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a b s t r a c t

We study a class of nonparametric regression models that includes deterministic time
trends and both stationary and nonstationary stochastic processes (whose shocks are
allowed to be mutually correlated). We propose a unified approach to estimation based
on the weighted sieve method to tackle the issue of unbounded support of the covariates.
This approach improves on the existing technology in terms of some key regularity
conditions such as moment conditions and the α-mixing coefficients for the stationary
process. We establish self-normalized central limit theorems for the sieve estimator and
other related quantities. Monte Carlo simulation confirms the theoretical results. We use
our methodology to study the effect of CO2 and solar irradiance on global sea level rise.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Nonparametric methods are widely used in various areas of economics and finance due to their flexibility and
generality. New methodology such as machine learning is in many cases building on the tools and devices developed
over the last half century by work on nonparametrics. See Härdle and Linton (1994), Chen (2007) and Li and Racine
(2007) for surveys on the theoretical tools and practical applications. For stationary weakly dependent time series the
theoretical properties of kernel and sieve methods are well understood. For nonstationary or strongly dependent time
series the theory is still incomplete, despite significant works in this direction. Nonstationarity leads to slower rates
of convergence, unlike the stationary case (Stone, 1980), although limiting distributions often remain normal or mixed
normal allowing standard inference techniques. What remains relatively unstudied is the multiple covariate case where
some of the variables may be strongly dependent or even nonstationary and others are stationary or are deterministic
trends. This paper aims to address this issue.

In many applications, the outcome variable may be affected by multiple types of variables. For example, consumers’
consumption may be determined by their income and the interest rate; a stock price may be affected by the prices
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of related stocks and the trading volumes for them; global sea level rise is primarily attributed to the rise of global
temperature caused by too much carbon dioxide (chemical formula CO2) and solar irradiance (we shall return to
this question in the empirical study section). Some of these variables are stationary while others are nonstationary.
Besides, all of them may contain deterministic components that change over time. These observations motivate us to
incorporate different types of variables into a single regression model. We also expect in many cases, for example climate
modeling, that the effects of interest are nonlinear, and that linear models are neither scientifically grounded nor adequate
approximations.

In this paper, we consider a class of nonparametric regression models that incorporate all kinds of variables aforemen-
tioned. Suppose that

yt = m0(τt , zt , xt ) + et , t = 1, . . . , n, (1.1)

where m0 is an unknown function, τt = t/n, zt a stationary process, xt an integrated process, while et is an error term
that satisfies at least E[et |zt , xt ] = 0. Here, m0(·) is defined on [0, 1]×Vz ×R, where Vz is the support of z1. The integrated
process xt definitely has an unbounded support due to the divergent nature of the I(1) process whereas the stationary
zt may reasonably be supposed to have either bounded or unbounded support depending on the application. Here, we
allow zt to assume values in (−∞,∞) or (0,∞). By contrast, researchers normally require the support of the regressor
to be compact when the sieve method is used. See, e.g. Assumption 8 of Newey (1997, p.156) and Assumption 3.1 of Ai
and Chen (2003, p.1803). This restriction excludes the frequently encountered and important normal random variable, as
well as prima facie unit root processes.

We propose a weighted least squares sieve method to deal with the issues of unbounded support of variables and
nonstationarity. The kernel methodology developed in Wang and Phillips (2009) faces some difficulty in this case, as
we discuss below. Our methodology is novel and simpler than earlier approaches. We make use of the density of the
Hilbert space that includes the regression function in a weighted least squares sieve method. By contrast, both Chen
and Christensen (2015) and Hansen (2015) consider weighted (least squares) estimators in stationary settings but their
weighting is more akin to trimming, i.e., restricting attention to expanding compact support sets.

Our weighting scheme facilitates the establishment of our asymptotic theory in the presence of globally nonstationary
variables that may have unbounded support. Additionally, as explained below Assumption B, the weighting scheme also
allows us to very much weaken the condition on the α-mixing coefficients for the stationary process compared with the
literature. As a result, the model can deal with a much broader range of stationary variables. Furthermore, we allow the
shocks of the stationary and integrated variables to be correlated. We establish pointwise self-normalized central limit
theorems for the estimated regression functions and various functionals thereof and provide feasible inference procedures.
The rates of convergence obtained are generally slower than in the purely stationary or deterministic case (Stone, 1980,
1985), and for the regression function itself the rates are determined by the slowest component, the nonstationary part.
However, certain marginal effects may converge at rates corresponding to the stationary case. In practice both zt and xt
might be vectors, so the setting of model (1.1) needs to be reformulated to deal with these situations. We give a brief
discussion on this issue in the conclusion section.

Our simulation evidence shows that our estimation procedures work satisfactorily in finite sample situations. There
is much recent work by econometrics on climate modeling, see Atak et al. (2011) for example and the special issue
of the Journal of Econometrics (No.1, Vol.214, 2020). We apply our methodology to an important question in climate
econometrics. Specifically, we study the effect of CO2 and solar irradiance on global sea level rise (hereafter, SLR) using
annual data from 1880 to 2005. Visser et al. (2015) review the work on modeling of SLR; their Table 1 reveals that
a wide range of methods have been used for the trend, including: kernel methods, wavelets, MARS regression, neural
networks, and spline methods, but in most cases covariate effects have been treated linearly. We allow both trend and
covariates to affect SLR nonlinearly, which is more consistent with the type of nonlinear differential equation models
with possibly chaotic dynamic that are favored by meteorological offices concerned with numerical weather prediction,
see Lynch (2006). We find evidence of nonlinearity and indeed some interaction effects between the main variables.

Literature Review. The class of nonstationary processes is extremely broad, and different types of nonstationarity
can generate quite different behavior and require quite different analytical techniques. There are two main approaches
to depicting the structure of nonstationary data. One is the unit root theory for integrated time series (or similar
techniques for fractional integrated time series that covers unit root process as a special case). This theory and associated
techniques are studied and developed by Park and Phillips (1999, 2001), Marinucci and Robinson (2001), Wang and
Phillips (2009), Hualde and Robinson (2011), Wang (2015) and Dong et al. (2016), among others. A second setting
to describe nonstationarity is based on the class of null recurrent Markov processes, that was mainly developed by
Karlsen and Tjøstheim (2001), Karlsen et al. (2007), Mykelbust et al. (2012) and Li et al. (2016b). The theory of linear
models including all these types of variables is well understood, but the analysis of nonlinear models is at an earlier
stage and presents certain challenges. In an unpublished paper, Schienle (2008) considers an additive nonparametric
regression model with multiple nonstationary variables based on the kernel backfitting methodology. There are some
papers that consider diverse types of variables in one model. Although they have accommodated all the three types of
regressors, Chang et al. (2001) study a nonlinear parametric model where all functions are supposed to be known up
to a finite dimensional vector of parameters; Park and Hahn (1999) investigate linear regression with an I(1) regressor
and time varying coefficients depending on a fixed design; Xiao (2009) studies a functional-coefficient cointegration
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regression where the coefficients depend on a stationary variable and the regressor is an I(1) vector; Cai et al. (2009)
study a similar model with more flexibility; Wang (2015) considers the estimation of a nonparametric regression model
with both stationary and nonstationary variables via the kernelmethod; Li et al. (2016a) investigate the convergence
of sample covariances that have an I(1) process and a variable that can be a fixed design or a random design (but not
both); more recently, Dong and Linton (2018) consider an additive nonparametric model with the three types of variables
considered here and use standard least squares sieve estimation. Additivity is a strong assumption ruling out interaction
effects and can be violated by some datasets. In recent years some effort has been devoted to relax the compact support
assumption in nonparametric estimation. Chen and Christensen (2015) establish the uniform consistency with optimal
rate for sieve estimators with weakly dependent data. They propose a sequence of expanding compact sets to approximate
the unbounded support.

Throughout the paper, ∥u∥ is Euclidean norm for any vector and ∥A∥ =
√
tr(A⊺A) is entry-wise norm for any matrix;∫

f (x)dx is an integral on the entire R; An ≍ Bn means that An/Bn is bounded from below and above uniformly in n; C
can be different constant at each appearance.

The rest of the paper is organized as follows. Section 2 gives assumptions and the estimation procedure; Section 3
presents the asymptotic theory for the estimator proposed in the preceding section; Section 4 shows the results of
numerical experiments followed by the empirical study in Section 5; and Section 6 concludes. All technical lemmas are
given in Appendix A and the main results are proven in Appendix B. The proofs of lemmas, some secondary experiment
results and a discussion of heteroscedasticity setting are shown in the supplementary material file.

2. Assumptions and estimation procedure

2.1. Assumptions

We first give the structure of the integrated regressor xt .

Assumption A.

A.1 Let {ϵj,−∞ < j < ∞} be a scalar sequence of independent and identically distributed random variables having
an absolutely continuous distribution with respect to the Lebesgue measure and satisfying E[ϵ1] = 0,E[ϵ21 ] =

1,E|ϵ1|
q1 < ∞ for some q1 ≥ 4. The characteristic function of ϵ1 satisfies that

∫
|λ||E exp(iλϵ1)|dλ < ∞.

A.2 Let wt =
∑

∞

j=0 ψjϵt−j, where
∑

∞

j=0 j|ψj| < ∞ and ψ :=
∑

∞

j=0 ψj ̸= 0.
A.3 For t ≥ 1, xt = xt−1 + wt , and x0 = OP (1).

The conditions of Assumption A are commonly used in the literature on nonstationary unit root time series (see,
e.g. Park and Phillips, 1999, 2001, Wang and Phillips, 2009, Dong et al., 2016). The innovation variables {ϵj} are building
blocks for the linear process wt from which the regressor is integrated. All properties for xt given in Lemma A.1 that are
crucial for our theoretical development are derived from the I(1) structure and Condition A.1 postulated for the innovation.

From the structure of xt , we have d2t := E(x2t ) = ψ2t(1+ o(1)) when t → ∞ simply by virtue of the Beveridge–Nelson
decomposition for wt (Phillips and Solo, 1992, p. 972). More importantly, because of xt = OP (

√
t), the third argument of

m0(·, ·, ·) has to have R as its support.

Assumption B.

B.1 Suppose that zt = ρ(ϵt , . . . , ϵt−d+1; ηt ) with fixed nonnegative integer d and measurable function ρ : Rd+1
↦→ R,

where the sequence {ηt} is independent of {ϵj}, and zt has finite second moment; moreover, suppose that {ηt} is a
strictly stationary α-mixing process with mixing coefficients α(i) such that

∑
∞

i=1 α(i) < ∞.
B.2 Suppose that f is a density function on Vz , and if Vz is a bounded interval it is continuous in the interior of Vz and

satisfies additionally f (z) ≥ c > 0 for some constant c. Suppose also that there exists an orthonormal function
sequence {pi(·)} in the space L2(Vz, f (z)) such that supz∈Vz supi≥0 |pi(z)f 1/2(z)| < ∞.

B.3 Suppose that et and the filtration Ft,n = σ (zj+1, ej, j ≤ t; x1, . . . , xn) form a martingale difference sequence such
that almost surely E(e2t |Ft−1,n) = σ 2

e and max1≤t≤n E(|et |q2 |Ft−1,n) ≤ C < ∞ for some q2 ≥ 4.

