW ∗Ψ
⊺

n ]
−1Γ

⊺

n .

(3) If W ∗
= Ξ−1

n , the optimal covariance matrices is obtained, Γn[ΨnΞ
−1
n Ψ

⊺

n ]
−1Γ

⊺

n .

The proof is given in Appendix B. Here, the optimal covariance is in the sense that

Γn[ΨnWΨ
⊺

n ]
−1ΨnWΞnWΨ

⊺

n [ΨnWΨ
⊺

n ]
−1Γ

⊺

n ≥ Γn[ΨnΞ
−1
n Ψ

⊺

n ]
−1Γ

⊺

n ,

for all W satisfying the conditions in the proposition. Though Wn = Ξ−1
n might make the estimator efficient, it is not

feasible since Ξn involves the true parameters. In practice, both Ξn and Ψn can be replaced by their sample versions
of (3.3) and (3.4), so that the optimal covariance matrices are easily estimable. To do so, one will need to implement a
two-step estimation method, as has normally been done in the literature, that is, at the first step minimizing ∥Mn(a, b)∥2

to have α̂ and ĝ(·) that are used to construct Ŵn = Ξ̂−1
n ; then at the second step one may minimize Mn(a, b)

⊺
ŴnMn(a, b)

to have a pair of optimal estimators, (̃α, g̃(·)).
There is an alternative way that achieves efficiency in one-step estimation, viz., the continuous updating estimator

(CUE) and generalized empirical likelihood estimator; see Newey and Smith (2004), Chang et al. (2015). Define Wn(a, b) =

[Ξn(a, b)]−1, where

Ξn(a, b) :=
1
n

n∑
i=1

[m(Vi, a
⊺
Xi, b

⊺
ΦK (Zi))m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi))

⊺
].

Then, (̃α, g̃(·)) can be estimated by minimizing Mn(a, b)
⊺
Wn(a, b)Mn(a, b) over (a, b). We do not pursue this direction here,

but refer the reader to Hansen et al. (1996) .

3.3. Single-index structure

When the dimension of variable Z is relatively small, model (2.6) can be estimated by the procedure (2.7) which
essentially is the same as (2.4). Thus, (̂α, β̂) is consistent under similar conditions as in Theorem 3.1. When β̂ is obtained
we need to detangle to have the estimates of cj and θ0, from which we can construct the estimator of g(z).

If c1 ̸= 0, by the relationship a1u(θ0) =
√
2πd/4c1θu

0 for all |u| = 1, along with the identification condition on θ0, the
stimate β̂ gives

ĉ1 = sgn(̂a1u0 )
1

√
2πd/4

⎛⎝∑
|u|=1

â21u

⎞⎠1/2

, where u0 = (1, 0, . . . , 0).

Because β̂ is consistent, ĉ1 ̸= 0 with probability approaching one. Let

θ̂ =
1
ĉ1

Q β̂,

where Q = (0d×p, Id, 0d×(K−d)) that chooses the corresponding estimates in β̂ of all a1u with |u| = 1. As the estimate of
0, θ̂ is consistent by the consistency of β̂ .
If c1 = 0, without loss of generality suppose that there exists some j0, 1 ≤ j0 ≤ k − 1, such that cj0 ̸= 0 (this can be

lmost guaranteed since k diverges). Then, the estimate of θ0 can be recovered by all estimates of aj0u(θ0) in β , which is
imilar to but a bit complicated than the case of c1 ̸= 0. We omit this as it is the same as Dong et al. (2015, p. 304). It
ollows that we obtain the estimate θ̂ of θ0, along with that of cj, from β̂ .

Now we turn to consider another situation where the index vector θ0 in model (2.6) satisfies one extra equation that
elps to estimate the vector.
The model of Carneiro et al. (2011) is in this situation. In their case, the marginal treatment effect (MTE) is MTE(x, p) =

⊺
α + g ′(p) and the parameter of interest is the weighted average MTE, ∆ =

∫ 1
0 MTE(x, p)h(x, p)dp for some known

eighting function h. The parameter θ0 can be estimated from the moment equation derived from the second conditional
oment in (1.3), E

[
(I(S = 1) − Λ(θ

⊺

0Z))Ψq(Z)
]

= 0, with or without the specification of the function Λ, using the
onventional technique for dealing with single-index models, such as Ai and Chen (2003), Dong et al. (2016).
Although θ0 can be estimated by the second equation of (1.3), in order to derive asymptotic distributions for the

stimators of α and g defined later, it is convenient if θ̂ , the estimate of θ0, is independent of the data used to estimate
and g by the first equation. This is possible and one way to do is as follows. Let us split the observations {Vi, Xi, Zi,

′
} and Sub := {V , X , Z , i = n′

+ 1, . . . , n},
= 1, . . . , n} into two subsamples randomly, Sub1 := {(Vi, Xi, Zi), i = 1, . . . , n 2 i i i

10
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ith n′
= [n/2]. The ordering in both subsamples in general is not the same as in the original sample but we keep using

ubscript i after partition. The first subsample Sub1 can be used to estimate θ0 by an additional moment restriction (say),
esulting in θ̂ , and the second Sub2 is used to estimate the parameter α and function g . Here, due to the i.i.d. property of
the sample, the independence property holds naturally. Additionally,

√
n(̂θ − θ0) = OP (1) (e.g. Yu and Ruppert (2002)).

he data-splitting technique is used in the literature, such as Bickel (1982) and Belloni et al. (2012). The independence
roperty is important for our theoretical development and thus we recommend the use of the data-splitting method in
he rest of this section. Due to this reason, we make the following assumption.

ssumption 3.9. For θ0 in Eq. (2.6), there exists an estimator θ̂ such that
√
n(̂θ − θ0) = OP (1) as n → ∞ and assume that

is independent of observations used in minimization Eq. (3.5).

With the single-index structure, the nonparametric function is defined on the real line. Therefore, for the establishment
f our theory, we need some corresponding assumptions that are counterparts of Assumptions 2.1, 3.1–3.3, 3.5 and 3.7,
enoted by Assumptions 2.1*, 3.1*–3.3*, 3.5* and 3.7*, respectively, and are given in Appendix A for brevity.
Under Assumption 2.1* we have the expansion of g(z) and hence g(z) can be approximated by the partial sum, that is,

(z) =
∑K−1

j=0 bjϕj(z) + γK (z) with γK (z) → 0 in some sense. Hence, we can estimate β = (b0, . . . , bK−1)
⊺
, together with

α, by

(̂α, β̂) = argmin
a∈Rp,b∈RK

∥M̃n(a, b)∥2, subject to ∥a∥ ≤ B1n and ∥b∥ ≤ B2n,

where M̃n(a, b) =
1

√
q

1
n − n′

n∑
i=n′+1

m(Vi, a
⊺
Xi, b

⊺
ΦK (̂θ

⊺
Zi)),

(3.5)

where ΦK (z) is the vector of the basis functions. With this β̂ , we can define similarly ĝ(z) = β̂
⊺
ΦK (z).

Theorem 3.3 (1). Under Assumptions 2.1*, 2.2, 3.1*, 3.2*, 3.3*, and 3.9, the consistency in Theorem 3.1 are satisfied by the α̂
and ĝ(z) defined in this subsection.

(2) Let Assumptions 2.1*, 2.2, 3.1*–3.3*, 3.4, 3.5*, 3.6, 3.7*, and 3.9 hold. Then, the normality in Theorem 3.2 is valid for
the α̂ and ĝ(z) defined in this subsection with replacement of Ξn and Ψn respectively by

Ξ̃n :=E[m(V , α
⊺
X, g(θ

⊺

0Z))m(V , α
⊺
X, g(θ

⊺

0Z))
⊺
]q×q,

Ψ̃n :=E
(

∂
∂um(V , α

⊺
X, g(θ

⊺

0Z))
⊺
⊗ X

∂
∂w

m(V , α
⊺
X, g(θ

⊺

0Z))
⊺
⊗ ΦK (θ

⊺

0Z)

)
(p+K )×q

.

Using Lemmas A.5–A.7 in Appendix A, the theorem is proven in the supplemental material of the paper. The estimation
of the covariance matrix can be obtained similarly to that in Theorem 3.2 and we omit this for brevity.

4. Statistical inference

4.1. Test of over-identification

Hansen (1982) proposes the J-test for over-identification in the situation where both p and q are fixed but q > p. This
J-test has an asymptotic χ2

q−p null distribution. In the case where an unknown infinite dimensional parameter is involved,
and both p and q are still fixed with q > p, Chen and Liao (2015) establish a statistic for over-identification testing that
has an F distribution in large samples. We propose an alternative statistic below, which as far as we are aware, appears
to be new.

We consider the following hypotheses in model (2.1):

H0 : E[m(Vi, α
⊺
Xi, g(Zi))] = 0 for some (α, g) ∈ Θ,

H1 : E[m(Vi, a
⊺
Xi, h(Zi))] ̸= 0 for any (a, h) ∈ Θ,

where Θ is defined in Section 2.
Define, for a ∈ Rp, b ∈ RK and any given κ ∈ Rq such that ∥κ∥ = 1,

Ln(a, b; κ) =
1

Dn(a, b; κ)

n∑
i=1

κ
⊺
m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi)),

where Dn(a, b; κ) =
(∑n

i=1[κ
⊺
m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi))]2

)1/2.
Under the null hypothesis, by the procedure in Section 2 and the conditions of Theorem 3.1, the estimator (̂α, ĝ) is

consistent. The statistic Ln (̂α, β̂; κ) can be used to detect H0 against H1, as shown in Theorems 4.1 and 4.2. This test also
works for the conventional moment restriction models with fixed p and q. Before establishing an asymptotic distribution
under the null and asymptotic consistency under the alternative, we introduce some assumptions.
11
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ssumption 4.1. Let m∗

n (̂α, ĝ; κ) = oP (1) when n → ∞ , where we denote m∗

n(a, f ; κ) = n−1/2∑n
i=1 E[κ

⊺
m(Vi, a

⊺
Xi, f (Zi))]

for (a, f ) ∈ Θ and κ such that ∥κ∥ = 1.

Assumption 4.2. Suppose that (i) qp2 = o(n) and qK 2
= o(n); and (ii) supz γ 2

K (z) = o(q−1) as, along with n → ∞,
K , p, q → ∞ .

These are technical requirements. Noting E[m(V , α
⊺
X, g(Z))] = 0, Assumption 4.1 requires that E[m(V , a⊺

X, f (Z))]
drops to zero very quickly when (a, f ) approaches (α, g). This is the same, in spirit, as Assumption 3.2, but here it is
a sample version and the decay of the expectation needs a certain rate. A similar assumption is also imposed by (4.9)
of Andrews (1994, p. 58) and (5.40) of Belloni et al. (2014b, p. 634). Assumption 4.2 (i) stipulates the relationship between
(p, q, K ) and n when they are diverging, while Assumption 4.2(ii) imposes a decay rate for the residue γ 2

K (z) uniformly
for all z not slower than o(q−1). This is trivially satisfied for the case where either z is located in some compact set or
g(z) is integrable on the real line, given that the g function is sufficiently smooth.