Condition B.1 allows zt to be correlated with xt by sharing the same shocks ϵt , . . . , ϵt−d+1, but in the special case d = 0,
where ρ(ϵt , . . . , ϵt−d+1; ηt ) ≡ ρ̃(ηt ), they could be mutually independent. By construction, zt itself is strictly stationary
and α-mixing and its mixing coefficients satisfy the same property as {ηt}. Here, the condition

∑
∞

i=1 α(i) < ∞ is very
much weaker than the common requirement in the literature where researchers usually impose that

∑
∞

i=1 α
δ/(2+δ)(i) < ∞

for some δ > 0, which implies a much quicker decay rate of α(i) when i increases. See, for example, Assumption A6 in Cai
et al. (2009, p.103) and Assumption 1 in Dong et al. (2015, p.303). It will be made clear that this is due to the use of the
weighted least squares in our estimation procedure. Precisely, the use of the weight makes all variables bounded so that
Billingsley’s inequality, |cov(X, Y )| ≤ 4∥X∥∞∥Y∥∞α, is applicable. See Bosq (1996, p.20). Hence, the summability of α(i)
is sufficient.
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The density f introduced in B.2 is not necessarily the actual Lebesgue density of zt , and the condition f (z) ≥ c > 0 is
atisfied by several orthonormal sequences when its support is compact. For example, f (z) = (1− z2)−1/2

≥ 1 on [−1, 1]
for Chebyshev polynomials of the first kind; f (z) ≡ 1 for the sequence {ϕj(r), j ≥ 1} defined in the next subsection. It is a
user-chosen density defined on V (≡ Vz , the subscript is suppressed henceforth), but which one is chosen depends on how
large the Hilbert space L2(V , f (z)) is required or expected. For example, if V = R, then L2(V , 1/(1 + z2)) is much smaller
than L2(V , e−z2 ). Normally, the thinner the tail of the density, the larger the Hilbert space. Condition B.2 also stipulates an
orthogonal sequence {pi(z), i ≥ 0} with respect to f (z). Most orthogonal sequences used in the literature are polynomial
sequences and very much depend on the specification of V . If V = R, the sequence may be Hermite polynomial sequence
orthogonal with density f (z) = e−z2 ; if V = [0,∞), the sequence may be Laguerre polynomials orthogonal with density
f (z) = e−z ; if V = [a, b] is bounded interval, one may use trigonometric functions or Chebyshev polynomials possibly
with a linear mapping such that they are orthogonal on [a, b].

Notice also that the uniform boundedness in Condition B.2 is fulfilled for all bases mentioned above after normalization
(such that they become orthonormal). In fact, (1) if pi(z), i ≥ 0, are Laguerre polynomials with density f (z) = e−z and
V = [0,∞), then supz∈V supi≥0 |pi(z)f 1/2(z)| < 1; (2) if pi(z), i ≥ 0, are Hermite polynomials with density f (z) = e−z2

and V = R, then supz∈V supi≥0 |pi(z)f 1/2(z)| ≤ π−1/4; (3) orthogonal trigonometric function sequence satisfies the uniform
boundedness automatically when the support is a bounded interval. In this case f (z) ≡ 1, and again {ϕj(r), j ≥ 1} defined in
the next subsection is an example. See pages 205 and 208 of Erdelyi et al. (1953), Indritz (1961), Todd (1963) and Gautschi
(2004) for more details.

The martingale difference structure for the error term in Condition B.3 is extensively used in the literature such as Park
and Phillips (1999, 2001) and Wang and Phillips (2009) among others. However, the inclusion of {xt , t ≤ n} is a bit strong.
In defence of this assumption, some papers impose the independence between the unit root process and the error term
(Wang and Phillips, 2009, Theorem 3.1), which is even more stringent than our assumption, and some papers use the
strong approximation for integrated process to Brownian motion (Kasparis et al., 2015, Assumption2.2(b)), which also
has a theoretical drawback pointed out by Wang (2014). To circumvent the drawback, Wang (2014, 2015) and Wang and
Phillips (2016) establish weak asymptotic theory for a kernel estimator that instead uses the information {xs, s ≤ t+1} in
Ft,n. To do so, these papers take advantage of the form of the kernel estimator and establish the joint weak convergence
for the numerator and denominator.

It is worth noting that with the inclusion of {xt , t ≤ n} in the information filtration, we establish self-normalized
normality for our sieve estimator; we point out in the next section that there are some situations where the inclusion
can be relaxed.

2.2. Estimation procedure

The sieve estimation method is used to estimate the unknown function in model (1.1). This gives rise to the questions
of: which function space does the unknown function belong to, and which basis should be used to represent it? The
function space should be sufficiently large to include a wide range of reasonable choices for the regression function and
to accommodate a broad class of processes for the regressors.

We assume that

m0(r, z, x) ∈ L2([0, 1] × V × R, φ(z, x)), (2.1)

that is, m0(r, z, x) satisfies
∫∫∫

[0,1]×V×R m2
0(r, z, x)φ(z, x)drdzdx < ∞, where φ is a density function defined on V ×R. Here,

we take φ(z, x) = f (z) exp(−x2), where f (z) is given by Assumption B. Henceforth, denote L2φ = L2([0, 1] × V ×R, φ(z, x))
for convenience. For L2φ , we construct a basis as the tensor product of the bases chosen from L2[0, 1] = {u(r) :

∫ 1
0 u2(r)dr <

∞}, L2(V , f (z)) = {p(z) :
∫
V p2(z)f (z)dz < ∞} and L2(R, e−x2 ) = {g(x) :

∫
g2(x)e−x2dx < ∞}, respectively. We stipulate

these as follows.
Firstly, let ϕ0(r) ≡ 1, and for j ≥ 1, ϕj(r) =

√
2 cos(π jr). Then, {ϕj(r)} is an orthonormal basis in the Hilbert space

2
[0, 1]. Here, the inner product is given by ⟨u1, u2⟩ =

∫ 1
0 u1(r)u2(r)dr for any u1(·), u2(·) ∈ L2[0, 1] with the induced

orm ∥u∥2
= ⟨u, u⟩ for any u(·) ∈ L2[0, 1]. It follows that ⟨ϕi(r), ϕj(r)⟩ = δij the Kronecker delta. Note that {ϕj(r)} can

e replaced by any other orthonormal basis in L2[0, 1], as shown in Chen and Shen (1998), Gao et al. (2001) and Phillips
2005) among others. However, with this specific basis other than a general one, we do not need any assumption on it.
ll quantities related to the basis are easily and directly calculated.
Secondly, the orthogonal function sequence {pi(z), i ≥ 0} stipulated in Assumption B is chosen as an orthonormal basis

f L2(V , f (z)).
Thirdly, we choose from the space L2(R, e−x2 ) the Hermite orthogonal polynomial sequence {Hj(x)} as the basis where

he inner product is given by ⟨f1, f2⟩ =
∫
f1(x)f2(x)e−x2dx with the induced norm ∥f ∥2

= ⟨f , f ⟩. Recall that Hermite
olynomials {Hj(x)} are defined by

Hj(x) = (−1)j exp(x2)
dj

exp(−x2), j ≥ 0, (2.2)

dxj
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and satisfy
∫
Hi(x)Hj(x) exp(−x2)dx =

√
π2jj!δij, meaning that they are orthogonal with respect to the density exp(−x2).

It is well-known that {Hj(x)} is a complete orthogonal polynomial sequence and hence hj(x) := (
√
π2jj!)−1/2Hj(x) is an

rthonormal polynomial basis in L2(R, e−x2 ). Unlike in the space L2[0, 1], it seems impossible to have an orthonormal
polynomial basis other than Hermite polynomials {Hj(x)} in L2(R, e−x2 ). This is because in general an orthogonal
polynomial sequence is uniquely determined by the support and the density up to a constant.

Finally, the tensor product {ϕi(r)} ⊗ {pj(z)} ⊗ {hℓ(x)} is an orthonormal basis in L2φ . For better exposition, denote
Bijℓ(r, z, x) := ϕi(r)pj(z)hℓ(x), which is used to represent the expansion of the unknown regression function m0 into an
orthogonal series, i.e.

m0(r, z, x) =

∞∑
i,j,ℓ=0

cijℓBijℓ(r, z, x),

where cijℓ =

∫∫∫
[0,1]×V×R

m0(r, z, x)Bijℓ(r, z, x)φ(z, x)drdzdx.

(2.3)

Let ki, i = 1, 2, 3, be positive integers and K = k1k2k3. Define the truncated series with truncation parameter
k = (k1, k2, k3),

mk(r, z, x) =

k1−1∑
i=0

k2−1∑
j=0

k3−1∑
ℓ=0

cijℓBijℓ(r, z, x) := Zk(r, z, x)
⊺
c, (2.4)

where Zk(r, z, x)
⊺

:= (B000(r, z, x), . . . ,Bk1−1,k2−1,k3−1(r, z, x)) is the K -dimensional vector of the basis functions used
to approximate the regression function in which Bijℓ(r, z, x) is organized in a certain ordering and c

⊺
:= (c000, . . . ,

ck1−1,k2−1,k3−1) is in the same ordering.
The residual after truncation, denoted by γk(r, z, x), is the series that consists of all terms for which (i, j, ℓ) ̸∈ K :=

{0, . . . , k1 − 1} × {0, . . . , k2 − 1} × {0, . . . , k3 − 1}. That is,

γk(r, z, x) =

∑
(i,j,ℓ)̸∈K

cijℓBijℓ(r, z, x), (2.5)

and it can be spelt out as a sum of seven terms including the following three:

γ1k(r, z, x) :=

∞∑
i=k1,j=0,ℓ=0

cijℓBijℓ(r, z, x), γ2k(r, z, x) :=

∞∑
i=0,j=k2,ℓ=0

cijℓBijℓ(r, z, x),

γ3k(r, z, x) :=

∞∑
i=0,j=0,ℓ=k3

cijℓBijℓ(r, z, x),

which constitute the leading terms in γk(r, z, x) (they are slower in convergence than the other terms.1) In view of the
expansion (2.3), the truncation series (2.4) and the residual (2.5), model (1.1) can be written as

yt = Zk(τt , zt , xt )
⊺
c + γk(τt , zt , xt ) + et , (2.6)

for t = 1, . . . , n. To write all equations in (2.6) into a matrix form, let: y = (y1, . . . , yn)
⊺
, ZnK = (Zk(τ1, z1, x1), . . . ,

Zk(τn, zn, xn))
⊺
an n × K matrix, γ = (γk(τ1, z1, x1), . . . , γk(τn, zn, xn))

⊺
, and e = (e1, . . . , en)

⊺
. Hence, we have

y = ZnK c + γ + e. (2.7)

We are now ready to define our estimator. Let Wn = diag(φ(z1, x1), . . . , φ(zn, xn)). The estimate of the coefficients is
derived from a weighted least squares (WLS)

ĉ = arg min
c∈RK

(y − ZnK c)
⊺
Wn(y − ZnK c), (2.8)

which yields the closed form solution ĉ = (Z
⊺

nKWnZnK )−1Z
⊺

nKWny. Then, let for any r ∈ [0, 1], z ∈ V and x ∈ R,

m̂n(r, z, x) = Zk(r, z, x)
⊺
ĉ, (2.9)

be an estimator of the unknown m0(r, z, x).
The WLS method facilitates the derivation of our large sample theory below and makes the estimation procedure

robust. This is because the density involved in the estimation would automatically “draw back” outlier observations.

1 To see this, take γ1k(r, z, x) as an example. Rewrite γ1k(r, z, x) =
∑

∞

i=k1
ci(z, x)ϕi(r) where ci(z, x) =

∑
∞

j=0,ℓ=0 cijℓpj(z)hℓ(x) =
∫ 1
0 m0(r, z, x)ϕi(r)dr

can be viewed as the coefficients in the expansion of m0(r, z, x), for given (z, x), in terms of {ϕi(r)}. Thus the decay rate of γ1k(r, z, x) is only related
to the series of univariate function expansion, and such rate can be found in Lemma A.5. Similar interpretation goes to γ2k(r, z, x) and γ3k(r, z, x).
All other residual terms have at least two truncations so they converge quicker than these three.
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Moreover, without the WLS approach, we have to make stronger condition on the α-mixing coefficients in Assumption B
and higher moment condition on the orthogonal functions pi(·), or we have to truncate the support of the argument in
m0. In addition, although Wang (2015, p.209) considers a nonparametric model including stationary and nonstationary
variables using the kernel method, the methodology therein may not be usable for our model (1.1). This is because the
kernel estimator suffers from a degeneracy issue found in Phillips et al. (2017) when the deterministic trend is involved,
while as illustrated by Park and Hahn (1999) and our paper below, the weighted sieve estimator does not have such an
issue. Hence, dealing with model (1.1), the sieve method has certain advantages over the kernel method.

Nonetheless, there remains the question of how we should choose the density function. As we mentioned previously,
the choice of the density determines the function space where the regression function resides. If the support V of zt is
bounded, one may simply use f (z) ≡ 1 without any loss of generality. In the unbounded support case, there is a trade-off
to be made: a density f with very thin tails will allow a very large class of regression functions that can grow rapidly in
the tails, on the other hand, the larger the space allowed, the higher the asymptotic variance.

Before showing the asymptotic theory of the estimator, we briefly discuss the quantity of ∥Zk(r, z, x)∥ that is crucial
in our theory because it determines partially the convergence rate of our estimator. By definition,

∥Zk(r, z, x)∥2
=

k1−1∑
i=0

ϕ2
i (r)

k2−1∑
j=0

p2j (z)
k3−1∑
ℓ=0

h2
ℓ(x).

A straightforward calculation similar to Lemma A.4 in Dong and Linton (2018) yields

1
k1

k1−1∑
i=0

ϕ2
i (r) = 1 + O(k−1

1 ), (2.10)

when k1 → ∞ for r ∈ (0, 1). Moreover, in the mathematical literature the reciprocal of
∑k2−1

j=0 p2j (z) is called the Christoffel
unction for a general orthonormal polynomial sequence. See (3.3) of Nevai (1986, p.6), (33) and (38) of Máté et al. (1991,
.445) and Levin and Lubinsky (2001, p.18). When V = [−1, 1] and for the density f (z) in Assumption B.2, Corollary 1.3
f Lubinsky (2009, p.917) gives

lim
k2→∞

1
k2

k2−1∑
j=0

p2j (z) = [π f (z)
√
1 − z2]−1, (2.11)

for every z ∈ (−1, 1); for any bounded interval [a, b] the diverging order of
∑k2−1

j=0 p2j (z) is the same as O(k2) for any
orthonormal polynomial system on the interval with density satisfying Assumption B.2 and any z ∈ (a, b), because the
linear mapping z = 2(u−a)/(b−a)−1 transforms [a, b] into [−1, 1]. When the support is R and the density is exp(−x2),
as a special case, Theorem 1.1 of Levin and Lubinsky (1992) shows that

1
√
k3

k3−1∑
ℓ=0

h2
ℓ(x) ≍ exp(x2)

(
max

{
k−2/3
3 , 1 −

|x|
√
2k3

})1/2

, (2.12)

niformly for k3 ≥ 1 and x ∈ {u : |u| ≤
√
2k3(1 + Lk−2/3

3 )} where L > 0 is a constant. Here, the relationship a ≍ b in the
above means that there exist positive absolute constants c1, c2 such that c1 < a/b < c2. Thus, if 1 − |x|/

√
2k3 > k−2/3

3 ,
we have

∑k3−1
ℓ=0 h2

ℓ(x) ≍
√
k3. Notice that the constant exp(x2) in the equivalence relationship is also important at least

in practice, though it is innocuous in theory. This order is also applicable to {pj(z)} when V = R and f (z) = exp(−z2).
ne may be curious about why the order is

√
k3 other than k3. Corollary 1.4 in Levin and Lubinsky (1992) shows that

upx∈R |hℓ(x)|e−x2/2
≍ ℓ−1/12 for ℓ → ∞, which implies

∑k3−1
ℓ=0 h2

ℓ(x) ≤ Cex
2 ∑k3−1

ℓ=1 ℓ
−1/6

= O(k5/63 ). This partially gives the
nswer.
Accordingly, we may conclude for fixed r ∈ [0, 1], z ∈ V , x ∈ R, the order of ∥Zk(r, z, x)∥2 is O(k1k2

√
k3) when

is bounded or O(k1
√
k2k3) when V = R. Here we assume the condition on x and/or z is fulfilled automatically,

.e. 1 − |x|/
√
2k3 > k−2/3

3 , because we allow the truncation parameters to diverge. Notice also that the dependence of
Zk(r, z, x)∥2 on (r, z, x) asymptotically boils down to

Φ(z, x) =

{[
π f (z)

√
1 − z2

]−1
exp(x2) if V = [−1, 1],

exp(z2 + x2) if V = R,

an explicit and fixed function. Moreover, from the above analysis one can easily find the lower and upper bounds for
∥Z (r, z, x)∥2 when min(k , k , k ) → ∞.
k 1 2 3
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∥

3. Asymptotic theory

3.1. Main result

Notice that for any (r, z, x) in the domain of m0, the estimation error m̂n(r, z, x) − m0(r, z, x) has leading stochastic
term

Zk(r, z, x)
⊺
(Z

⊺

nKWnZnK )−1Z
⊺

nKWne

under Assumptions A, B, and C given below. From this, a self-normalized limit theory will be established. It follows from
Assumption B that the normalizer should be the square root of

Σn(r, z, x)2 := σ 2
e Zk(r, z, x)

⊺
(Z

⊺

nKWnZnK )−1Z
⊺

nKW
2
n ZnK (Z

⊺

nKWnZnK )−1Zk(r, z, x), (3.1)

which includes all observations as well as the conditional variance of the error term. In Lemma A.4, we show approx-
imations for Z

⊺

nKWnZnK and Z
⊺

nKW
2
n ZnK , namely, there exist two matrices ΨK and ΞK defined in Appendix A such that

∥
dn
n Z

⊺

nKWnZnK − ΨK∥ = oP (1) and ∥
dn
n Z

⊺

nKW
2
n ZnK − ΞK∥ = oP (1). Denote the minimum and maximum eigenvalues of ΨK

and ΞK by λΨmin, λ
Ψ
max, λ

Ξ
min and λΞmax, respectively. We now present Assumption C.

Assumption C.

C.1 Suppose that m0(r, z, x) ∈ L2φ and m0(r, z, x) is differentiable with respect to r, z and x, respectively, up to the orders
of s1, s2 and s3.

C.2 Suppose that k1, k2 and k3 are divergent as n → ∞, and that λΞmin ≍ K−ι1 , λΞmax ≍ K ι2 , λΨmin ≍ K−ς1 and λΨmax ≍ K ς2
in probability uniformly in n, ιi ≥ 0 and ςi ≥ 0, i = 1, 2, such that:

(a) K 4+ι1+2(ς1+ς2)k3 = o(n).
(b) K ι1+ς2

√
nmax(k−2s1

1 log2(k1), k
−s2
2 , k−s3

3 ) = o(1).
(c) K 2ς2+ι1

√
nmax(k−2s1

1 log2(k1), k
−s2+1
2 , k−s3+1

3 ) = o(1).

Assumption C.1 summarizes the properties of the regression function where the differentiability guarantees the
convergence of the orthogonal series expansion of the function m0 with a certain rate. Assumption C.2 allows that the
smallest eigenvalues of ΨK and ΞK decay to zero whereas the largest ones diverge to infinity with a certain rate. We
emphasize that assuming the dependence of such eigenvalues on sample size is not new in the literature. See, for example,
Assumption 5, Lemmas 2.1–2.4 and Theorem 3.2 in Chen and Christensen (2015) and Corollary 1 in Chang et al. (2015).
Certainly, when ιi = 0 and ςi = 0, i = 1, 2, the requirement implies that all eigenvalues are bounded below from zero
and above from infinity, a quite common assumption. See also Theorems 1–4 and Corollaries 2–3 in Chang et al. (2015),
and Condition A.2 in Belloni et al. (2015).

Moreover, the unit root process plays a different role from the other two variables in our analysis, which is reflected
in Assumption C.2(a) where an extra k3 is involved. It can be seen from the proof of Lemma A.4 that, when ιi = 0 and
ςi = 0, i = 1, 2, and if m0(r, z, x) ≡ m0(z), the condition becomes k22 = o(n), which coincides with the literature such
as Newey (1997) and Ai and Chen (2003), while if m0(r, z, x) ≡ m0(x) the condition becomes k53 = o(n), which is the same
as in Dong et al. (2016) and Dong and Gao (2018). Meanwhile, Assumptions C.2(b)–(c) are undersmoothing conditions
that guarantee the negligibility of the truncation error terms; note that the truncation parameters in different directions
play different roles depending on whether their supports are bounded (r) or unbounded (x and potentially z).

Theorem 3.1. For fixed r ∈ [0, 1], z ∈ V and x ∈ R, under Assumptions A–C, we have

Σ−1
n (r, z, x)[m̂n(r, z, x) − m0(r, z, x)] →D N(0, 1) (3.2)

as n → ∞ where Σn is given by (3.1).
Furthermore, let for (r, z, x) ̸= (r ′, z ′, x′),

Λ2
n(r, z, x; r

′, z ′, x′) := σ 2
e

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)
ΩnK

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)⊺

,

a 2 × 2 matrix. Then, we have

Λ−1
n (r, z, x; r ′, z ′, x′)

(
m̂n(r, z, x) − m0(r, z, x)

m̂n(r ′, z ′, x′) − m0(r ′, z ′, x′)

)
→D N(0, I2)

as n → ∞ provided that Λn is invertible, where I2 is the identity matrix of order 2.

The proof is given in Appendix B. The result in (3.2) is a self-normalized version of normality. Note that dn
n K ι1−2ς2

Zk(r, z, x)∥2
≤ Σ2

n (r, z, x) ≤
dn
n K ι2+2ς1∥Zk(r, z, x)∥2 in probability under Assumption C. Hence, the convergence rate of

the estimator m̂ (r, z, x) depends on both ∥Z (r, z, x)∥2 and the related eigenvalues. As explained in the preceding section,
n k
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V
e

T
k

i
c

w
o
→

3

r

a
t
a

when V is bounded, the order of ∥Zk(r, z, x)∥2 is O(k1k2
√
k3) provided that the point z is an interior point of V ; when

= R, the order of ∥Zk(r, z, x)∥2 is O(k1
√
k2k3). While the quantity Φ(z, x) induced by (2.11) and (2.12) affects the

fficiency, it does not affect the convergence rate of the estimator under our assumptions.
If m0(r, z, x) reduces to m0(x) and ιi = 0 and ςi = 0, i = 1, 2, the rate becomes 4

√
k3/n. This is comparable with

heorem 3.1 of Wang and Phillips (2009) where the unknown function in a cointegrating regression is estimated by the
ernel method and the estimator has convergence rate 1/

√√
nh in which h is bandwidth. See Remark 3.3 of Wang and

Phillips (2009, p. 722).
Note that ∥m̂n(r, z, x)−m0(r, z, x)∥2

L2
φ

= ∥̂c−c∥2
+∥γk∥

2
L2
φ

by the orthogonality of the basis functions. This can give some

clue about the choice of k = (k1, k2, k3). Basically, the optimal k should balance the variance E∥̂c − c∥2 and the squared
bias ∥γk∥

2
L2
φ

. In the simulation study we investigate a cross-validation method for selection of the tuning parameters that

is adapted to our framework, but we have no theoretical result on the choice of k.2
Notice further that the 2 × 2 matrix Λ2

n has elements on the diagonal proportional to ∥Zk(r, z, x)∥2 and ∥Zk(r ′, z ′, x′)∥2

and elements off-diagonal Zk(r, z, x)
⊺
Zk(r ′, z ′, x′), apart from a factor dn/n and the impact of related matrices. Hence, the

convergence rate in the second assertion is the same as the first result of Theorem 3.1. Normally, m̂n(r, z, x)−m0(r, z, x)
and m̂n(r ′, z ′, x′) − m0(r ′, z ′, x′) do not have independent limits as they share the same I(1) process that has a random
limit. However, they are asymptotically conditionally independent, and this is significant because it allows averaging
over (r, z, x), as occurs inside semiparametric or partial mean functionals (see the next section), to improve the rates of
convergence.