Theorem 4.1. Suppose that there is no zero function in the vector m of functions. Let Assumptions 4.1–4.2 hold, and the
conditions of Theorems 3.1 and 3.2 remain true. For any κ ∈ Rq such that ∥κ∥ = 1, under H0,

Ln (̂α, β̂; κ) →D N(0, 1),

as n → ∞, where (̂α, β̂) is the estimator given by (2.4).

Notice that if there are zero functions in m, the product κ
⊺
m can be a zero function for some particular choice of κ .

Thus, excluding zero functions is necessary. The theorem establishes the normality of the proposed statistic under the
null that enables us to make statistical inference.

Theorem 4.2. Suppose that the eigenvalues of E[m(V , a⊺
X, h(Z))m(V , a⊺

X, h(Z))
⊺
] are bounded away from zero and

infinity uniformly in n and (a, h) ∈ Θ . Under H1, suppose further that there exists a positive sequence δn such that
inf(a,h)∈Θ ∥E[m(V , a⊺

X, h(Z))]∥ ≥ δn and lim infn→∞

√
nδn = ∞. Then, for any vectors a and b, there exists some κ∗

∈ Rq

uch that ∥κ∗
∥ = 1 and Ln(a, b; κ∗) →P ∞, as n → ∞.

The condition on the eigenvalues is commonly adopted in the literature, see, e.g. Chang et al. (2015), Belloni et al.
2015). The expression of κ∗ shown in the proof of the theorem is κ∗

= E[m(Vi, a⊤Xi, b⊤ΦK (Zi))]/∥E[m(Vi, a⊤Xi, b⊤

ΦK (Zi))]∥, where the denominator does not vanish ensured by H1. Moreover, in the special case where δn = δ, the condition
that lim infn→∞

√
nδn = ∞ is satisfied automatically, and this is the most commonly used assumption in the literature,

see, equation (24) of Chang et al. (2015, p. 290). However, we allow for δn → 0 with a rate slower than n−1/2. This means
that the strongest signal (δn = δ) can be weakened (δn → 0) when our test statistic is used.

.2. Student t test

We next propose an alternative test for model (2.1) under H0. Define m̂(i) := m(Vi, α̂
⊺
Xi, ĝ(Zi)) for simplicity and

orrespondingly, for later use define m(i) := m(Vi, α
⊺
Xi, g(Zi)). Let ê = (̂e1, . . . , êq)⊺ and σ̂ 2

= (σ̂ 2(i, j))q×q, where

ê :=
1
n

n∑
i=1

m̂(i), and σ̂ 2
:=

1
n

n∑
i=1

m̂(i)m̂(i)
⊺
,

Here, ê and σ̂ 2 may be understood as the estimated mean and covariance matrix of the error vector, respectively. Define

Tn :=
1
q

q∑
j=1

(√
n êj

σ̂ (j, j)

)2

.

he statistic is constructed from
√
n̂ej/σ̂n(j, j), which is somewhat like the traditional t-test. Pesaran and Yamagata (2017)

proposed a similar statistic.

Theorem 4.3. Let the conditions of Theorems 3.1–3.2 hold. Let also Assumptions 4.1–4.2 hold under H0. Suppose that
E[m(i)m(i)

⊺
] is a diagonal matrix with min1≤j≤q E[mj(i)2] > c > 0 and sup1≤j≤q E[mj(i)4] < C < ∞ for some constants

and C. Then,
√
q/2(Tn − 1) →D N(0, 1) as n → ∞.

The proof is given in Appendix C of the supplement. The requirement on E[m(i)m(i)
⊺
] to be a diagonal matrix

mplies the orthogonality between the errors. This is not stringent because, if not so, we may make a transformation
˜ (i) = (E[m(i)m(i)

⊺
])−1/2m(i) and then m̃(i) would meet the requirement. Moreover, in many situations it is satisfied

aturally. For instance, in Example 1.1 of Section 1, m(i) is consisting of orthogonal functions of the conditional variable.
hese moment requirements are commonly used in the literature since mj(i) are generalized error terms, so we do not
xplain them in detail. In addition, the behaviour of Tn is like χ2(q) but with diverging q. Therefore, after normalization
e have asymptotic normal distribution for T .
n

12
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Next, consider the consistency of Tn. For any vector a ∈ Rp and function h(·), define m̃(i) ≡ m̃(i; a, h) = m(Vi, a
⊺
Xi, h(Zi)),

= (̃e1, . . . , ẽq)
⊺
and σ̃ = (σ̃ij)q×q, where

ẽ =
1
n

n∑
i=1

m̃(i), and σ̃ =
1
n

n∑
i=1

m̃(i)m̃(i)
⊺
.

Define also

T̃n :=
1
q

q∑
j=1

(√
n ẽj

σ̃ (j, j)

)2

.

ote that if H0 is true, T̃n would become Tn when a and h(·) are substituted by α̂ and ĝ , respectively, while if H1 is true,
n would diverge as shown in the following theorem.

heorem 4.4. Suppose that max1≤j≤q supa,h E[m̃j(i)2] ≤ C < ∞ for some constant C. Then, under the conditions in
heorem 4.2 and H1, for any vector a ∈ Rp and function h(·), as n → ∞, T̃n →P ∞ provided that

√
n/qδn → ∞.

The proof is given in Appendix C of the supplemental material. Notice that in terms of statistical inference in practice
t is impossible to distinguish Tn from T̃n. Instead, one may use our estimation procedure to obtain the ‘‘estimates’’ of the
arameters, then construct T̃n and finally make an inference according to Theorem 4.3. The uniform boundedness of the
econd moment is reasonable in the i.i.d. setting. Comparing with Theorem 4.2, the attenuation of δn is slowed down as
we require

√
n/qδn → ∞. This is because of the difference in the constructions of Tn and Ln(a, b; κ).

. Penalized GMM under sparsity

We now consider the ultra-high dimensional situation of model (2.1) where the potential number of covariates is much
arger than the sample size (i.e., p = en

a
with 0 < a < 1), but the parameter vector α has sparsity. That is, there are

any zeros in α and only a number of elements are nonzero, but the identity of the non-zero elements is not known a
riori. In addition, the coefficient vector β in the partial sum of the expansion of the nonparametric function may also
ossess sparsity in two potential scenarios: (a) its elements may be zero if the unknown function is located in a subspace
hat has small dimensionality (e.g. the simulation below), and (b) its elements are attenuated as the number of terms
ncreases, so that many of them are negligible statistically. Hence, this section is devoted to estimate (α, g) under the
parsity condition. This ‘‘big-data’’ context is becoming increasingly relevant in applications.
There are some existing papers on the variable selection under sparsity. Belloni et al. (2014a) propose the combination

f least squares and L1 type lasso approach to select coefficients of the sieve in nonparametric regression. Also, Su et al.
2018) use L1 type lasso approach to study continuous treatment in nonseparable models with high dimensional data. In
high dimensional conditional moment restriction model, Fan and Liao (2014) propose to use a folded concave penalty

unction combined with instrumental variables to select the important coefficients. Caner (2009) uses the same approach
ith a particular class of penalty functions to select variables. As Caner (2009, p. 271) argued, the Lasso-type GMM
stimator selects the correct model much more often than GMM-BIC and the ‘‘downward testing’’ method proposed
y Andrews and Lu (2001). We shall tackle the selection issue by the combination of a penalty function and our GMM
pproach.
Regarding of GMM approach, to reduce the risk of misspecification Andrews (1999) defines moment selection criterion

MSC) using J-test statistics and shows that the consistent moment selection can be achieved by choosing the selection
ector minimizing the MSC. There are also other papers studying the selection issue using generalized empirical likelihood
tatistic. However, we mention that all of these methods are nonetheless subject to pretest bias and post-model selection
nferential problems (Leeb and Pötscher (2005)).

We partition the parameter vectors as α = (α
⊺

0S, α
⊺

0N )
⊺
and β = (β

⊺

0S, β
⊺

0N )
⊺
, where the vectors α0S and β0S contain all

important coefficients’’ from α and β (i.e. nonzero coefficients), respectively, as referred in the literature such as Fan and
iao (2014), while α0N and β0N are zero.
For convenience in this section, denote v0 = (α

⊺
, β

⊺
)
⊺

∈ Rp+K the true parameter whose dimension varies with the
ample size. In addition, v0S = (α

⊺

0S, β
⊺

0S)
⊺
is referred to as an oracle model. Define tn = |v0S | the dimension of v0S , which

ay diverge with n.
Let v̂ ∈ Rp+K be the estimated parameter of v0 by the penalized GMM, which solves:

v̂ = (̂α
⊺
, β̂

⊺
)
⊺

= argmin
v=(a⊺ ,b⊺ )⊺∈Rp+K

Qn(v) := ∥Mn(v)∥2
+

p+K∑
j=1

Pn(|vj|), (5.1)

here Mn(v) = Mn(a, b) is as defined in Section 2, and Pn(·) is a penalty function discussed later. Our framework also
ccommodates the case where some components of α, β are entered without selection, as in Belloni et al. (2016a),
lthough we do not inscribe this in the notation for simplicity.
13
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.1. Oracle property

Let T be the support of v0, the indexes of the nonzero components, i.e., T = {j : 1 ≤ j ≤ p + K , v0j ̸= 0}. We may
equivalently say that T is the oracle model. Moreover, for a generic vector v ∈ Rp+K , denote by vT the vector in Rp+K

whose jth element equals vj if j ∈ T and zero otherwise. Also, define vS as the short version of vT after eliminating all
zeros in the position T c (the complement set of T ) from vT . In the literature, the subspace V = {vT , v ∈ Rp+K

} is called
the ‘‘oracle space’’ of Rp+K . Certainly, v0 ∈ V .

Recall that the score vector Sn(·) denotes the partial derivative of ∥Mn(·)∥2 defined in Section 3. Now, denote SnT (vS)
the partial derivative of ∥Mn(v)∥2 with respect to vj for j ∈ T , at vT (bearing in mind that vS is the short version of vT ).
Hence, the vector SnT (vS) has dimension tn = |T | = |vS |. Here and hereafter, for set T , |T | stands for its cardinality, while
for a vector v, |v| stands for its dimension. Also, define in a similar fashion HnT (vS) the tn× tn Hessian matrix for ∥Mn(v)∥2.

Suppose that Pn(·) belongs to the class of folded concave penalty functions (see Fan and Li (2001)). For any generic
vector v = (v1, . . . , vtn )

⊺
∈ Rtn with vj ̸= 0, for all j, define

φ(v) = lim sup
ϵ→0+

max
j≤tn

sup
u1<u2,(u1,u2)⊂O(|vj|,ϵ)

−
P ′
n(u2) − P ′

n(u1)
u2 − u1

,

here O(·, ·) is the neighbourhood with specified centre and radius, respectively, implying that φ(v) = maxj≤tn −P ′′
n (|vj|)

f P ′′
n is continuous. Also, for the true parameter v0, let

dn =
1
2
min{|v0j| : v0j ̸= 0, j = 0, . . . , p + K }

epresent the strength of the signal. The following assumption is about the penalty function.

ssumption 5.1. The penalty function Pn(u) satisfies (i) Pn(0) = 0; (ii) Pn(u) is concave, nondecreasing on [0, ∞), and has
continuous derivative P ′

n(u) for u > 0; (iii)
√
tn P ′

n(dn) = o(dn); (iv) There exists c > 0 such that supv∈O(v0S ,cdn) φ(v) = o(1).