To make statistical inference, the nuisance parameter σe in Σn should be replaced by a consistent estimator. Note that
the estimator of σe is different from the usual one, due to the use of WLS and the involvement of the unit root process.
Here, σ̂ 2

e is defined from êt with weight depending on the observations rather than the usual equal weighting.

Corollary 3.1. Let êt = yt − m̂n(τt , zt , xt ) for t = 1, . . . , n. Define

σ̂ 2
e =

(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

ê2t φ(zt , xt ).

Then, under Assumptions A–C, σ̂e →P σe as n → ∞.

The proof is given in Appendix B. This result facilitates the construction of consistent pointwise confidence intervals.
We conclude with a discussion regarding the inclusion of {xt , t ≤ n} in Ft,n stipulated in Assumption B. We would

like to point out that such an inclusion is not necessary in the following two situations. First, if we are only interested in
the order of m̂n −m0 in either norm or point-wise sense, we can use a usual filtration F∗

t,n = σ (ej, zj+1, xj+1, j ≤ t) in the
martingale structure in Assumption B. Indeed, for any (r, z, x) in the domain of m0, we have

|m̂n(r, z, x) − m0(r, z, x)| ≤
dn
n

∥Zk(r, z, x)∥(λΨmin)
−1

∥Z
⊺

nKWn(e + γ )∥ + |γk(r, z, x)|.

Hence, one only needs F∗
t,n to calculate the conditional variance of ∥Z

⊺

nKWn(e + γ )∥. Second, the inclusion can be relaxed
f a heteroscedasticity structure is imposed such as et = σ (τt , zt , xt )εt where εt is independent of {zt , xt} with some
ondition on σ (·). Then, the result of Theorem 3.1 still holds if Ft,n is replaced by F∗

t,n and Σn(r, z, x)2 is substituted by

Σ∗

n (r, z, x)
2

= Zk(r, z, x)
⊺
(Z

⊺

nKWnZnK )−1Z
⊺

nKWnΩnWnZnK (Z
⊺

nKWnZnK )−1Zk(r, z, x), (3.3)

here Ωn = diag(σ (τ1, z1, x1), . . . , σ (τn, zn, xn)). Moreover, if we denote Ω̂n = diag(ê21, . . . , ê
2
n), and let Σ̂∗

n (r, z, x)
2 be

btained from Σ∗
n (r, z, x)

2 with replacement of Ωn by Ω̂n, under certain conditions we may show Σ̂∗
n (r, z, x)

2/Σ∗
n (r, z, x)

2

P 1 as n → ∞. See Section E in the supplementary material of the paper.

.2. Marginal effects

We next consider certain linear functionals of m0(r, z, x), which are often of interest in applications where they may
epresent average marginal effects. Here, we discuss the estimates of

δ1 =

∫ 1

0

∫
V×R

∂m0(r, z, x)
∂x

dω(r, z, x), δ2 =

∫ 1

0

∫
V×R

∂m0(r, z, x)
∂r

dω(r, z, x),

δ3 =

∫ 1

0

∫
V×R

∂m0(r, z, x)
∂z

dω(r, z, x), δ12 =

∫ 1

0

∫
V×R

∂2m0(r, z, x)
∂r∂z

dω(r, z, x),

2 Our central limit theorems reflect the undersmoothing condition that downplays the bias terms, which leads to “suboptimal” convergence rates
lbeit the convergence rates we achieve are arbitrarily close to these “optimal rates”, where it should be acknowledged that we know of no formal
heory of optimal estimation in the current context. It is widespread practice to employ undersmoothing to facilitate simple inference methods,
lthough there is some recent work that tries to take account of bias terms in inference. We shall leave this for future research.
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c

δ13 =

∫ 1

0

∫
V×R

∂2m0(r, z, x)
∂r∂x

dω(r, z, x), δ23 =

∫ 1

0

∫
V×R

∂2m0(r, z, x)
∂z∂x

dω(r, z, x),

where dω(r, z, x) = φ(z, x)drdzdx. We take this specific weighting for simplicity and because it reflects our choice of
parameter space. One could choose other weighting schemes, especially regarding the r, z coordinates, but our theory
requires downweighting of the x coordinate comparable to e−x2 and so any weighting scheme should satisfy cφ(z, x) ≤

w(r, z, x) ≤ Cφ(z, x) for positive finite constants c, C . Many papers consider density weighted (which is comparable with
our weighting scheme) average derivatives for the same technical reasons, see for example Powell et al. (1989).

Because of the orthogonality of the basis, all these quantities can be expressed by the coefficients in the orthogonal
expansion of m0. We can naturally define the estimators of the δ’s simply by replacing m0 with m̂n, e.g.

δ̂1 :=

∫ 1

0

∫
V×R

∂m̂n(r, z, x)
∂x

dω(r, z, x).

Note that the partial derivative will eventually be taken on the basis functions for m̂n(r, z, x) = Zk(r, z, x)
⊺
ĉ , which is of

linear form. In the next result we state the asymptotic properties of the δ̂’s.

Theorem 3.2. Under the same conditions as Theorem 3.1, we have

B−1
1n (̂δ1 − δ1) →D N(0, 8

√
π ), B−1

2n (̂δ2 − δ2) →D N(0, 8),

B−1
3n (̂δ3 − δ3) →D N(0, 8

√
π ), B−1

4n (̂δ12 − δ12) →D N(0, 64
√
π ),

B−1
5n (̂δ13 − δ13) →D N(0, 64

√
π ), B−1

6n (̂δ23 − δ23) →D N(0, 64π ),

as n → ∞, where denoting ΩnK = (Z
⊺

nKWnZnK )−1Z
⊺

nKW
2
n ZnK (Z

⊺

nKWnZnK )−1,

B2
1n :=σ 2

e ℓ
⊺

3ΩnKℓ3, B2
2n := σ 2

e L
⊺

1ΩnK L1, B2
3n := σ 2

e ℓ
⊺

2ΩnKℓ2,

B2
4n :=σ 2

e L
⊺

2ΩnK L2, B2
5n := σ 2

e L
⊺

3ΩnK L3, B2
6n := σ 2

e ℓ
⊺

11ΩnKℓ11,

and ℓ3 = (0, 0, 1, 0, . . . , 0)
⊺
, ℓ2 = (0, 1, 0, . . . , 0)

⊺
, ℓ11 = (0, . . . , 0, 1, 0, . . . , 0)

⊺
where in the last vector 1 is located at the

same place as c011 in the c, L1 is defined to be a sparse column vector (viz. most elements are zero) where 1’s conformably are
in the same place as ci00 (odd i only and i ≤ k1 − 1) in c, L2 is defined similarly but 1’s conformably are in the same place as
ci10 (odd i only and i ≤ k1 − 1) in c, and sparse L3 with 1 at the same place as ci01 (odd i only and i ≤ k1 − 1) in c; all of
them are of dimension K .

All the quantities in the theorem have a faster convergence rate than the function estimator in Theorem 3.1. To see
this, note that ΩnK =

dn
n Ψ

−1
K ΞKΨ

−1
K (1+ oP (1)) by Lemma A.4. To make the comparison simpler, we temporarily suppose

that all eigenvalues of ΨK and ΞK are bounded away from zero and above from infinity, i.e. ιi = 0 and ςi = 0 for i = 1, 2
in Assumption C. Therefore, B2

1n ≍
dn
n . Hence, δ̂1 has rate n−1/4, whereas m̂n has rate ∥Zk(r, z, x)∥n−1/4. The comparison of

onvergence rates between any one of all the other δ̂’s and m̂n is clear because B2
3n and B2

6n are all proportional to dn
n , and

B2
2n, B

2
4n and B2

5n are all proportional to dn
n

√
k1. One thing we have to mention is that in the derivations for δ3, δ12 and δ23

we specify the sequence {pj(z)} to be Hermite polynomials, otherwise we have to make a great number of assumptions
on {pj(z)}, which we eschew for space limitation reasons.

3.3. Additive and multiplicative separability

The above result is valid without any further functional form restrictions. We next consider the case where we
are willing to impose a separability assumption on the regressions surface, either additive separability m0(r, z, x) =

β0(r) + g0(z) + q0(x) or multiplicative separability m0(r, z, x) = β1(r)g1(z)q1(x). Similar to Linton and Nielsen (1995),
we shall consider the following contrasts

χ0 =

∫ 1

0

∫
V×R

m0(r, z, x)f (z)w(x)drdzdx, χ1(r) =

∫
V×R

m0(r, z, x)f (z)w(x)dzdx,

χ2(z) =

∫
[0,1]×R

m0(r, z, x)w(x)drdx, χ3(x) =

∫
[0,1]×V

m0(r, z, x)f (z)drdz,

where w(x) = π−1/2e−x2 and f (z) is given in Assumption B. Notice that actually χ0 = c000 the first coefficient in the
expansion (2.3).

In the additive case, we have:

χ0 =

∫ 1

0
β0(r)dr +

∫
V
g0(z)f (z)dz +

∫
q0(x)w(x)dx,

χ1(r) =β0(r) + θ1, θ1 :=

∫
g0(z)f (z)dz +

∫
q0(x)w(x)dx,
V
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a

χ2(z) =g0(z) + θ2, θ2 :=

∫ 1

0
β0(r)dr +

∫
q0(x)w(x)dx,

χ3(x) =q0(x) + θ3, θ3 :=

∫ 1

0
β0(r)dr +

∫
V
g0(z)f (z)dz,

nd accordingly χ1(r) + χ2(z) + χ3(x) − 2χ0 = m0(r, z, x). In the multiplicative situation, we have:

χ0 =

∫ 1

0
β1(r)dr

∫
V
g1(z)f (z)dz

∫
q1(x)w(x)dx,

χ1(r) =π1β1(r), π1 :=

∫
V
g1(z)f (z)dz

∫
q1(x)w(x)dx,

χ2(z) =π2g1(z), π2 :=

∫ 1

0
β1(r)dr

∫
q1(x)w(x)dx,

χ3(x) =π3q1(x), π3 :=

∫ 1

0
β1(r)dr

∫
V
g1(z)f (z)dz,

and consequently χ1(r)χ2(z)χ3(x)/χ2
0 = m0(r, z, x) provided that χ0 ̸= 0.

Naturally, we estimate χi(·) by

χ̂0 =̂c000, χ̂1(r) =

∫
V×R

m̂n(r, z, x)f (z)w(x)dzdx,

χ̂2(z) =

∫
[0,1]×R

m̂n(r, z, x)w(x)drdx, χ̂3(x) =

∫
[0,1]×V

m̂n(r, z, x)f (z)drdz.
(3.4)

Define four K -dimensional vectors:

ℓ
⊺

1 :=(1, 0, . . . , 0), Pk2 (z)
⊺

:= (0, . . . , 0, p0(z), . . . , pk2−1(z), 0, . . . , 0),

Φk1 (r)
⊺

:=(ϕ0(r), . . . , ϕk1−1(r), 0, . . . , 0), Uk3 (x)
⊺

:= (0, . . . , 0, h0(x), . . . , hk3−1(x)),

and define four quantities related to conditional variances below:

A2
0n :=σ 2

e ℓ
⊺

1ΩnKℓ1, A2
1n(r) := σ 2

e Φk1 (r)
⊺
ΩnKΦk1 (r),

A2
2n(z) :=σ 2

e Pk2 (z)
⊺
ΩnKPk2 (z), A2

3n(x) := σ 2
e Uk3 (x)

⊺
ΩnKUk3 (x),

where ΩnK is defined in Theorem 3.2.

Theorem 3.3. Under the same conditions as Theorem 3.1, we have

A−1
0n (χ̂0 − χ0) →D N(0, 1), A1n(r)−1(χ̂1(r) − χ1(r)) →D N(0, 1),

A2n(z)−1(χ̂2(z) − χ2(z)) →D N(0, 1), A3n(x)−1(χ̂3(x) − χ3(x)) →D N(0, 1),

as n → ∞ for any r, z and x.

Similar to the comment for Theorem 3.2, apart from the affect of the eigenvalues of ΨK and ΞK , A2
0n is proportional

to dn/n, while A2
1n ≍ (dn/n)

∑k1−1
i=0 ϕ2

i (r), A
2
2n ≍ (dn/n)

∑k2−1
j=0 p2j (z) and A2

3n ≍ (dn/n)
∑k3−1

ℓ=0 h2
ℓ(x), and these three

sums involved can be spelt out from the analysis of ∥Zk(r, z, x)∥ in Section 2. As a result, the convergence rates in
Theorem 3.3 are all faster than that in Theorem 3.1. This is because the integrations shorten the vector of basis functions
by orthogonality. We provide a simulation study in the supplement of the paper that illustrates how the results of this
section can allow one to discriminate between additive and multiplicative structures.

4. Monte Carlo simulations

We conduct Monte Carlo simulations in order to validate the relevance of our theoretical results for finite sample
situations. Consider model (1.1) with the following data generation procedure: zt = |ξt | with ξt ∼ i.i.d. N(0, 1); the
unit root regressor xt is integrated by an AR(1) process wt , i.e., xt = xt−1 + wt , where wt = ρwwt−1 + ϵt , ρw = 0.2,
ϵt ∼ i.i.d. N(0, 0.22), w0 ∼ N(0, 1/(1 − ρ2

w)) and x0 ∼ N(0, 0.22); finally, et ∼ i.i.d. N(0, 1). Note that both zt and xt have
unbounded support.
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Table 1
Estimation results for m̂ and σ̂ 2

e .
n 400 600 800

Case 1 RMSEm̂ 0.104 0.088 0.077
RMSEσ̂2

e
0.265 0.247 0.215

Case 2 RMSEm̂ 0.088 0.074 0.065
RMSEσ̂2

e
0.083 0.059 0.059

Case 3 RMSEm̂ 0.068 0.055 0.048
RMSEσ̂2

e
0.207 0.183 0.169

For the regression function m0 in (1.1), we consider the following three cases:

ase 1. m0(τ , z, x) = exp(τ + x/6) + z;

ase 2. m0(τ , z) = τ (z + z2) + 2;

ase 3. m0(τ , x) = exp((τ + x)/6).

Notice that m0 in Cases 2 and 3 are bivariate functions, hence they are special cases of the general model. They are
sed to plot 3-dimensional graphs for the estimated functions.
In view of the data process, we adopt {ϕi(r)} and {hℓ(x)} for time series {τt} and {xt} respectively as defined in the

eginning of Section 2.2, while for {zt}, we let {pj(z)} be the Laguerre polynomials. This means that the basis used to
xpand m0 is the tensor product {ϕi(r)} ⊗ {pj(z)} ⊗ {hℓ(x)} in Case 1, the tensor product {ϕi(r)} ⊗ {pj(z)} in Case 2 and the
ensor product {ϕi(r)}⊗ {hℓ(x)} in Case 3. More possible choices of basis functions under different scenarios can be found
n Chen (2007).

For the choice of truncation parameters, we follow Gao et al. (2002) to consider the minimization of a generalized
ross validation (GCV) function. Take Case 1 as an example. The GCV function is defined as

(̂k1, k̂2, k̂3) = argmin
k1,k2,k3

(y − ZnK ĉ)
⊺
Wn(y − ZnK ĉ)

n(1 −
k1k2k3

n )2
. (4.1)

For the other cases, we drop k2 or k3 in the above definition according to the data generating process.
According to our estimation procedure in Section 2, we construct the weight matrix Wn in each case as follows:

ase 1. Wn = diag
(
exp(−x21 − z1), . . . , exp(−x2n − zn)

)
;

ase 2. Wn = diag (exp(−z1), . . . , exp(−zn));

ase 3. Wn = diag
(
exp(−x21), . . . , exp(−x2n)

)
.

For each generated dataset, with the proposed estimation procedure we compute two values

ϖ1 =
1
n
(Υ − ZnK ĉ)

⊺
Wn(Υ − ZnK ĉ) and ϖ2 = σ̂ 2

e ,

where ĉ is defined in (2.8), Υ = (m0(τ1, z1, x1), . . . ,m0(τn, zn, xn))⊺ (this is simplified in Case 2 and Case 3 according to
the function forms), and σ̂ 2

e is defined in Corollary 3.1. Note that ϖ1 is essentially equivalent to the mean squared errors
nder parametric setting. After M replications of the Monte Carlo simulation, we calculate three quantities by

RMSEm̂ =

√ 1
M

M∑
j=1

ϖ1(j), and RMSEσ̂2
e

=

√ 1
M

M∑
j=1

[ϖ2(j) − σ 2
e ]2,

where ϖ1(j) and ϖ2(j) respectively stand for the values of ϖ1 and ϖ2 in the jth replication, and σ 2
e = 1 by our DGP.

Moreover, we expect that both RMSEm̂ and RMSEσ̂2
e
to be sufficiently small.

We summarize the results in Table 1. It is obvious that the values of RMSEm̂ and RMSEσ̂2
e
decrease to 0 as n goes up.

It seems that the convergence of the RMSE for σ̂ 2
e is slower than that of m̂, in particular in the first and the third cases

here the unit root process is involved. This is because the later is weighted RMSE. Note that these simulations verify our
heoretical results in Theorem 3.1 and Corollary 3.1. (Due to space limitations, some extra simulation results regarding
ur discussion associated to additive and multiplicative forms of regression are provided in the supplementary material
f this paper).
In order to visualize our simulation results, we plot φ1/2m̂ (with n = 800) and φ1/2m0 of Cases 2 and 3 in Fig. 1, where
is the density of the function space as defined in the beginning of Section 2.2. Fig. 1 includes the true φ1/2m0 and the

90% confidence interval of φ1/2m̂ for each given point based on 1000 replications. As can be seen, the three layers in each
ubplot are close to each other though the interval for Case 3 is a bit wider than Case 2 that we understand is due to
he involvement of the unit root process. This further confirms our proposed estimation procedure and the theoretical
evelopment via finite sample simulation.
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Fig. 1. m̂ and m0 of Cases 2 and 3.

Fig. 2. Three detrended time series.

. Empirical study

It is well understood that global sea level rise is primarily a problem of the rise of global temperature caused by too
uch carbon dioxide (chemical formula CO2) and solar irradiance (referred to as SI hereafter). This section studies how
O2 and SI affect SLR using the proposed nonparametric model.
Annual data for SLR, CO2 and SI from 1880 to 2005 are used in our study. The data are collected from the websites: SLR

(in mm) from CSIRO,3 CO2 (in parts per million) from NASA4 and SI (in W/m2) from University of Colorado Boulder.5 Note
that the range of original data of CO2 is from 291.2 to 379.2 parts per million. As we shall show below, this series is an I(1)
process. Therefore, due to the numerical limitation of our computer, if we stick to the current unit, the weight exp(−w2)
will wipe out almost all information when implementing the estimation procedure. To deal with this computational issue,
we change the units of CO2 from parts per million to parts per one hundred thousand in this study (i.e., dividing all original
data of CO2 by 10). After this, we firstly remove a linear time trend from the three time series in order to get rid of strong
time effects; we plot detrended time series in Fig. 2. All the following calculations are implemented based on the three
detrended series.

3 http://www.cmar.csiro.au/sealevel/index.html.
4 https://climate.nasa.gov/vital-signs/carbon-dioxide.
5 http://lasp.colorado.edu/home/sorce/data/tsi-data.

http://www.cmar.csiro.au/sealevel/index.html
https://climate.nasa.gov/vital-signs/carbon-dioxide
http://lasp.colorado.edu/home/sorce/data/tsi-data
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Fig. 3. Estimation residuals.

Table 2
Forecasting errors.
ñ 1 2 3 4 5

FError 1.7333 1.4400 2.5567 2.5532 2.3137

In order to ensure our model (1.1) fits this study well, we implement the Augmented Dickey–Fuller (ADF) test to
examine the stationarity of CO2 and SI, and report the relevant p-values 0.9990 and 0.0131, respectively. It is clear that, at
the 5% significant level, we fail to reject the null for CO2 (i.e., having a unit root), and reject the null for SI (i.e., no unit root).
Therefore, {zt |t = 1, . . . , n} take the data of SI and {xt |t = 1, . . . , n} take the data of CO2 in model (1.1), respectively.
Moreover, since SI moves between −1 and 1, we adopt the cosine sequence after a linear transformation from [−1, 1]
to [0,1]. Same as the simulation study, the truncation parameters (̂k1, k̂2, k̂3) = (4, 2, 4) are chosen by minimizing the
GCV function. For the sake of space limitation, the detailed results associated to the GCV function are reported in the
supplementary file of this paper.

For the purpose of comparison, we also consider a linear parametric model as follows:

yt = β0 + β1τt + β2zt + β3xt + et . (5.1)

The RMSE (i.e.,
√

1
n (y − ŷ)⊺Wn(y − ŷ), where ŷ stands for the estimate of y) for each model is calculated. Here, to put

the two models on an equal footing, the same Wn is used when estimating the parametric linear model (5.1). The RMSE
for the nonparametric model (1.1) is 3.6587, while for the parametric linear model (5.1) it is 5.5823, indicating that
nonparametric model is favorable to the parametric model. Furthermore, we plot the scaled version of the estimation
residuals (i.e., W 1/2

n (y − ŷ)) of the two models in Fig. 3. Clearly, the estimated residuals of both models fluctuate around
zero, but the nonparametric model (NP) yields a better fit in general than the parametric model (OLS). The full estimation
results of linear model are provided in the online supplementary file.

In the following, we focus on reporting the results associated with the nonparametric model. Firstly, we take a look
at the forecasting ability of our nonparametric model (1.1). Specifically, the forecasting errors are calculated as follows:

FError =

√1
ñ

n∑
s=n−̃n+1

exp(−x2s ) · (ys − ŷs)2,

where ŷs = Zk(1, zs, xs)
⊺
ĉs and ĉs is calculated by using the sample {( ts , zt , xt ) | 1 ≤ t ≤ s − 1}. One can also consider

the above expression as a rolling out-of-sample weighted mean squared error. The results are summarized in Table 2. As
can be seen, the forecasting errors are quite stable in terms of the choice of ñ and even smaller than the RMSE reported
above.