There are many classes of functions that satisfy these conditions. For example, with a properly chosen tuning parameter
in each case, the Lr penalty (0 < r ≤ 1 ), hard-thresholding (Antoniadis (1996)), SCAD (Fan and Li (2001)) and MCP (Zhang
(2010)) all satisfy the requirements.

Denoting the oracle model T = T1 ∪ T2, where T1 is the set of indices of nonzero elements in α and T2 that of β ,
ccordingly, we have tn = p1 + K1 for the corresponding cardinalities.

ssumption 5.2. Let Assumptions 3.5–3.7 hold with p being replaced by p1 and K by K1.

The assumption is a counterpart of Assumptions 3.5–3.7 under sparsity.

ssumption 5.3. There exist b1, b2 > 0 such that (i) for any ℓ ≤ q and u > 0,

P(|mℓ(V , α
⊺
X, β

⊺
ΦK (Z))| > u) ≤ exp(−(u/b1)−b2 );

nd (ii) Var(mℓ(V , α
⊺
X, β

⊺
ΦK (Z))) are bounded away from zero and above from infinity uniformly for all ℓ.

This assumption is often encountered in the literature, such as Assumption 4.3 in Fan and Liao (2014). It is known that
here are many classes of distributions satisfying this condition, e.g., a continuous distribution with compact support,
normal distribution, and an exponential distribution and so on. The thin tail of the distribution postulated in the
ssumption enables us to bound the score function.
For simplicity, denote ∂m the partial derivative of m; and FiS = diag(XiS, ΦKS(Zi)) a tn × 2 matrix where XiS is the

ub-vector of Xi consisting of all Xij for j ∈ T1; ΦKS(Zi) is the sub-vector of ΦK (Zi) consisting of all ϕj(Zi) for j ∈ T2.

Assumption 5.4. (i) There are constants C1, C2 > 0 such that

λmin(E∂m
⊺
(Vi, v

⊺

0SFiS) ⊗ FiS)(E∂m
⊺
(Vi, v

⊺

0SFiS) ⊗ FiS)
⊺

> C1, and

λmax(E∂m
⊺
(Vi, v

⊺

0SFiS) ⊗ FiS)(E∂m
⊺
(Vi, v

⊺

0SFiS) ⊗ FiS)
⊺

< C2;

(ii) P ′
n(dn) = o(n−1/2) and max∥vS−v0S∥<dn/4 φ(vS) = o((tn log(q))−1/2); (iii) t3/2n log(q) = o(n), t3/2n P ′

n(dn)
2

= o(1) and
tn maxj∈T Pn(|v0j|) = o(1).

All these are technical requirements on the Hessian matrix, the penalty function, the relationship among the dimen-
sions of the important coefficients, the sparsity and the sample size. These conditions are commonly used in the literature,
see, for example, Assumptions 4.5-4.6 in Fan and Liao (2014) among others. There are several penalty functions that satisfy
these conditions, for example, SCAD and MCP with tuning parameter λn = o(dn). Thence, the conditions (ii) and (iii) are
satisfied if tn

√
log(q)/n + t3/2n log(q)/n ≪ λn ≪ dn. However, noting that the exact identification is allowed, the total

number of parameters p+ K of α and β to be estimated can be as large as exp(na) for some 0 < a < 1, an implication of
he restriction on q.
14
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To state the following theorem, define:

Σ2
nT :=Γn[ΨnTΨ

⊺

nT ]
−1ΨnTΞnTΨ

⊺

nT [ΨnTΨ
⊺

nT ]
−1Γ

⊺

n , in which (5.2)

Γn :=

(
∂L (α0S) 0

0 F ′(g)ΦKT
⊺

)
(µ+ν)×(p1+K1)

,

ΞnT := E[m(V1, α
⊺

0SX1S, g(Z1))m(V1, α
⊺

0SX1S, g(Z1))
⊺
]q×q,

ΨnT := E
(

∂
∂um(V1, α

⊺

0SX1S, g(Z1))
⊺
⊗ X1S

∂
∂w

m(V1, α
⊺

0SX1S, g(Z1))
⊺
⊗ ΦKT (Z1)

)
(p1+K1)×q

,

provided that ΨnTΨ
⊺

nT is invertible, in which u and w stand for the second and the third arguments of the vector function
m(v, u, w), respectively; and the transformation L and vector functional F are defined in Section 3.

heorem 5.1. Let Assumptions 2.1, 2.2, 3.1, 3.3 and 5.1–5.4 hold. Then, there exists a local minimizer v̂ = ((̂α
⊺

S , α̂
⊺

N )
⊺
, (̂β

⊺

S ,

β
⊺

N )
⊺
), for which we have (i)

lim
n→∞

P (̂αN = 0, β̂N = 0) = 1.

In addition, the local minimizer v̂ is strict with probability arbitrarily close to one for all large n.
(ii) Let T̂ = {j : 1 ≤ j ≤ p + K , v̂j ̸= 0}. Then,

lim
n→∞

P (̂T = T ) = 1.

(iii) Meanwhile, for the transformation Lr×p1 and s -vector functional F ,

√
nΣ−1

nT

(
L (̂αS) − L (α0S)

F (̂g) − F (g)

)
d

→ N(0, Iµ+ν),

s n → ∞ provided that
√
nΣ−1

nT (0
⊺

µ, F ′(g)γ
⊺

K )
⊺

= o(1), where ΣnT is given by the square root of Σ2
nT defined in (5.2).

The proof is given in Appendix B. Note that the undersmoothing condition can be satisfied if ΣnT that has finite
dimensionality has minimal eigenvalue greater than zero and γK decays to zero sufficiently fast. We remark that, due
to the asymptotic theory in Section 3, the post selection version of the standard errors defined in (3.3) and (3.4) can be
shown to be consistent in this case thereby allowing consistent confidence intervals for the selected parameters.

The estimators in this theorem are all local. This is why we exclude the identification condition in Assumption 3.2
currently, while in the next theorem we shall discuss the global property of a local minimizer. The results (i) and (ii)
indicate that under these conditions in the theorem we are able to recover the sparsity in the model; meanwhile, the
discussion on the result (iii) of the theorem is similar to Theorem 3.2.

5.2. Global property

In this section, we show that under Assumption 3.2, the local minimizer in Theorem 5.1 is nearly global. Recall that
Assumption 3.2 is an identification condition that excludes all the other points to be the minimizer of the objective
function in the population sense.

Theorem 5.2. In addition to the conditions of Theorem 5.1, suppose Assumption 3.2 holds. Then, the local minimizer v̂ satisfies
that, for any δ > 0, there exists η > 0 such that

lim
n→∞

P
(
Qn (̂v) + η < inf

∥v−v0∥≥δ
Qn(v)

)
= 1.

It is proved in Appendix B. The theorem says that the local minimizer of the oracle space in Theorem 5.1 is also with
high probability a global minimizer in Rp+K . Note that by Theorems 5.1 and 5.2, the minimization in Eq. (5.1) enables one
to recover the sparsity in the ultra high dimensional case since q ≥ p+ K , where q can be as large as en

ϵ
for some ϵ > 0.

This is a bit different from Fan and Liao (2014) where there is no nonparametric function involved and q = p (the number
of IV is the same as that of regressors). Note that, given the consistency of the sparsity, the inference can be done in a
similar way to Theorem 3.2.

6. Simulation experiments

In this section we investigate the performance of the proposed estimators in finite sample situations.
15
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Table 1
Simulation results of Example 6.1, q = p + K + ν.

ν = 2 ν = 4
n 300 600 1000 n 300 600 1000

Bg (n) 0.0046 −0.0040 −0.0026 Bg (n) −0.0023 −0.0019 0.0006
πg (n) 0.3533 0.1965 0.1948 πg (n) 0.1660 0.1530 0.1520
Πg (n) 0.3401 0.1700 0.1682 Πg (n) 0.1356 0.1217 0.1176

Bα(n) 0.0700 0.0410 0.0684 Bα(n) 0.0281 0.0271 0.0501
Mα(n) 0.0355 0.0282 0.0665 Mα(n) 0.0259 0.0244 0.0319

ν = 6 ν = 8
n 300 600 1000 n 300 600 1000

Bg (n) 0.0023 0.0019 −0.0000 Bg (n) 0.0009 0.0011 −0.0000
πg (n) 0.1544 0.1445 0.1444 πg (n) 0.1482 0.1370 0.1359
Πg (n) 0.1218 0.1092 0.1031 Πg (n) 0.1176 0.1015 0.0945

Bα(n) 0.0124 0.0267 0.0265 Bα(n) 0.0078 0.0048 0.0250
Mα(n) 0.0254 0.0154 0.0464 Mα(n) 0.0117 0.0098 0.0306

Example 6.1. This experiment uses the partial linear model with endogenous covariates considered in the introduction.
Let vector Xi = (X1i, X

⊺

2i)
⊺
, where X1i takes values 1 and −1 with probability 1/2, respectively, X2i ∼ N(0, Σp−1), where

Σp−1 = (σi,j)(p−1)×(p−1) with σi,i = 1, σi,j = 0.3 for |i − j| = 1 and σi,j = 0 for |i − j| > 1. Here, the first component of Xi
is a discrete variable with which we intend to show that our theoretical results do not confine application to continuous
variables only. Let Zi be uniformly distributed on (0, 1).

Suppose that E[Yi − α
⊺
Xi − g(Zi)|Wi] = 0 with Wi = Zi, and g(·) ∈ L2[0, 1] = {u(r) :

∫ 1
0 u2(r)dr < ∞}. Let ϕ0(r) ≡ 1,

and for j ≥ 1, ϕj(r) =
√
2 cos(π jr). Then, {ϕj(r)} is an orthonormal basis in the Hilbert space L2[0, 1]. In the experiment,

ut α = (0.4, 0.1, 0, . . . , 0)
⊺

∈ Rp and g(z) = z2 + sin(z).
Denote m(Vi, α

⊺
Xi, g(Zi)) = (Yi − α

⊺
Xi − g(Zi))Φq(Zi) where Vi = (Yi,Wi), Wi = Zi and Φq(·) = (ϕ0(·), . . . , ϕq−1(·))

⊺
. We

have E[m(Vi, α
⊺
Xi, g(Zi))] = 0 for i = 1, . . . , n.

According to the estimation procedure in Section 2, define (̂α, β̂) = argmin
a∈Rp,b∈RK

∥Mn(a, b)∥2, where Mn(a, b) =

1
√
q
1
n

∑n
i=1 m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi)). Thus, α̂ and ĝ(·) := β̂

⊺
ΦK (·) are the estimates of (α, g(·)).

For n = 200, 500 and 1000, let K = [C1nτ1 ] with C1 = 1 and τ1 = 1/4, and p = [C2nτ2 ] with C2 = 1 and τ2 = 1/5.
Also, let q = p + K + ν (ν ≥ 0 specified in the sequel) satisfy Assumption 3.1. The replication number of the experiment
is M = 1000. We shall report the bias (denoted by Bg (n)), standard deviation (denoted by πg (n)) and RMSE (denoted by

g (n)) of the estimate of the g function, that is,

Bg (n) :=
1
Mn

M∑
ℓ=1

n∑
i=1

[̂gℓ(Zi) − gℓ(Zi)], πg (n) :=

(
1
Mn

M∑
ℓ=1

n∑
i=1

[̂gℓ(Zi) − ĝ(Zi)]2
)1/2

,

Πg (n) :=

(
1
Mn

M∑
ℓ=1

n∑
i=1

[̂gℓ(Zi) − gℓ(Zi)]2
)1/2

,

where the superscript ℓ indicates the ℓ-th replication, ĝ(·) is the average of ĝℓ(·) over Monte Carlo replications ℓ =

1, . . . ,M , and gℓ(·) means the value of g in the ℓ-th replication.

Regarding the parameter α, we report the following quantities, Bα(n) := ∥α−α̂∥ and Mα(n) := median(∥α−α̂∥), where
α is the average of α̂ℓ and median(· · ·) is the median of the sequence over Monte Carlo replications. Notice that, due to
the divergence of the dimension, it might not make any sense to compare the estimated results for different sample sizes
(see Table 1).

It can also be seen from Table 1 that all of the statistical quantities about the estimate of g are reasonably attenuated
ith the increase of both the sample size and ν that provides more information for the parameters being estimated.
or the quantities about the estimate of α, we observe that they normally do not decrease with the sample size. This is
ecause, as mentioned before, the dimension of α is increasing with the sample size; and hence it does not make sense
o compare them among different sample sizes. However, we find that, given the sample size, both quantities related to
he estimate of α decrease with the increase of ν that gives more moment restrictions.

This is understandable. Because the conditional moment E[Yi − α
⊺
Xi − g(Zi)|Zi] determines a function U(z) :=

E[Yi − α
⊺
Xi − g(Zi)|Zi = z] and {ϕj(z)} is an orthonormal sequence in the space that contains U(z), the greater the ν

is, the more axes in the space we use to explain the unknown function U(z).
Additionally, the involvement of the discrete variable X1i does not affect the performance of all measures. This might

suggest for the practitioner that in this setting discrete variables are as tractable as continuous variables.
16
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Table 2
Simulation results of Example 6.2 (n = 100).

p = 8, K = 6, q = 100 p = 12, K = 6, q = 120
λ 0.4 0.2 0.08 λ 0.4 0.2 0.08

MSES (α) 0.2017 0.2811 0.1915 MSES (α) 0.3065 0.2322 0.1970
MSES (β) 0.1288 0.1009 0.0789 MSES (β) 0.1900 0.0837 0.0624
MSEN (α) 0.0001 0.0026 0.0031 MSEN (α) 0.0015 0.0039 0.0016
MSEN (β) 0.0000 0.0004 0.0001 MSEN (β) 0.0000 0.0000 0.0008
TPS (α) 4 4 4 TPS (α) 4 4 4
TPS (β) 2 2 2 TPS (β) 2 2 2
TPN (α) 3.48 3.24 3.55 TPN (α) 6.88 6.72 5.90
TPN (β) 3.28 3.40 2.96 TPN (β) 3.46 3.36 2.92

Example 6.2. This example is to verify the proposed schedule for variable selection and parameter estimation under
sparsity studied in Section 5. The model is almost the same one in Example 6.1 but the conditional variables are different.
Suppose that

E[Yi − α
⊺
Xi − g(Zi)|Wi] = 0

where (α1, . . . , α4) = (2, −4, 3, 5), αj = 0 for 5 ≤ j ≤ p. Here, Wi = (X1i, X2i)
⊺
and g(·) ∈ L2[0, 1]. The conditional

moment gives the function H(W ) ≡ 0, where H(W ) = E[Yi − α
⊺
Xi − g(Zi)|Wi = W ]. Thus, the instrument variable should

be Ψq(Wi), a basis vector of bivariate functions.

The same basis as in Example 6.1 is used for the orthogonal expansion of g(z), viz., ϕ0(r) ≡ 1, and for j ≥ 1,
ϕj(r) =

√
2 cos(π jr). Here, put g(z) = 1 +

√
2 cos(πz). Thus, the expansion of g(z) has coefficients βi = 1, i = 0, 1,

while βi = 0 for all i ≥ 2, implying the sparsity of the coefficient vector β (equivalently, the sparse nonparametric
function g(z)).

Suppose that p-vector Xi are i.i.d. N(0, Ip) and Zi are i.i.d. U(0, 1). Given the normal distribution of Xi, we use Hermite
polynomial sequence to form Ψq(Wi), that is, Ψq(Wi) = (hj1−1(X1i)hj2−1(X2i), j1, j2 = 1, . . . , q1), where q1 = [

√
q + 1] and

hj(·)} is the Hermite polynomial sequence. The rationale behind the formulation of Ψq(w1, w2) is that the tensor product
{hj1 (w1)hj2 (w2)} is an orthogonal basis system to expand H(w1, w2).

In the simulation, we use SCAD of Fan and Li (2001) with predetermined tuning parameters of λ as the penalty function.
herefore, the objective function is ∥Mn(v)∥2

+
∑p+K

j=1 Pn(|vj|), where v = (α
⊺
, β

⊺
)
⊺
a (p + K )-dimensional vector and

Mn(v) =
1

q1n

∑n
i=1(Yi − α

⊺
Xi − β

⊺
ΦK (Zi))Ψq(Wi).

Four performance measures are reported. The first measure is the mean standard error (MSES) of the important
regressors, that is, the average of ∥α̂S − αS∥ and that of ∥β̂S − βS∥ over Monte Carlo replications. The second measure
is the mean standard error (MSEN ) of the unimportant regressors for α and β , respectively. The third measure, denoted
by TPS , is the number of correctly selected nonzero coefficients, and the fourth, TPN , the number of correctly selected
unimportant coefficients for α and β , respectively. The initial value for v in the simulation is taken as (0, . . . , 0). The
results are reported in Table 2 with different parameters, and more results can be found in the supplemental document
of this paper.

It can be seen from the tables that all MSE’s perform reasonably and particularly those for αN and βN are really well.
They also seem to be smaller when both n and q become larger. Although the dimensions of α and β increase and q ≥ n,
the scheme can always correctly choose all the important coefficients. This is perhaps because all important coefficients in
absolute are significantly greater than zero, as suggested by the literature that we do not pursue here. By contrast, some
unimportant coefficients may be chosen as important ones, implying the scheme may not necessarily lead to parsimonious
models.

7. Empirical illustration

There are many papers dealing with the marginal treatment effect (MTE) of a selection process. For example, Carneiro
et al. (2011, CHV, hereafter) study MTE for schooling, while most recently Su et al. (2018) study continuous MTE in
nonseparable models. Economists would like to know, on average, how the marginal return to schooling changes as the
number of years of education increases, and would also like to be able to evaluate policies that change the probability of
attaining a certain level of schooling. Let Y1 be the potential log wage if the individual were to attend college and Y0 be
the potential log wage if the individual were not to attend college. Define potential outcome equations: Y1 = µ1(X)+ U1
and Y0 = µ0(X) + U0, where X is a vector of relevant variables, µ1(x) = E(Y1|X = x) and µ0(x) = E(Y0|X = x).

Then, a selection process can be described as follows: S = 1 if IS = µS(Z) − V > 0 and S = 0 otherwise. Here, IS
stands for the net benefit of attending college, µS(Z) is defined in CHV, in which Z is observable and V is unobservable,
so that S = 1 means that the agent goes to college while S = 0 means that he/she does not. Let Y = SY1 + (1 − S)Y0 be
the earnings of an individual.

CHV analyse the marginal treatment effect for schooling, defined by the derivative of E(Y |X = x, P(Z) = p) with respect
to p, denoted by MTE(x, p). The dataset constructed by CHV is available at www.aeaweb.org/articles?id=10.1257/aer.101.
17
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Table 3
Average marginal derivatives in decision model.
AFQT 0.2073

Mother’s years of schooling 0.0400
Number of siblings −0.0209
Urban residence at 14 0.0028
Permanent local log earnings of 17 −0.0265
Permanent state unemployment rate at 17 0.0013
Presence of a college at 14 0.0190
Local log earnings at 17 −0.0250
Local unemployment rate at 17 0.0092
Tuition in 4 year public college at 17 −0.0017

6.2754 which comes from the 1979 National Longitudinal Survey of Youth (NLSY79) including a well-known proxy for
ability of earning that is thought of beyond schooling and work experience: the Armed Forces Qualification Test (AFQT).
See CHV for further details and references.

We shall use exactly the same variables X and Z as in CHV but with our proposed methodology to estimate parameters
nd test hypotheses of interest.1 Note that equation (9) of CHV implies that

Y =X
⊺
δ0 + P(Z)X

⊺
θ0 + g(P(Z)) + ε, (7.1)

Pr(S = 1|Z) = P(Z) = Λ(Z
⊺
γ0), E(ε|X, Z) = 0, (7.2)

here P(Z) stands for the probability of attending college for the individual with characteristic Z , which is specified in
he form of Λ(Z

⊺
γ0). In this case, MTE(x, p) = x

⊺
θ0 + g ′(p). Eqs. (7.1) and (7.2) motivate an alternative way to estimate

TE. Precisely, Eq. (7.2) implies

E[
(
I(S = 1) − Λ(Z

⊺
γ0)
)
Φq(Z)] = 0, (7.3)

here Λ(z) = exp(z)/[1 + exp(z)] and Φq(·) is a q -vector consisting of basis functions.
Note that in CHV the vector Z has dimension 34 which is relatively large. Hence, our theoretical result in Section 5

enables us to estimate γ0 utilizing the moment condition (7.3) coupled with a penalty function (we use SCAD).
With γ̂ at hand, we first calculate the average derivative of each variable in the choice model (7.1), that is, for

each individual we compute the effect of increasing each variable by one unit (keeping all the others constant) on the
probability of enrolling in college and then we average across all individuals. The results are reported in Table 3.

The marginal derivatives reflect the changes in probability of attending a college when some policy was implemented
to increase the relevant variable by one unit. For example, the marginal derivative of “Permanent local log earnings of 17’’
, −0.0265, means that when the earnings increases 100 dollars, the probability on average of attending a college would
decrease 2.65%. By contrast, this derivative in CHV is 0.1820, meaning that a 100 dollar increase in the labour market
would result in an increase of 18.20% enrolling in a college. This seems contradictory with intuition.