Second, we plot the marginal effects of the weak time trend τ , SI and CO2 respectively. Specifically, they are calculated
by

ME(τ ) =

∫∫
V×R

∂m̂n(τ , z, x)
∂τ

dzdx, ME(z) =

∫∫
[0,1]×R

∂m̂n(τ , z, x)
∂z

dτdx

ME(x) =

∫∫
∂m̂n(τ , z, x)dτdz.
[0,1]×V ∂x
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Fig. 4. Marginal effects.

It is not surprising that the marginal effects of SI is a horizontal line, given that the truncation parameter k2 = 2. While
the quantity of CO2 increases, the marginal effects of CO2 tend to increase, which quantifies the well known concern
regarding the “Greenhouse Effect”.

To further examine the interactions of different variables, we also plot the following three quantities in Fig. 5.

ME(τ , z) =

∫
R

∂2m̂n(τ , z, x)
∂τ∂z

dx, ME(τ , x) =

∫
V

∂2m̂n(τ , z, x)
∂τ∂x

dz

ME(z, x) =

∫
[0,1]

∂2m̂n(τ , z, x)
∂z∂x

dτ .

lthough Fig. 4 shows that the marginal effects of CO2 increase as CO2 increases, the second sub-figure of Fig. 5 shows
hat the impacts of CO2 become weak as time flies. It seems to suggest that the ecosystem can heal itself eventually. Of
ourse, it depends on how we protect this ecosystem in the future.
Finally, we take a look at the interaction between CO2 and SI in some selected time periods, so that we plot m̂(0.25, ·, ·),ˆ(0.5, ·, ·), m̂(0.75, ·, ·) and m̂(1, ·, ·) in Fig. 6. These 3-dimensional plots in different periods show the change of the

elationship among the dependent and independent variables. More interesting results can be drawn by looking at other
lots at additional time periods.

. Conclusion

The methodology we have proposed is relatively simple and works well in theory and practice. It may be adapted to
llow for and exploit parametric short run weak dependence in error terms by adapting the objective function along the
ines of Linton and Xiao (2019). We have not addressed uniform convergence issues as considered by Chen and Christensen
2015), and this remains an open problem for this model setting; we expect that weighted uniform convergence can be
btained with suitable rates. Some other extensions of the paper are possible. The scalar variable zt might be replaced by a
ector but, if the dimension is large, semiparametric models like single-index model or additive model are recommended.
n the other hand, unit root vector can be involved in single-index structure like Dong et al. (2016). We may take these
ssues up in future studies. In terms of the application, we have found some evidence of nonlinearity and interaction effects
n the relationship between time, CO2, SI, and the output variable SLR. We will not overclaim the statistical significance of
ur findings, as Amreheim et al. (2019), but the marginal effect curves seem broadly consistent with evidence presented
lsewhere. Other areas of application where our methods may prove useful are predictive regression for stock returns,
here it is common to consider very persistent possibly nonstationary predictors as well as less persistent possible
tationary predictors (Phillips and Lee, 2013; Andersen and Varneskov, 2018; Cheng et al., 2019).
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Fig. 5. Marginal interaction effects.

Fig. 6. Estimated m̂ at τ = 0.25, 0.5, 0.75 and 1.
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Appendix A. Lemmas

Without loss of generality, in what follows let x0 = 0 almost surely. It follows that

xt =

t∑
ℓ=1

wℓ =

t∑
ℓ=1

ℓ∑
i=−∞

ψℓ−iϵi =

t∑
i=−∞

⎛⎝ t∑
ℓ=max(1,i)

ψℓ−i

⎞⎠ ϵi =:

t∑
i=−∞

bt,iϵi. (A.1)

Additionally, letting 1 ≤ s < t , xt also has the following decomposition:

xt = x∗

s + xts, (A.2)

where x∗
s = xs + x̄s with x̄s =

∑t
i=s+1

∑s
a=−∞

ψi−aϵa containing all information available up to s and xts =
∑t

i=s+1 bt,iϵi
which captures all information containing in xt on the time periods (s, t]. Let dts := (E[x2ts])

1/2 for later use. Moreover,
x̄s = OP (1) by virtue of Assumption A.

Lemma A.1. Suppose that Assumption A holds. For t → ∞ or t − s → ∞,

(1) d−1
t xt have uniformly bounded densities ft (x) over all t and x satisfying a uniform Lipschitz condition supx

|ft (x + y) − ft (x)| ≤ C |y| for any y and some constant C > 0. In addition, supx |ft (x) − φ(x)| → 0 as t → ∞ where
φ(x) is the standard normal density function.

(2) Let 1 ≤ s < t. d−1
ts xts have uniformly bounded densities fts(x) over all (t, s) and x satisfying the above uniform Lipschitz

condition as well.

This lemma is exactly Lemma A.2 in Dong and Gao (2018) whose proof is omitted here.
Taking into account that in Assumption B.1, zt maybe contains ϵt , . . . , ϵt−d+1, we decompose, for t > d,

xt =

t∑
i=t−d+1

bt,iϵi +
t−d∑

i=−∞

bt,iϵi := x(d)t + x(t−d)
t . (A.3)

Thus, x(d)t and x(t−d)
t are mutually independent, and x(d)t is stationary since it is a combination of ϵt , . . . , ϵt−d+1 with fixed

coefficients ψ0, . . . ,
∑d−1

ℓ=0 ψℓ (i.e., a MA(d) process), while x(t−d)
t is still nonstationary since obviously its variance varies

with t . More importantly, x(t−d)
t is independent of zt .

Additionally, since zt and zs maybe share the same ϵ’s, we decompose

xt =x(d)t + x(d)ts + x(d∗)s + x(s−d∗)
s , (A.4)

where x(d)t =

t∑
i=t−d+1

bt,iϵi, x(d)ts =

t−d∑
i=s+1

bt,iϵi

x(d∗)s = x(d)s + x̄(d)s , x(s−d∗)
s = x(s−d)

s + x̄(s−d)
s ,

recalling that x(d)s and x̄(d)s are the sums of the first d terms of xs and x̄s, respectively, whereas x(s−d)
s and x̄(s−d)

s are the rests
of them in xs and x̄s, respectively. Obviously, all four components in (A.4) are mutually independent.

Lemma A.2. Suppose that Assumption A holds.

(1) Let d̃2t = E[(x(t−d)
t )2]. When t → ∞, d̃−1

t x(t−d)
t have uniformly bounded densities ft/d(x) over all t and x satisfying

a uniform Lipschitz condition supx |ft/d(x + y) − ft/d(x)| ≤ C |y| for any y and some constant C > 0. In addition,
supx |ft/d(x) − φ(x)| → 0 as t → ∞ where φ(x) is the standard normal density function.

(2) For 1 ≤ s < t and t − s > d, let d̃2ts = E[(x(t−d)
ts )2]. When t − s → ∞, d̃−1

ts x(t−d)
ts have uniformly bounded densities fts/d(x)

over all (t, s) and x satisfying the above uniform Lipschitz condition as well.

It is noteworthy that d̃t = O(
√
t), the same order as dt , and d̃ts = O(

√
t − s), the same order as dts, noting by that d is

fixed. This fact will be used frequently in the following derivation which, for simplicity, will not be mentioned repeatedly.
The proof of the lemma is much similar to Lemma A.1 so that it is omitted too.

Lemma A.3. Suppose that Assumptions A and B.1(b) hold.

(1) Let p(·) be a function such that E|p(zt )| < ∞, h(·) be such that
∫

|h(x)|dx < ∞. Then, for t → ∞, |E[p(zt )h(xt )]| <
Cd̃−1E|p(z )|

∫
|h(x)|dx(1 + O(d̃−1)).
t t t
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(2) Let p1(·) and p2(·) satisfy the above condition for p(·); and h1(·) is integrable and h2(·) is such that
∫

|xh2(x)|dx < ∞.
For 1 ≤ s < t and t − s > d,

|E[p1(zt )p2(zs)h1(xt )h2(xs)]| ≤Cd̃−1
ts d̃−1

s E|p1(zt )|E|p2(zs)| |

∫
h1(x)dx|

∫
|h2(x)|dx

+ C1d̃−2
ts d̃−1

s E|p1(zt )|E|p2(zs)|
∫

|h1(x)|dx
∫

|xh2(x)|dx,

and if
∫
h1(x)dx = 0,

|E[p1(zt )p2(zs)h1(xt )h2(xs)]| ≤ C1d̃−2
ts d̃−1

s E|p1(zt )|E|p2(zs)|
∫

|h1(x)|dx
∫

|xh2(x)|dx.

The proof is relegated to the supplementary material of the paper. Next, we shall consider the matrices Z
⊺

nKWnZnK and
Z

⊺

nKW
2
n ZnK in the normalizer Σn(r, z, x) defined in Section 3. We establish a one-step approximation for the matrices that

facilitates the proof of our main result. Specifically, denote Pj(z) = pj(z)f 1/2(z) and Hℓ(x) = hℓ(x) exp(−x2/2) and further
enote Φii′ (·) = ϕi(·)ϕi′ (·), Pjj′ (·) = Pj(·)Pj′ (·) and Hℓℓ′ (·) = Hℓ(·)Hℓ′ (·) for brevity. Then, the K × K matrix Z

⊺

nKWnZnK has
lements

∑n
t=1Φii′ (t/n)Pjj′ (zt )Hℓℓ′ (xt ) with all (i, j, ℓ), (i′, j′, ℓ′) ∈ K. At element level, the one-step approximation is

dn
n

n∑
t=1

Φii′ (t/n)Pjj′ (zt )Hℓℓ′ (xt ) = E[Pjj′ (zt )]
dn
n

n∑
t=1

Φii′ (t/n)Hℓℓ′ (xt ) + oP (1)

uniformly over all indices under Assumptions A and B. Let ΨK be a square matrix with dimension K and elements
E[Pjj′ (zt )] dnn

∑n
t=1Φii′ (t/n)Hℓℓ′ (xt ) in concert with the same ordering as the elements in Z

⊺

nKWnZnK . Thus, ∥ dn
n Z

⊺

nKWnZnK −

ΨK∥ = oP (1) under Assumption C when n → ∞, as shown rigorously in Lemma A.4. Similarly, ∥ dn
n Z

⊺

nKW
2
n ZnK−ΞK∥ = oP (1)

where ΞK has elements E[Pjj′ (zt )f (zt )] dnn
∑n

t=1Φii′ (t/n)Hℓℓ′ (xt ) exp(−x2t ). As a result, all functions of zt are replaced by
their expectation while all xt are remained in both ΨK and ΞK . Hence, the one-step approximation mitigates the condition
on zt to establish the limit theory for the estimator, but no further approximation can be made in the original probability
space without using the strong convergence for the I(1) process xt in an expanded space. This is why the Ft,n includes
all xs, s ≤ n, but only zs up to t + 1 in Assumption B. By contrast, for kernel estimator Wang (2014) takes advantage of
the ratio form to establish a joint weak convergence for the numerator and denominator that implies the normality of
the estimator. In this regard, the condition on the integrated variable for the kernel estimator is a bit weaker than for the
sieve estimator.

Lemma A.4. Under Assumptions A–C, as n → ∞, we have ∥
dn
n Z

⊺

nKWnZnK −ΨK∥ = oP (1) and ∥
dn
n Z

⊺

nKW
2
n ZnK −ΞK∥ = oP (1).