Moreover, Eq. (7.2), along with γ̂ , allows us to estimate θ0 and g(·) by transforming it to unconditional moments.
The estimation procedure and asymptotic theory for this semiparametric single-index structure has been established in
Section 3.3. Since the function g(·) is defined on [0, 1], a power series {pj, j ≥ 1} in L2[0, 1] is employed to approximate
the unknown g(·), and the same procedure as in Example 6.1 gives θ̂ and ĝ(p). Hence, we have the estimate of MTE,
M̂TE(x, p) = x

⊺
θ̂ + ĝ ′(p), where θ̂ is given in Table 4 and ĝ ′(p) = 0.6462−0.3898p−0.4470p2. The plot of M̂TE(x, p) with

x = X̄ , along with the upper and lower 95% significance bounds, is given in Fig. 1. It can be seen that with the increase
of the probability of attending college, the MTE decreases. The plot is quite similar to Figure 4 in CHV(p. 20).

For the implementation of the estimation above, we emphasize that in order to coincide with the theoretical procedure
described in Section 3.3, we use a subsample with size 874 drawn randomly to estimate γ0 to obtain γ̂ , then the rest of
the sample with size 873 is used to estimate θ0 and g(·), obtaining θ̂ and ĝ(p). The number of basis functions used is
selected by the minimum MSE criterion over a candidate set. To have the standard deviations of the coefficients in θ̂ and
g(p), a bootstrap method is employed with 250 replications. The standard deviations of the coefficients in ĝ(p) are 0.5319,
0.0919 and 0.0738, implying that the last two coefficients are significant at the 95% level.

Furthermore, with regard to testing whether g(p) is a constant function, in CHV this test is implemented through
specifying g(p) as polynomials of order 2–5, respectively, and then test whether their coefficients are jointly zero.
Nonetheless, we actually have done this in the estimate of ĝ(p) without any specification, because we treat g(p) as a
nonparametrically unknown function, and two coefficients in ĝ(p) are found to be significant. Therefore, this offers some

1 The vector X consists of the year of mother’s education, number of siblings, average of log earnings 1979–2000 in county of residence at 17,
verage of unemployment 1979–2000 in state of residence at 17, urban residence at 14, cohort dummies, years of experience in 1991, average of
ocal log earnings in 1991, local unemployment in 1991, while Z contains some variables in X , as well as instruments, that is, presence of a College
t Age 14 (Card 1993, Cameron and Taber 2004), local earnings at 17 (Cameron and Heckman 1998, Cameron and Taber 2004), local unemployment
t 17 (Cameron and Heckman 1998), local tuition in public 4 year colleges at 17 (Kane and Rouse 1995). These papers in parentheses are such
apers that previously used these instruments. See CHV for details and their explanation.
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Fig. 1. Estimated MTE calculated at x = X̄ and the 95% Confidence Interval.

Table 4
Estimated coefficients of θ0 and ĝ(p) in MTE.
Estimated coefficients of θ0

−0.2852 −0.2089 0.2382 −0.1296 −0.3728 −0.0458 0.4915 0.8161
(0.2840) (0.1530) (0.1611) (0.2420) (0.1612) (0.0108) (0.3908) (0.7419)

0.0454 0.1059 0.0115 −0.7552 1.1762 0.2706 0.3666 −1.1519
(0.0924) (0.1372) (0.0167) (0.4263) (0.6864) (0.5630) (0.3185) (0.4768)

−0.2508 −0.0428 −0.9744 −0.2847 −1.3112 −0.0417
(0.2811) (0.0653) (0.4925) (0.3183) (0.5518) (0.0159)

Estimated coefficients in ĝ(p)

0.6462 −0.1949 −0.1490
(0.5319) (0.0919)** (0.0738)**

** indicates that they are significant at the 95% level.

strong evidence to support a non-constant functional form for g(p), which would be equivalent to rejecting the null
ypothesis that the functional form of g(p) is constant. In addition, some detailed justification about the nonlinearity of
FQT is available at Dong et al. (2018) for the interested reader.

. Conclusion

We have provided estimation and inference tools for a class of high dimensional semiparametric moment restriction
odels based on the sieve GMM method and the penalized sieve GMM method. Our approach is based on simultaneous
election and estimation of the unknown quantities. The theoretical results are verified through finite sample experiments.
e have found that the more the number of moment restrictions, the more accurate the estimates. In addition, in our

mpirical study we have also found our results to be more reasonable in some respects than those reported in the existing
iterature. The framework we have considered is quite general but can be generalized in a number of ways. First, we may
llow explicitly for panel data and allow for weak dependent sampling schemes. Second we may allow for a large number
f nonparametric functions to enter the moment condition provided they are each defined on low dimensional spaces.
nother question of interest here is efficiency; Jankova and Geer (2018) develop some results about efficiency in their
arge linear model framework.
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ppendix A. Lemmas

This section gives all technical lemmas, additional assumptions and some notation used for the theoretical derivations,
hile the proofs of these lemmas are postponed to the supplementary material of the paper or the working paper
ersion Dong et al. (2018).
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emma A.1. Under Assumptions 2.1–2.2 and 3.1–3.3, we have
1. ∥Mn(α, β)∥2

= OP (∥γK∥
2) + OP (n−1).

2. Given B2
1n +B2

2n = o(n), sup ∥a∥≤B1n,∥b∥≤B2n
∥(a−α,b−β)∥>δ

∥Mn(a, b)∥−2
= OP (1/ϵn) for each δ > 0, when n is large and where ϵn ≡ ϵn(δ)

stipulated in Assumption 3.2.

Denote m(v, u, w) = (m1(v, u, w), . . . ,mq(v, u, w))
⊺
. To investigate the asymptotics, denote the Score and Hessian

functions of ∥Mn(a, b)∥2 as

Sn(a, b) =

(
S1n(a, b)
S2n(a, b)

)
:=

(
∂
∂a
∂
∂b

)
∥Mn(a, b)∥2,

Hn(a, b) =

(
H11(a, b) H12(a, b)
H21(a, b) H22(a, b)

)
:=

(
∂2

∂a∂a⊺
∂2

∂a∂b⊺
∂2

∂b∂a⊺
∂2

∂b∂b⊺

)
∥Mn(a, b)∥2.

Moreover, define

hn(α, g) =
1
q
ΨnΨ

⊺

n , and sn(α, g) =
1
q
Ψn

1
n

n∑
i=1

m(Vi, α
⊺
Xi, g(Zi)), (A.1)

where

Ψn = E
(

∂
∂um(V , α

⊺
X, g(Z))

⊺
⊗ X

∂
∂w

m(V , α
⊺
X, g(Z))

⊺
⊗ ΦK (Z)

)
(p+K )×q

.

Lemma A.2. Let Assumptions 2.1–2.2 and 3.1, 3.3–3.7 hold. Then, (1) Hn(α, β) is asymptotically positive definite with
probability one; (2) ∥Hn(α, β) − hn(α, g)∥ = oP (1) as n → ∞.

Lemma A.3. Under Assumptions 2.1–2.2, 3.1, 3.3–3.7, as n → ∞, ∥Sn(α, β) − sn(α, g)∥ = oP (1).

Lemma A.4. Suppose that θ = (θ1, . . . , θd)′, Z = (Z1, . . . , Zd)′ ∈ Rd and ∥θ∥ = 1. Then for any m ≥ 1 and Hermite
polynomial Hm,

Hm(θ
⊺
Z) =

∑
|u|=m

(
m
u

) d∏
j=1

Huj (Zj)
d∏

j=1

θ
uj
j ,

where u = (u1, . . . , ud) is multi-index, |u| = u1 + · · · + ud and
(m
u

)
=

m!∏d
j=1 uj!

.

Assumption 2.1*. Let Z be the support of θ
⊺

0Zi. Suppose that {ϕj(·)} is a complete orthonormal function sequence in
L2(Z, π (·)), that is, ⟨ϕi(·), ϕj(·)⟩ = δij the Kronecker delta.

Assumption 3.1*. Assumptions (a), (c) and (d) in Assumption 3.1 remain the same but (b) is replaced by: (b*) for the
density fθ (z) of θ

⊺
Z1 , there exist two constants 0 < c < C < ∞ such that cπ (z) ≤ fθ (z) ≤ Cπ (z) on the support Z of

θ
⊺
Z1 for θ in some neighbourhood of θ0.

Assumption 3.2*. Suppose that there is a unique function g(·) ∈ L2(Z, π ) and for each n there is a unique vector α ∈ Rp

uch that model (2.6) is satisfied. In other words, for any δ > 0 , there is some ϵn > 0 such that

inf
(a,f )∈Θ

∥(a−α,f−g)∥≥δ

q−1
∥Em(Vi, a

⊺
Xi, f (θ

⊺

0Zi))∥
2 > ϵn,

nd possibly ϵn → 0 as n → ∞ but with a rate slower than max(∥γK (·)∥, n−1).

ssumption 3.3*. Suppose that for each n, there is a measurable positive function A(V , X, Z) such that

q−1/2
∥m(V , a

⊺

1X, f1(θ
⊺
Z)) − m(V , a

⊺

2X, f2(θ
⊺
Z))∥ ≤ A(V , X, Z)[∥a1 − a2∥ + |f1(θ

⊺
Z) − f2(θ

⊺
Z)|]

or any (a1, f1), (a2, f2) ∈ Θ and for θ in some neighbourhood of θ0, where (V , X, Z) is any realization of (Vi, Xi, Zi) and
the function A satisfies that E[A2(V , X, Z)] < ∞ uniformly in n.

Assumption 3.5*. All statements in Assumption 3.5 are true when Z1 is replaced by θ
⊺

0Z1.

Assumption 3.7*. The partial derivatives of m(v, u, w) satisfy those inequalities in Assumption 3.7 when Z is replaced
⊺

by θ0Z .
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Similar to Hn(a, b), we define block matrix H̃n(a, b) = (H̃ij(a, b))i,j=1,2 as the Hessian matrix of ∥M̃n(a, b)∥2. Meanwhile,
define Ψ̃n and h̃n(α, g) in the same way as Ψn and hn(α, g) given by (A.1) with Z being replaced by θ

⊺

0Z .

Lemma A.5. Under Assumptions 2.1*–2.2, 3.1*–3.3*, we have
1. ∥M̃n(α, β)∥2

= OP (∥γK∥
2) + OP (n−1).

2. Given B2
1n + B2

2n = o(n), sup ∥a∥≤B1n,∥b∥≤B2
∥(a−α,b−β)∥>δ

∥M̃n(a, b)∥−2
= OP (1/ϵn) for each δ > 0 when n is large, where ϵn is given by

Assumption 3.2*.

Lemma A.6. Let Assumptions 2.1*–2.2, and 3.1*, 3.3*, 3.5*, 3.6, and 3.7* hold. Then (1) H̃n(α, β) is asymptotically positive
definite with probability one; and (2) we have ∥H̃n(α, β) − h̃n(α, g)∥ = oP (1) as n → ∞.

Similarly to Sn(a, b), we define S̃n(a, b) = (̃S1n(a, b)
⊺
, S̃2n(a, b)

⊺
)
⊺
as the Score function of M̃n(a, b) and define s̃n(α, g) :=

(̃s1n(α, g)
⊺
, s̃2n(α, g)

⊺
)
⊺
, which is the same as sn(α, g) but with Zi being replaced by θ

⊺

0Zi, i.e.

s̃n(α, g) = (̃s1n(α, g)
⊺
, s̃2n(α, g)

⊺
)
⊺

=
1
q
Ψ̃n

1
n

n∑
i=1

m(Vi, α
⊺
Xi, g(θ

⊺

0Zi)). (A.2)

Lemma A.7. Under the same conditions as Lemma A.6, ∥̃Sn(α, β) − s̃n(α, g)∥ = oP (1) as n → ∞.

Lemma A.8. Let Assumptions 5.1–5.2 hold. Suppose that (i) There exists a positive sequence an = o(dn) such that ∥SnT (v0S)∥ =

OP (an); (ii) For any ϵ > 0, there exists a constant C = C(ϵ) > 0 such that for all large n, P(λmin(HnT (v0S)) > C) > 1 − ϵ; (iii)
or any ϵ > 0, δ > 0 and any nonnegative sequence ηn = o(dn), there is an N > 0 such that whenever n > N,

P
(

sup
∥vT−v0∥≤ηn

∥HnT (vT ) − HnT (v0)∥ ≤ δ

)
> 1 − ϵ.

Then there exists a local minimizer v̂ ∈ V of Qn(vT ) = ∥Mn(vT )∥2
+
∑

j∈T Pn(|vj|), such that ∥̂v − v0∥ = OP (an +
√
tn P ′

n(dn)).
Moreover, for any arbitrary ϵ > 0, the local minimizer v̂ is strict with probability at least 1 − ϵ for all large n.

It is worth noting that we show in Appendix C ∥SnT (v0S)∥ = OP (
√
tn log(q)/n) under an additional condition stated

elow, and therefore we have ∥̂v − v0∥ = OP (
√
tn log(q)/n +

√
tn P ′

n(dn)).
The oracle consistency in Lemma A.8 is derived based on the knowledge of T , the support of v0. To make the result

seful, it is desirable to show that the local minimizer of Qn restricted on V is also a minimizer of Qn on Rp+K .

Lemma A.9. Let the conditions in Lemma A.8 hold. Suppose that with probability approaching one, for v̂ ∈ V in Lemma A.8,
there exists a neighbourhood O1 ⊂ Rp+K of v̂ such that for all v ∈ O1 but v ̸∈ V , we have

∥Mn(vT )∥2
− ∥Mn(v)∥2 <

∑
j̸∈T

Pn(|vj|). (A.3)

Then, (i) With probability close to unity arbitrarily, the v̂ ∈ V is a local minimizer in Rp+K of Qn(v) = ∥Mn(v)∥2
+
∑p+K

j=1 Pn(|vj|);
(ii) For ∀ϵ > 0, the local minimizer v̂ is strict with probability at least 1 − ϵ for all large n.

Appendix B. Proofs of the main results

Proof of Theorem 3.1. In Lemma A.1, we have shown (i) ∥Mn(α, β)∥2
= OP (un) with un = max(∥γK∥

2, n−1); and
(ii) sup ∥a∥≤B1n,∥b∥≤B2n

∥(a−α,b−β)∥>δ

∥Mn(a, b)∥−2
= OP (1/ϵn) for each δ > 0.

Fix ε > 0 and δ > 0. Assertion (ii) means that there exists a large but fixed M for which

lim sup P

⎛⎝ϵn sup
∥a∥≤B1n,∥b∥≤B2n
∥(a−α,b−β)∥>δ

∥Mn(a, b)∥−2 > M

⎞⎠ < ε.

Meanwhile, by the definition of the estimator and (i), we have

∥Mn (̂α, β̂)∥2
= inf

∥a∥≤B1n,∥b∥≤B2n
∥Mn(a, b)∥2

≤ ∥Mn(α, β)∥2
= OP (un),

which gives ϵn∥Mn (̂α, β̂)∥−2
= OP (ϵn/un) →P ∞ by Assumption 3.2 and hence

P
(
ϵ ∥M (̂α, β̂)∥−2 > M

)
→ 1.
n n
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t follows that, with probability of at least 1 − 2ε for all n large enough,

ϵn∥Mn (̂α, β̂)∥−2 > M ≥ ϵn sup
∥a∥≤B1n,∥b∥≤B2n
∥(a−α,b−β)∥>δ

∥Mn(a, b)∥−2.

ence, the inclusion (̂α, β̂) ∈ {(a, b) : ∥a∥ ≤ B1n, ∥b∥ ≤ B2n, ∥(a − α, b − β)∥ > δ} holds with probability at most 2ε,(
∥(̂α − α, β̂ − β)∥ > δ

)
≤ 2ε. As ε and δ are arbitrarily chosen, we then have ∥(̂α − α, β̂ − β)∥ →P 0. Notice further

that

∥(̂α − α, ĝ(z) − g(z))∥2
= ∥α̂ − α∥

2
+

∫
[̂g(z) − g(z)]2π (z)dz

=∥α̂ − α∥
2
+

∫
[(̂β − β)

⊺
ΦK (z) − γK (z)]2π (z)dz = ∥α̂ − α∥

2
+ ∥β̂ − β∥

2
+ ∥γK (z)∥2

=∥(̂α − α, β̂ − β)∥2
+ ∥γK (z)∥2

→P 0,

as n, K → ∞, by the orthogonality of the basis sequence, which then completes the proof. □

Proof of Theorem 3.2. Notice that the conditions of the theorem imply the consistency of the estimator that is used in
the sequel. By the first order condition Sn (̂α, β̂) = 0, consistency and Taylor expansion, we have expansion

0 = Sn (̂α, β̂) =Sn(α, β) + Hn(ᾱ, β̄)
(

α̂ − α

β̂ − β

)
=Sn(α, β) + Hn(α, β)

(
α̂ − α

β̂ − β

)
+ [Hn(ᾱ, β̄) − Hn(α, β)]

(
α̂ − α

β̂ − β

)
,

where (ᾱ, β̄) is some point on the joint line between (̂α, β̂) and (α, β). Notice that the last term is of smaller order in
probability comparing to the second term. Indeed, by the Lipschitz condition in Assumption 3.4, the last term in norm is
bounded by OP (p + K )[∥α̂ − α∥ + ∥β̂ − β∥]

1+τ , while the second term is OP (p + K )[∥α̂ − α∥ + ∥β̂ − β∥]. Thus, we may
write

0 = Sn (̂α, β̂) = Sn(α, β) + Hn(α, β)
(

α̂ − α

β̂ − β

)
(1 + oP (1)),

in view of the consistency and for simplicity we shall ignore the term oP (1) in the sequel. As shown in Lemmas A.2–A.3,
under Assumptions 2.1–2.2, 3.1, 3.3 and 3.5–3.7 in Section 3, Hn(α, β) is asymptotically positive definite, and Hn(α, β) and
Sn(α, β) are approximated by hn(α, g) and sn(α, g) (defined in (A.1)), respectively, that is, ∥Hn(α, β) − hn(α, g)∥ = oP (1)
and ∥Sn(α, β) − sn(α, g)∥ = oP (1). Hence, for large n,(

α̂ − α

β̂ − β

)
= −Hn(α, β)−1Sn(α, β) = −hn(α, g)−1sn(α, g)(1 + oP (1)). (B.1)

ote that L (̂α) − L (α) = ∂L (α)
⊺
(̂α − α) + (̂α − α)

⊺
⊗ (∂2L1(ᾱ), . . . , ∂2Lr (ᾱ))

⊺
⊗ (̂α − α) where Lj is the component

of the transformation L and ᾱ is on the segment joining α and α̂, and by Assumption 3.8 the second term is negligible;
g(z) − g(z) = ΦK (z)

⊺
(̂β − β) − γK (z). By the linearity of Fréchet derivative and ignoring the higher order term in the

definition of Fréchet derivative, we have(
L (̂α) − L (α)
F (̂g) − F (g)

)
=

(
∂L (α)

⊺
(̂α − α)

F ′(g)(̂g(z) − g(z))

)
=

(
∂L (α)

⊺
0

0 F ′(g)ΦK (z)
⊺

)(
α̂ − α

β̂ − β

)
−

(
0

F ′(g)γK (z)

)
= Γnhn(α, g)−1sn(α, g) −

(
0

F ′(g)γK (z)

)
:= Λ1n + Λ2n, say.

Recall hn(α, g) =
1
qΨnΨ

⊺

n and sn(α, g) =
1
qΨn

1
n

∑n
i=1 m(Vi, α

⊺
Xi, g(Zi)) by (A.1).

Hence, Λ1n =
1
nΓn(ΨnΨ

⊺

n )
−1Ψn

∑n
i=1 m(Vi, α

⊺
Xi, g(Zi)). Then, the covariance matrix of

√
nΛ1n is

Σ2
n := Γn(ΨnΨ

⊺

n )
−1ΨnΞnΨ

⊺

n (ΨnΨ
⊺

n )
−1Γ

⊺

n ,

n which Ξn := E[m(V1, α
⊺
X1, g(Z1))m(V1, α

⊺
X1, g(Z1))

⊺
]. It follows from the standard central limit theorem (i.i.d.

nnovations) that
√
nΣ−1

n Λ1n →D N(0, Ir+s) as n → ∞. Then the assertion follows because of
√
nΣ−1

n (0⊺

r , F ′(g)γK (z)
⊺
)
⊺

=

o(1), yielding
√
nΛ2n = o(1). □

Proof of Proposition 3.1. The assertions (1) and (2) can be shown similarly to Lemmas 3.4 and 3.5 in Pakes and
Pollard (1989). For brevity we omit the proof. For (3), factor Ξn = CnC

⊺

n and denote Ωn = [ΨnWΨ
⊺

n ]
−1ΨnWCn and

n = Ωn − [ΨnΞ
−1
n Ψ

⊺

n ]
−1Ψn(C−1

n )
⊺
. It follows that TnT

⊺

n = ΩnΩ
⊺

n − [ΨnΞ
−1
n Ψ

⊺

n ]
−1, from which

Γn[ΨnWΨ
⊺

n ]
−1ΨnWΞnWΨ

⊺

n [ΨnWΨ
⊺

n ]
−1Γ

⊺

n ≥ Γn[ΨnΞ
−1
n Ψ

⊺

n ]
−1Γ

⊺

n ,
⊺

or all W satisfying the conditions, in view of the nonnegative definiteness of TnTn . □
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roof of Theorem 4.1. In view of the condition about m and the i.i.d. observations, by the standard central limit theorem(
n∑

i=1

[κ
⊺
m(Vi, α

⊺
Xi, g(Zi))]2

)−1/2 n∑
i=1

κ
⊺
m(Vi, α

⊺
Xi, g(Zi)) →D N(0, 1),

s n → ∞ for any κ ∈ Rq such that ∥κ∥ = 1.
Thus, the result follows immediately if we show

Ln (̂α, β̂; κ) =

(
n∑

i=1

[κ
⊺
m(Vi, α

⊺
Xi, g(Zi))]2

)−1/2 n∑
i=1

κ
⊺
m(Vi, α

⊺
Xi, g(Zi)) + oP (1).

owards this end, we shall show

(1).
1
n
Dn (̂α, β̂; κ)2 −

1
n

n∑
i=1

[κ
⊺
m(Vi, α

⊺
Xi, g(Zi))]2 = oP (1); and

(2).
1

√
n

n∑
i=1

κ
⊺
m(Vi, α̂

⊺
Xi, β̂

⊺
ΦK (Zi)) −

1
√
n

n∑
i=1

κ
⊺
m(Vi, α

⊺
Xi, g(Zi)) = oP (1).