The proof of Lemma A.4 is relegated to the supplementary material of the paper.
Now, let [a, b] be a bounded interval and assume g(x) ∈ C[a, b], all continuous functions on [a, b]. Let Pk be the

set of all polynomials with order no higher than k and define Ek(g) = infpk∈Pk maxx∈[a,b] |g(x) − pk(x)|. For each k, as
shown in page 26 of Chapter 3 and proven in page 79 of Chapter 8 of Todd (1963), there exists a p∗

k ∈ Pk such that
Ek(g) = maxx∈[a,b] |g(x) − p∗

k(x)|. In the literature p∗

k is called the best approximation polynomial.
On the other hand, let {ϕj(x), j ≥ 0} be an orthonormal polynomial sequence in L2([a, b], ρ(x)) where without loss of

generality,
∫ b
a ρ(x)dx = 1. Denote by ∥·∥L2 the norm in the space. Then, g(x) =

∑
∞

j=0 cjϕj(x) where cj =
∫ b
a g(u)ϕj(u)ρ(u)du.

et Sk(g; x) =
∑k

j=0 cjϕj(x), which can be viewed as a project operator from any function of L2([a, b], ρ(x)) to a kth
olynomial. For better exposition, denote Φk(x) = (ϕ0(x), . . . , ϕk(x))⊺, c = (c0, . . . , ck)⊺ and γk(g; x) =

∑
∞

j=k+1 cjϕj(x).
Thence, g(x) = Sk(g; x) + γk(g; x) and Sk(g; x) = Φk(x)⊺c .

Lemma A.5. (1). For g(x) ∈ C[a, b], we have (a) ∥γk(g; x)∥L2 ≤ Ek(g); (b) For any x ∈ [a, b], |γk(g; x)| ≤ (1 + ∥Φk(x)∥)Ek(g);
(c) In particular, for the first kind of Chebyshev polynomial sequence on [−1, 1], maxx∈[−1,1] |γk(g; x)| ≤ (1 +

√
k)Ek(g).

(2) If g is continuously differentiable on [a, b] up to sth order, then Ek(g) ≤ Ck−sω(s)(k−1) for k > s, where ω(s)(·) is the
modulus of continuity for g (s).

(3) If h(r) ∈ L2[0, 1] and the orthogonal sequence, ϕ0(r) ≡ 1 and ϕj(r) =
√
2 cos(π jr), j ≥ 1, is used to expand the function.

Define similarly γk(h; r). If h is continuously differentiable on [0, 1] up to sth order, then maxr∈[0,1] |γk(h; r)| ≤ Ck−s log(k).
(4) Suppose that xs−ℓg (ℓ)(x) ∈ L2(R, e−x2 ) for ℓ = 0, . . . , s for some integer s > 0. When s = 1, g(x) =

∑
∞

i=0 cihi(x)
converges absolutely at any point on R, where hi(x) are Hermite polynomials defined in Section 2; when s ≥ 1, |γk(x)| =

|g(x) −
∑k−1

i=0 cihi(x)| = o(k−(s−1)/2−1/12) at any point on R, and
∫

|γk(x)|2e−x2dx = o(k−s) when k → ∞.

The proof is given in the supplementary material of the paper. The lemma mainly gives the point convergence rate
of orthogonal series expansion in two situations, that is, on bounded interval and unbounded interval, respectively.
In particular, the assertions of (1) and (3) connect the uniform rate on the finite interval with the error of the best
polynomial approximation in line with Belloni et al. (2015). See Jackson (1930) and Schultz (1969) for the best polynomial
approximation. We notice that the upper bound in (1b) may not be sharp, but it is sufficient for the paper. In this regard,
see Belloni et al. (2015) for detailed discussion.
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Appendix B. Proofs of the main results

Proof of Theorem 3.1. (1) By Lemma A.4, for any (r, z, x), we define by ∆2
n(r, z, x) the one-step approximation to

Σ2
n (r, z, x), that is, Σ

2
n (r, z, x) = ∆2

n(r, z, x)(1 + oP (1)) where Σ2
n (r, z, x) is given by Eq. (3.1) and

∆2
n(r, z, x) := σ 2

e
dn
n
Zk(r, z, x)

⊺
Ψ −1

K ΞKΨ
−1
K Zk(r, z, x).

Observe further that,

Σ−1
n (r, z, x)[m̂n(r, z, x) − m(r, z, x)]

=Σ−1
n (r, z, x)Zk(r, z, x)

⊺
(̂c − c) −Σ−1

n (r, z, x)γk(r, z, x)

=Σ−1
n (r, z, x)Zk(r, z, x)

⊺
(Z

⊺

nKWnZnK )−1Z
⊺

nKWn(γ + e) −Σ−1
n (r, z, x)γk(r, z, x)

=
dn
n
∆−1

n (r, z, x)Zk(r, z, x)
⊺
Ψ −1

K Z
⊺

nKWn(γ + e)(1 + oP (1)) −Σ−1
n (r, z, x)γk(r, z, x),

where the leading term is
dn
n
∆−1

n (r, z, x)Zk(r, z, x)
⊺
Ψ −1

K Z
⊺

nKWne

=
dn
n
∆−1

n (r, z, x)Zk(r, z, x)
⊺
Ψ −1

K

n∑
t=1

Zk(τt , zt , xt )φ(zt , xt )et

from which the normality will be derived.
Let ξnt =

dn
n ∆n(r, z, x)−1Zk(r, z, x)

⊺
Ψ −1

K Zk(τt , zt , xt )φ(zt , xt )et , so that the leading term is written as ξn :=
∑n

t=1 ξnt .
Moreover, noting by the elements of ΨK and ΞK and Assumption B, (ξnt ,Fnt ) form a martingale difference sequence and
hence ξn is a martingale. Its conditional covariance is

σ 2
e
dn
n
∆−2

n (r, z, x)Zk(r, z, x)
⊺
Ψ −1

K

(
dn
n

n∑
t=1

Zk(τt , zt , xt )Zk(τt , zt , xt )
⊺
φ(zt , xt )2

)
Ψ −1

K Zk(r, z, x)

=σ 2
e
dn
n
∆−2

n (r, z, x)Zk(r, z, x)
⊺
Ψ −1

K ΞKΨ
−1
K Zk(r, z, x)(1 + oP (1)) ≡ 1 + oP (1),

in view of the expression of ∆2
n(r, z, x).

Moreover, for any η > 0,
n∑

t=1

E[ξ 2nt I(|ξnt | > η)|Fn,t−1] ≤
1
η2

n∑
t=1

E[ξ 4nt |Fn,t−1]

≤
1
η2
µ4∆

−4
n (r, z, x)

d4n
n4

n∑
t=1

[Zk(r, z, x)
⊺
Ψ −1

K Zk(τt , zt , xt )φ(zt , xt )]4,

where µ4 = max1≤t≤n E(e4t |Ft−1) < ∞ stipulated in Assumption B.
Notice that

[Zk(r, z, x)
⊺
Ψ −1

K Zk(τt , zt , xt )φ(zt , xt )]2 ≤ (λΨmin)
−2K∥Zk(r, z, x)∥2

where ∥Zk(τt , zt , xt )φ(zt , xt )∥2
≤ K because all elements of Zk(τt , zt , xt )φ(zt , xt ) are uniformly bounded. Meanwhile,

∆2
n(r, z, x) ≥

dn
n λ

Ξ
min(λ

Ψ
max)

−2
∥Zk(r, z, x)∥2 where the constant σ 2

e is ignored that does not affect the following derivation.
It follows that

n∑
t=1

E[ξ 2nt I(|ξnt |> η)|Fn,t−1]

≤C(λΞmin)
−1(λΨmax/λ

Ψ
min)

2K∆−2
n (r, z, x)

d3n
n3

n∑
t=1

[Zk(r, z, x)
⊺
Ψ −1

K Zk(τt , zt , xt )φ(zt , xt )]2

=C(λΞmin)
−1(λΨmax/λ

Ψ
min)

2K∆−2
n (r, z, x)

d2n
n2 Zk(r, z, x)

⊺
Ψ −1

K

(
dn
n
Z

⊺

nKW
2
n ZnK

)
Ψ −1

K Zk(r, z, x)

=C(λΞmin)
−1(λΨmax/λ

Ψ
min)

2K∆−2
n (r, z, x)

d2n
n2 Zk(r, z, x)

⊺
Ψ −1

K ΞKΨ
−1
K Zk(r, z, x)(1 + oP (1))

=C(λΞ )−1(λΨ /λΨ )2K
dn (1 + oP (1)) = oP (1)
min max min n
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by the definition of ∆n(r, z, x) and Assumption C. This verifies the Lindeberg condition for ξn. Hence, we have shown that
ξn →D N(0, 1) as n → ∞ by Corollary 3.1 in Hall and Heyde (1980).

To finish the proof, we need to show the negligibility of the remained terms, A1n and A2n, say, that is,

A1n =∆−1
n (r, z, x)

dn
n
Zk(r, z, x)

⊺
Ψ −1

K Z
⊺

nKWnγ = oP (1), (B.1)

A2n =∆−1
n (r, z, x)γk(r, z, x) = oP (1). (B.2)

To show (B.1), note that

|A1n|
2

=∆−2
n (r, z, x)

d2n
n2 |Zk(r, z, x)

⊺
Ψ −1

K Z
⊺

nKWnγ |
2

≤∆−2
n (r, z, x)

d2n
n2 ∥Zk(r, z, x)

⊺
Ψ −1

K Z
⊺

nKW
1/2
n ∥

2
∥W 1/2

n γ ∥
2

=∆−2
n (r, z, x)

dn
n
Zk(r, z, x)

⊺
Ψ −1

K

(
dn
n
Z

⊺

nKWnZnK

)
Ψ −1

K Zk(r, z, x) × γ
⊺
Wnγ

=
dn
n
∆−2

n (r, z, x)Zk(r, z, x)
⊺
Ψ −1

K Zk(r, z, x)(1 + oP (1)) × γ
⊺
Wnγ

≤(λΞmin)
−1λΨmax

n∑
t=1

φ(zt , xt )γ 2
k (τt , zt , xt ),

where we use ∆2
n(r, z, x) ≥ λΞmin(λ

Ψ
max)

−1 dn
n Zk(r, z, x)

⊺
Ψ −1

K Zk(r, z, x). It follows from Lemma A.3 that

n∑
t=1

Eφ(zt , xt )γk(τt , zt , xt )2 ≤

n∑
t=1

1

d̃t
E
∫
φ(z1, x)γk(τt , z1, x)2dx

≤
√
n max

r∈[0,1]
E
∫
φ(z1, x)γk(r, z1, x)2dx,

where d̃t ∼
√
t . Moreover, γ 2

k (r, z, x) has leading terms γ 2
1k(r, z, x), γ

2
2k(r, z, x) and γ

2
3k(r, z, x) as explained in Section 2,

and they relate with the truncation residues of the three orthogonal expansions of m0(r, z, x) in terms of {ϕi(r)}, {pj(z)}
and {hℓ(x)}, respectively. Thus, in the sequel we mainly consider E

∫
φ(z1, x)γik(τt , z1, x)2dx for i = 1, 2, 3.

Now that γ1k(r, z, x) is the residue for m0(r, z, x) about r , maxr∈[0,1] |γ1k(r, z, x)| = o(k−s1
1 log(k1)) and hence

E
∫
φ(z1, x)γ1k(τt , z1, x)2dx = o(k−2s1

1 log2(k1)). See Lemma A.5 for this uniform convergence rate. Notice that
E
∫
φ(z1, x)γik(τt , z1, x)2dx are square norms of γik(r, z, x) for i = 2, 3, so they have decay rates o(k−si

1 ), respectively,
i = 2, 3, by Lemma A.5 again, where innocuously we suppose V is unbounded. Consequently, we have

n∑
t=1

Eφ(zt , xt )γk(τt , zt , xt )2 = C
√
nmax(k−2s1

1 log2(k1), k
−s2
2 , k−s3

3 ).