However, the proof is lengthy, so we refer the interested reader to the working paper version of Dong et al. (2018,
p43-45). This finishes the proof. □

Proof of Theorem 4.2. Because for any (a, b) and κ with ∥κ∥ = 1,

1
√
n
Dn(a, b; κ) =

(
E[κ

⊺
m(V1, a

⊺
X1, b

⊺
ΦK (Z1))]2

)1/2
+ oP (1)

=
(
κ

⊺
E[m(V1, a

⊺
X1, b

⊺
ΦK (Z1))m(V1, a

⊺
X1, b

⊺
ΦK (Z1))

⊺
]κ
)1/2

+ oP (1),

which is bounded away from zero and infinity in probability, it suffices to show that there is some κ∗ with ∥κ∗
∥ = 1

such that

1
√
n

n∑
i=1

κ∗
⊺
m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi)) →P ∞

as n → ∞ for any (a, b) ∈ Rp+K . Note by the Law of Large Numbers that

1
√
n

n∑
i=1

κ
⊺
m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi)) =

√
n{E[κ

⊺
m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi))] + oP (1)}.

et κ∗
= E[m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi))]/∥E[m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi))]∥. Then,

1
√
n

n∑
i=1

κ∗
⊺
m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi)) =

√
n{∥E[m(Vi, a

⊺
Xi, b

⊺
ΦK (Zi))]∥ + oP (1)}

≥
√
n{ inf

(a,h)∈Θ
∥E[m(Vi, a

⊺
Xi, h(Zi))]∥ + oP (1)} ≥

√
n(δn + oP (1)) →P ∞,

s n → ∞, which finishes the proof. □

roof of Theorem 5.1. (i) and (ii). As shown in Lemma A.9, if Qn(v) has a local minimizer v̂ = (̂v
⊺

S , v̂
⊺

N )
⊺
, then v̂N = 0

ith probability arbitrarily close to one for large n, which implies the assertion (i) and P (̂T ⊂ T ) → 1.
On the other hand,

P(T ̸⊂ T̂ ) =P(∃j ∈ T , v̂j = 0) ≤ P(∃j ∈ T , |v0j − v̂j| ≥ |v0j|)
≤P(max

j
|v0j − v̂j| ≥ dn) ≤ P(∥̂v − v0∥ ≥ dn) = o(1),

mplying P(T ⊂ T̂ ) → 1. Accordingly, P(T = T̂ ) → 1.
(iii). Let v̂ = (̂v

⊺

S , v̂
⊺

N )
⊺
be the local minimizer of Qn(v) where v̂N = 0 with probability arbitrarily close to one. Define

′
n(|̂vS |) := (P ′

n(|̂vS1|), . . . , P ′
n(|̂vSt |))

⊺
and sgn(̂vS) := (sgn(̂vS1), . . . , sgn(̂vSt ))

⊺
.

By the Karush–Kuhn–Tucker (KKT) condition,

SnT (̂vS) = −P ′

n(|̂vS |) ⋄ sgn(̂vS),
where the operator ⋄ is the product in elementwise.
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It follows from Taylor theorem that SnT (̂vS) = SnT (v0S) + HnT (v0S)(̂vS − v0S), where a higher order term is ignored
because of the consistency of v̂S implied by Lemma A.8 and the order of an given in Appendix C, which further implies

v̂S − v0S =HnT (v0S)−1
[SnT (̂vS) − SnT (v0S)]

= − HnT (v0S)−1
[SnT (v0S) + P ′

n(|̂vS |) ⋄ sgn(̂vS)]

= − hnT (α0S, g)−1
[snT (α0S, g) + P ′

n(|̂vS |) ⋄ sgn(̂vS)](1 + oP (1))

nder the condition for tn = p1 + K1 by Lemmas A.2 and A.3 where hnT (α0S, g) and snT (α0S, g) are the counterparts of
n(α, g) and sn(α, g), respectively, under the oracle model T .
Similar to the proof of Theorem 3.2, by ĝ(z) := ΦKT (z)

⊺
β̂S ,(

L (̂αS) − L (α0S)
F (̂g(z)) − F (g(z))

)
= Γn (̂vS − v0S) +

(
0

F ′(g)γK (z)

)
= − ΓnhnT (α0S, g)−1

[snT (α0S, g) + P ′

n(|̂vS |) ⋄ sgn(̂vS)] +

(
0

F ′(g)γK (z)

)
.

otice that the structure

ΓnhnT (α0S, g)−1snT (α0S, g) =
1
n
Γn(ΨnTΨ

⊺

nT )
−1ΨnT

n∑
i=1

m(Vi, α
⊺

0SXiS, g(Zi)).

So that invoking classical central limit theorem (i.i.d. innovations) gives
√
nΣ−1

nT ΓnhnT (α0S, g)−1snT (α0S, g)
d

→ N(0, Ir+s)

s n → ∞. It remains to show
√
nΣ−1

nT P ′
n(|̂vS |) ⋄ sgn(̂vS) = oP (1). Similar to Lemma C.2 of Fan and Liao (2014) we may

how that

∥P ′

n(|̂vS |) ⋄ sgn(̂vS)∥ = OP ( max
∥vS−v0S∥≤dn/4

φ(vS)
√
tn log(q)/n + P ′

n(dn)).

Note also that ΣnT has fixed dimension and its eigenvalues are bounded from zero and above. Thus, the assertion holds
under Assumption 5.4. This finishes the proof. □

Proof of Theorem 5.2. Recall that v̂ = (̂v
⊺

S , v̂
⊺

N )
⊺
and P (̂vN = 0) → 1. Also, recall the notation v̂T = (̂α

⊺

S , 0
⊺
, β̂

⊺

S , 0
⊺
)
⊺
.

First, we shall show that ∥Mn (̂vT )∥2
= OP (t

3/2
n log(q)/n + t3/2n P ′

n(dn)
2

+ tn
√
log(q)/nP ′

n(dn)). Notice that ∥Mn (̂vT )∥2
=

Mn(v0)∥2
+ ∥Mn (̂vT )∥2

− ∥Mn(v0)∥2 and by the mean value theorem,

∥Mn (̂vT )∥2
− ∥Mn(v0)∥2

= SnT (v∗

S )
⊺
(̂vS − v0S)

=SnT (v0S)
⊺
(̂vS − v0S) + [SnT (v∗

S ) − SnT (v0S)]
⊺
(̂vS − v0S).

here v∗

S is a point on the segment joining v̂S and v0S .
Notice further,

|SnT (v0S)
⊺
(̂vS − v0S)| ≤ ∥SnT (v0S)∥∥̂vS − v0S∥ = OP (tn log(q)/n + tn

√
log(q)/nP ′

n(dn))

ue to ∥SnT (v0S)∥ = OP (
√
tn log(q)/n) and ∥̂vS − v0S∥ = OP (

√
tn log(q)/n +

√
tnP ′

n(dn)). Meanwhile, it follows from
ssumption 5.2 that

|[SnT (v∗

S ) − SnT (v0S)]
⊺
(̂vS − v0S)| ≤ ∥SnT (v∗

S ) − SnT (v0S)∥∥̂vS − v0S∥

≤OP (
√
tn)∥v∗

S − v0S∥∥̂vS − v0S∥ ≤ OP (
√
tn)∥̂vS − v0S∥

2
= OP (t3/2n log(q)/n + t3/2n P ′

n(dn)
2).

The assertion then follows by noting that ∥Mn(v0)∥2
= OP (log(q)/n) shown by (C.3) in the supplemental material of this

paper.
Second, we shall show that Qn (̂vT ) = OP (t

3/2
n log(q)/n + t3/2n P ′

n(dn)
2
+ tn

√
log(q)/nP ′

n(dn) + tn maxj∈T Pn(|v0j|)). Indeed,
sing the mean value theorem again∑

j∈T

Pn(|̂vj|) ≤

∑
j∈T

Pn(|v0j|) +

∑
j∈T

P ′

n(|v
∗

0j|)|̂vj − v0j|

≤tn max
j∈T

Pn(|v0j|) +

∑
j∈T

P ′

n(dn)|̂vj − v0j| ≤ tn max
j∈T

Pn(|v0j|) +
√
tnP ′

n(dn)∥̂v − v0∥,

rom which the assertion follows. Combining the two steps gives Q (̂v ) = o (1).
n T P
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Notice further that

Qn(v) ≥ ∥Mn(v)∥2
=

1
q

1n
n∑

i=1

m(Vi, v
⊺
Fi)


2

≥
1
2q

∥Em(V1, v
⊺
F1)∥2

−
1
q

1n
n∑

i=1

m(Vi, v
⊺
Fi) − Em(V1, v

⊺
F1)


2

=
1
2q

∥Em(V1, v
⊺
F1)∥ + oP (n−1/2),

niformly in v. Then, for any δ > 0,

inf
∥v−v0∥≥δ

Qn(v) ≥ inf
∥v−v0∥≥δ

1
2q

∥Em(V1, v
⊺
F1)∥ + oP (n−1/2)

= inf
∥(a−α,f−g)∥≥δ+∥γK (z)∥

1
q
∥Em(V1, a

⊺
X1, f (Z1))∥ + oP (n−1/2),

due to by definition ∥v − v0∥ = ∥a− α∥ + ∥b− β∥ = ∥a− α∥ + ∥f − g∥ − ∥γK (z)∥. As a result, by Assumption 3.2, there
xists ϵ > 0 such that inf∥v−v0∥≥δ Qn(v) ≥ ϵ for sufficient large n.
Taking 0 < η < ϵ,

P
(
Qn (̂v) + η > inf

∥v−v0∥≥δ
Qn(v)

)
= P

(
Qn (̂vT ) + η > inf

∥v−v0∥≥δ
Qn(v)

)
+ o(1)

≤P (Qn (̂vT ) + η > ϵ) + P
(

inf
∥v−v0∥≥δ

Qn(v) < ϵ

)
+ o(1) ≤ P (Qn (̂vT ) > ϵ − η) + o(1) = o(1)

ecause Qn (̂vT ) = oP (1). □

ppendix C. Proofs of Lemmas A.1–A.9 and Theorems 4.3 and 4.4

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.07.004.

eferences

i, C., Chen, X., 2003. Efficient estimation of models with conditional moment restrictions containing unknown functions. Econometrica 71, 1795–1843.
ndrews, D.W., 1994. Asymptotics for semiparametric econometric models via stochastic equicontinuity. Econometrica 62, 43–72.
ndrews, D.W., 1999. Consistent moment selection procedures for generalized method of moments estimation. Econometrica 67, 543–564.
ndrews, D.W., Lu, B., 2001. Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models.

J. Econometrics 101, 123–165.
ntoniadis, A., 1996. Smoothing noisy data with tapered coiflets series. Scand. J. Stat. 23, 313–330.
they, S., Imbens, G., Pham, T., Wager, S., 2017. Estimating average treatment effects: Supplementary analysis and remaining challenges. Amer. Econ.

Rev. 107, 278–281.
elloni, A., Chen, D., Chernozhukov, V., Hansen, C., 2012. Sparse models and methods for optimal instruments with an application to eminent domain.

Econometrica 80, 2369–2429.
elloni, A., Chernozhukov, V., Chetverikov, D., Kato, K., 2015. Some new asymptotic theory for least squares series: Pointwise and uniform results. J.

Econometrics 186, 345–366.
elloni, A., Chernozhukov, V., Hansen, C., 2014a. High-dimensional methods and inference on structural and treatment effects. J. Econ. Perspect. 28,

29–50.
elloni, A., Chernozhukov, V., Hansen, C., 2014b. Inference on treatment effects after selection among high-dimensional controls. Rev. Econom. Stud.

81, 608–650.
elloni, A., Chernozhukov, V., Hansen, C., Wei, Y., 2016a. Post-selection inference for generalized linear models with many controls. J. Bus. Econom.

Statist. 34, 590–605.
elloni, A., Chernozhukov, V., Wang, L., 2014c. Pivitor estimation via square-root lasso in nonparametric regression. Ann. Statist. 42, 757–788.
elloni, A., Rosenbaum, M., Tsybakov, A.B., 2016b. Linear and conic programming estimators in high-dimensional errors-in-variables models. Electron.

J. Stat. 10, 1729–1750.
ickel, P.J., 1982. On adaptive estimation. Ann. Statist. 10, 647–671.
ickel, P., Klaassen, C.A., Ritov, Y., Wellner, J.A., 1993. Efficient and Adaptive Estimation for Semiparametric Models. The John Hopkins University

Press, Baltimore and London.
lundell, R., Chen, X., Christensen, D., 2007. Semi-nonparametric IV estimation of shape-invariant engel curve . Econometrica 75, 1613–1669.
aner, M., 2009. Lasso-type GMM estimator. Econom. Theory 25, 270–290.
arneiro, P., Heckman, J., Vytlacil, E., 2011. Estimating marginal returns to education. Amer. Econ. Rev. 101, 2754–2781.
attaneo, M.D., Jansson, M., Newey, W.K., 2018. Inference in linear regression models with many covariates and heteroskedasticity. J. Amer. Statist.

Assoc. 113, 1350–1361.
hang, J., Chen, S., Chen, X., 2015. High dimensional generalized empirical likelihood for moment restrictions with dependent data. J. Econometrics

185, 283–304.
hen, X., 2007. Large sample sieve estimation of semi-parametric models. In: Engle, R.F., MacFadden, D.L. (Eds.), In: Handbook of Econometrics,

Vol. 6B, Elsevier, Amsterdam: North Holland, pp. 5550–5588.
25

https://doi.org/10.1016/j.jeconom.2021.07.004
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb1
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb2
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb3
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb4
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb4
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb4
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb5
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb6
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb6
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb6
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb7
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb7
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb7
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb8
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb8
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb8
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb9
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb9
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb9
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb10
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb10
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb10
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb11
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb11
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb11
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb12
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb13
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb13
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb13
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb14
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb15
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb15
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb15
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb16
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb17
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb18
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb19
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb19
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb19
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb20
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb20
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb20
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb21
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb21
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb21


C. Dong, J. Gao and O. Linton Journal of Econometrics xxx (xxxx) xxx

C

C
C

C

C

C
C
D
D
D
D

D

D
E
F
F
G

H
H
H
J
L
M
N
N
N

N
N
N
P
P
P

P

hen, X., Christensen, T., 2015. Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak
conditions. J. Econometrics 188, 447–465.

hen, X., Liao, Z., 2015. Sieve semiparametric two-step GMM under weak dependence. J. Econometrics 189, 163–186.
hen, X., Linton, O., Keilegom, I.V., 2003. Estimation for semiparametric models when the criterion function is not smooth. Econometrica 71,

1591–1608.
hen, X., Pouzo, D., 2009. Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals. J. Econometrics

152, 46–60.
hen, X., Pouzo, D., 2012. Estimation of nonparametric conditional moment models with possibly nonsmooth generalized residuals. Econometrica

80, 277–321.
hen, X., Shen, X., 1998. Sieve extremum estimates for weakly dependent data. Econometrica 66, 289–314.
onnor, G., Hagmann, M., Linton, O., 2012. Efficient semiparametric estimation of the fama-french model and extensions. Econometrica 80, 713–754.
ong, C., Gao, J., Linton, O., 2018. High dimensional semiparametric moment restriction models. In: Cambridge Working Papers in Economics 1881.
ong, C., Gao, J., Peng, B., 2015. Semiparametric single-index panel data models with cross-sectional dependence. J. Econometrics 188, 301–312.
ong, C., Gao, J., Tjøstheim, D., 2016. Estimation for single-index and partially linear single-index integrated models. Ann. Statist. 44, 425–453.
ong, C., Linton, O., 2018. Additive nonparametric models with time variable and both stationary and nonstationary regressors. J. Econometrics 207,

212–236.
ong, C., Linton, O., Peng, B., 2021. A weighted sieve estimator for nonparametric time series models with nonstationary variables. J. Econometrics

222, 909–932.
udley, R.M., 2003. Real Analysis and Probability. In: Cambridge studies in advanced mathematics 74, Cambridge University Press, Cambridge, U.K..
mbrechts, P., Klüppelberg, C., Mikosch, T., 1999. Modelling Extremal Events for Insurance and Mathematics. Springer-Verlag, Berlin.
an, J., Li, R., 2001. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96, 1348–1360.
an, J., Liao, Y., 2014. Endogeneity in high dimensions. Ann. Statist. 42, 872–917.
autschi, W., 2004. Orthogonal Polynomials: Computation and Approximation. In: Numerical Mathematics and Scientific Computation, Oxford

University Press, Oxford.
an, C., Phillips, P.C.B., 2006. GMM with many moment conditions. Econometrica 74, 147–192.
ansen, L.P., 1982. Large sample properties of generalized method of moments estimators. Econometrica 50, 1029–1054.
ansen, L., Heaton, J., Yaron, A., 1996. Finite-sample properties of some alternative GMM estimators. J. Bus. Econom. Statist. 14, 262–280.
ankova, J., Geer, S.V.D., 2018. Semiparametric efficiency bounds for high dimensional models. Ann. Statist. 46, 2336–2359.
eeb, H., Pötscher, B.M., 2005. Model selection and inference: facts and fiction. Econom. Theory 21, 21–59.
ammen, E., 1989. Asymptotics with increasing dimension for robust regression with applications to the bootstrap. Ann. Statist. 17, 382–400.
ewey, W.K., 1994. The asymptotic variance of semiparametric estimators. Econometrica 62, 1349–1382.
ewey, W.K., 1997. Convergence rates and asymptotic normality for series estimators. J. Econometrics 79, 147–168.
ewey, W.K., McFadden, D., 1994. Large sample estimation and hypothesis testing. In: Engle, R.F., MacFadden, D.L. (Eds.), In: Handbook of

Econometrics, Vol. IV, Elsevier, Amsterdam: North Holland, pp. 2111–2245.
ewey, W.K., Powell, J.L., 2003. Instrumental variable estimation of nonparametric models. Econometrica 71, 1565–1578.
ewey, W.K., Smith, R.J., 2004. Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72, 219–255.
ewey, W.K., Windmeijer, F., 2009. Generalized method of moments with many weak moment conditions. Econometrica 77, 687–719.
akes, A., Olley, S., 1995. A limit theorem for a smooth class of semiparametric estimators. J. Econometrics 65, 295–332.
akes, A., Pollard, D., 1989. Simulation and the asymptotics of optimization estimators. Econometrica 57, 1027–1057.
esaran, M.H., Yamagata, T., 2017. Testing for alpha in linear factor pricing models with a large number of securities. CESifo Working Paper Series

No. 6432, Available at SSRN: https://ssrn.com/abstract=2973079.
ortnoy, S., 1984. Asymptotic behaviour of M–estimators of p regression parameters when p2/n is large. I: Consistency. Ann. Statist. 12, 1298–1309.

Portnoy, S., 1985. Asymptotic behaviour of M–estimators of p regression parameters when p2/n is large. II: Normal approximation. Ann. Statist. 13,
1403–1417.

Powell, J.L., 1984. In: Engle, R., McFadden, D. (Eds.), Estimation of Semiparametric Models. In: Handbook of Econometrics IV, Elsevier, New York,
pp. 2444–2521.

Robinson, P.M., 1988. Root-N-consistent semiparametric regression. Econometrica 56, 931–954.
Su, L., Ura, T., Zhang, Y., 2018. Non-separable models with high-dimensional data. Unpublished paper at https://arxiv.org/abs/1702.04625.
Yu, Y., Ruppert, D., 2002. Penalized spline estimation for partially linear single-index models. J. Amer. Statist. Assoc. 97, 1042–1054.
Zhang, C.H., 2010. Nearly unbiased variable selection under minmax concave penalty. Ann. Statist. 38, 894–942.
26

http://refhub.elsevier.com/S0304-4076(21)00188-3/sb22
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb22
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb22
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb23
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb24
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb24
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb24
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb25
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb25
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb25
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb26
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb26
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb26
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb27
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb28
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb29
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb30
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb31
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb32
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb32
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb32
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb33
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb33
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb33
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb34
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb35
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb36
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb37
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb38
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb38
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb38
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb39
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb40
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb41
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb42
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb43
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb44
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb45
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb46
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb47
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb47
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb47
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb48
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb49
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb50
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb51
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb52
https://ssrn.com/abstract=2973079
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb54
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb55
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb55
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb55
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb56
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb56
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb56
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb57
https://arxiv.org/abs/1702.04625
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb59
http://refhub.elsevier.com/S0304-4076(21)00188-3/sb60

	High dimensional semiparametric moment restriction models
	Introduction
	Estimation procedure
	Moment restriction without single-index structure
	Moment restriction with single-index structure

	Asymptotic theory
	Consistency
	Limit distributions of the estimators
	Single-index structure

	Statistical inference
	Test of over-identification
	Student t test

	Penalized GMM under sparsity
	Oracle property
	Global property

	Simulation experiments
	Empirical illustration
	Conclusion
	Acknowledgements
	Appendix A. Lemmas
	Appendix B. Proofs of the main results
	Appendix C. Proofs of ??range]TeXFolio:lemA.1,TeXFolio:lemA.9 and ??
	References