Thus, A1n = oP (1) by Assumption C.
To show (B.2), note that

|A2n| = ∆−1
n (r, z, x)|γk(r, z, x)|

≤∆−1
n (r, z, x)(|γ1k(r, z, x)| + |γ2k(r, z, x)| + |γ3k(r, z, x)|)

=(λΞmin)
−1/2λΨmax∥Zk(r, z, x)∥

−1n1/4o(max(k−s1
1 log(k1), k

−(s2−1)/2
2 , k−(s3−1)/2

3 )) = oP (1)

in view of Assumption C and ∆2
n(r, z, x) ≥ λΞmin(λ

Ψ
max)

−2 dn
n ∥Zk(r, z, x)∥2, where again the convergence rate for |γik(r, z, x)|,

i = 1, 2, 3, can be found in Lemma A.5. Definitely, the rates are in point-wise sense as the convergence relates to the
point (z, x). The first result holds.

(2) Observe that

m̂n(r, z, x) − m0(r, z, x) =Zk(r, z, x)
⊺
(Z

⊺

nKWnZnK )−1Z
⊺

nKWne

+ Zk(r, z, x)
⊺
(Z

⊺
WnZnK )−1Z

⊺
Wnγ − γk(r, z, x),
nK nK
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and thus(
m̂n(r, z, x) − m0(r, z, x)

m̂n(r ′, z ′, x′) − m0(r ′, z ′, x′)

)
=

n∑
t=1

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)
(Z

⊺

nKWnZnK )−1Zk(τt , zt , xt )φ(zt , xt )et

+

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)
(Z

⊺

nKWnZnK )−1Z
⊺

nKWnγ −

(
γk(r, z, x)
γk(r ′, z ′, x′)

)
.

While the last two terms are negligible similar to the proof of the first part, the normality is derived from the first term for
which we call the leading term. Indeed, by the one-step approximation in Lemma A.4, the normalizerΛ2

n(r, z, x; r
′, z ′, x′) =

λ2n(r, z, x; r
′, z ′, x′)(1 + oP (1)) where

λ2n(r, z, x; r
′, z ′, x′) = σ 2

e
dn
n

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)
Ψ −1

K ΞKΨ
−1
K

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)⊺

.

Thence, after normalization the leading term is

λ−1
n (r, z, x; r ′z ′x′)

n∑
t=1

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

)
(Z

⊺

nKWnZnK )−1Zk(τt , zt , xt )φ(zt , xt )et

=
dn
n
λ−1
n (r, z, x; r ′z ′x′)

(
Zk(r, z, x)

⊺

Zk(r ′, z ′, x′)
⊺

) n∑
t=1

Ψ −1
K Zk(τt , zt , xt )φ(zt , xt )et ,

which by Assumption B is a two-dimensional martingale sequence and clearly has conditional variance I2. Hence, using
Cramér–Wold device and similar to the first part, it follows that

Λ−1
n (r, z, x; r ′z ′x′)

(
m̂n(r, z, x) − m0(r, z, x)

m̂n(r ′, z ′, x′) − m0(r ′, z ′, x′)

)
→D N(0, I2)

as n → ∞. We omit the details for the similarity and the proof then is complete. □

Proof of Corollary 3.1. Note that

σ̂ 2
e =

(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

ê2t φ(zt , xt )

=

(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

[et + m(τt , zt , xt ) − m̂n(τt , zt , xt )]2φ(zt , xt )

=

(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

e2t φ(zt , xt )

+

(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

[m(τt , zt , xt ) − m̂n(τt , zt , xt )]2φ(zt , xt )

+ 2

(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

et [m(τt , zt , xt ) − m̂n(τt , zt , xt )]φ(zt , xt ).

It suffices to show that(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

e2t φ(zt , xt ) →P σ
2
e , (B.3)

and (
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

[m(τt , zt , xt ) − m̂n(τt , zt , xt )]2φ(zt , xt ) = oP (1) (B.4)

as n → ∞, since the last term is implied to be o (1) by Cauchy–Schwarz and the convergence of the first two.
P
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a

w

Note that(
n∑

t=1

φ(zt , xt )

)−1 n∑
t=1

e2t φ(zt , xt ) − σ 2
e =

(
dn
n

n∑
t=1

φ(zt , xt )

)−1
dn
n

n∑
t=1

(e2t − σ 2
e )φ(zt , xt ),

and similarly to Lemma A.4 we may show that dn
n

∑n
t=1 φ(zt , xt ) = E[f (zt )] dnn

∑n
t=1w(xt )(1+oP (1)) = OP (1) by Lemma A.1

nd dn
n

∑n
t=1(e

2
t − σ 2

e )φ(zt , xt ) = oP (1) by virtue of the martingale difference structure. Thus, the assertion (B.3) holds.
To show (B.4), observe that(

n∑
t=1

φ(zt , xt )

)−1 n∑
t=1

[m(τt , zt , xt ) − m̂n(τt , zt , xt )]2φ(zt , xt )

=OP

(
dn
n

) n∑
t=1

[Zk(τt , zt , xt )
⊺
(c − ĉ) + γk(τt , zt , xt )]2φ(zt , xt )

≤OP

(
dn
n

) n∑
t=1

[Zk(τt , zt , xt )
⊺
(c − ĉ)]2φ(zt , xt ) + OP

(
dn
n

) n∑
t=1

γ 2
k (τt , zt , xt )φ(zt , xt )

=OP (1)(c − ĉ)
⊺

(
dn
n
Z

⊺

nKWnZnK

)
(c − ĉ) + OP (1)

dn
n

n∑
t=1

γ 2
k (τt , zt , xt )φ(zt , xt )

=OP (1)(c − ĉ)
⊺
ΨK (c − ĉ) + OP (1)

dn
n

n∑
t=1

γ 2
k (τt , zt , xt )φ(zt , xt )

=OP (1)
d2n
n2 e

⊺
WnZnKΨ −1

K Z
⊺

nKWne + OP (1)
dn
n

n∑
t=1

γ 2
k (τt , zt , xt )φ(zt , xt )

≤OP (1)
dn
n
KλΞmax(λ

Ψ
min)

−1
+ OP (1)

dn
n

n∑
t=1

γ 2
k (τt , zt , xt )φ(zt , xt ) = oP (1),

where the first term is oP (1) derived from ĉ − c = (Z
⊺

nKWnZnK )−1Z
⊺

nKWne and the martingale difference structure, while
in the second term dn

n

∑n
t=1 γ

2
k (τt , zt , xt )φ(zt , xt ) = oP (1) as shown in the proof of Theorem 3.1. Therefore the corollary is

complete. □

Proof of Theorem 3.2. Given Assumption C, the function m0 is sufficiently smooth such that its series expansion,
combined with the density in the integrals in the definition of δ’s, is uniformly convergent. Hence, its derivatives can
be calculated term by term and again due to the presence of the density the integrals can be computed termwise in what
follows. Without loss of generality, assume p0(z) ≡ 1.

(a) Notice that H ′

i (x) = 2iHi−1(x). By (2.3) we have

δ1 =

∫ 1

0

∫
V×R

∂m0(r, z, x)
∂x

dω(r, z, x) =

∞∑
i,j,ℓ=0

cijℓ

∫ 1

0

∫
V×R

∂Bijℓ(r, z, x)
∂x

dω(r, z, x)

=

∞∑
i,j,ℓ=0

cijℓ

∫ 1

0
ϕi(r)dr

∫
V
pj(z)f (z)dz

∫
R

∂hℓ(x)
∂x

e−x2dx

=

∞∑
ℓ=1

c00ℓ
(
√
πℓ!2ℓ)−1/2

∫
R
(2ℓ)Hℓ−1(x)e−x2dx = c001(

√
π2)−1/24

√
π = 2

√
2 4√πc001.

Thus, δ̂1 − δ1 = 2
√
2 4
√
π (̂c001 − c001).

Let ℓ3 = (0, 0, 1, 0, . . . , 0) of dimension K . Then,

ĉ001 − c001 = ℓ
⊺

3 (̂c − c) = ℓ
⊺

3(Z
⊺

nKWnZnK )−1Z
⊺

nKWn(γ + e)

hich is similar to the first two terms of m̂n(r, z, x) − m(r, z, x) in Theorem 3.1 but with Zk(r, z, x) being replaced by ℓ3.
Therefore, under the conditions of Theorem 3.1 and defining B2

1n := σ 2
e ℓ

⊺

3ΩnKℓ3, we may show in the same fashion as
Theorem 3.1 that

B−1
1n (̂c001 − c001) →D N(0, 1),

as n → ∞ and hence the assertion holds.
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(b) Observe that

δ2 =

∫ 1

0

∫
V×R

∂m0(r, z, x)
∂r

dω(r, z, x) =

∞∑
i,j,ℓ=0

cijℓ

∫ 1

0

∫
V×R

∂Bijℓ(r, z, x)
∂r

dω(r, z, x)

=

∞∑
i,j,ℓ=0

cijℓ

∫ 1

0

dϕi(r)
dr

dr
∫
V
pj(z)f (z)dz

∫
R
hℓ(x)e−x2dx

=

∞∑
i=1

ci00[ϕi(1) − ϕi(0)] =
√
2

∞∑
i=1

ci00[(−1)i − 1],

by the orthogonality of {pj(z)} and {hℓ(x)}. Thus, δ̂2 =
√
2
∑k1−1

i=1 ĉi00[(−1)i − 1]. We then have

δ̂2 − δ2 =
√
2

k1−1∑
i=1

[(−1)i − 1](̂ci00 − ci00) −
√
2

∞∑
i=k1

ci00[(−1)i − 1]

:= − 2
√
2L

⊺

1 (̂c − c) + γ̃1k1 ,

where L1 is defined to be a sparse column vector with dimension K where 1 conformably is in the place of ci00 (odd i) in
c. Thus, there are about [k1/2] places that equal 1 and elsewhere 0; the definition of γ̃1k1 is clear, i.e. the residue of the
eries. Observe further that

δ̂2 − δ2 = − 2
√
2L

⊺

1 (̂c − c) + γ̃1k1

= − 2
√
2L

⊺

1(Z
⊺

nKWnZnK )−1Z
⊺

nKWn(γ + e) + γ̃1k1

= − 2
√
2
dn
n
L
⊺

1Ψ
−1
K Z

⊺

nKWn(γ + e)(1 + oP (1)) + γ̃1k1 ,

hich has similar structure as m̂n(r, z, x) − m(r, z, x) in Theorem 3.1 but with Zk(r, z, x) being replaced by L1.
Thus, define B2

2n = σ 2
e L

⊺

1ΩnK L1. Following the same derivation as Theorem 3.1, we may show that B−1
2n (̂δ2 − δ2) →D

(0, 8).
(c) Here, in order to implement the following calculation, we need to specify the orthogonal sequence {pj(z)}, otherwise

e have to make a great deal of assumptions on it. Let {pj(z)} be Hermite orthogonal polynomial sequence, i.e. the support
f zt is the entire real line. Similar to (a), we have δ3 = 2

√
2 4
√
πc010 and then δ̂3 − δ3 = 2

√
2 4
√
π (̂c010 − c010). Following

xactly the same fashion as (a), we can have the assertion.
(d) Observe that

δ12 =

∫ 1

0

∫∫
∂2m0(r, z, x)

∂r∂z
dω(r, z, x) =

∞∑
i,j,ℓ=0

cijℓ

∫ 1

0

∫∫
∂2Bijℓ(r, z, x)

∂r∂z
dω(r, z, x)

=

∞∑
i,j,ℓ=0

cijℓ

∫ 1

0

dϕi(r)
dr

dr
∫

dpj(z)
dz

e−z2dz
∫
R
hℓ(x)e−x2dx

=

∞∑
i,j=1

cij0[ϕi(1) − ϕi(0)](
√
π j!2j)−1/2

∫
(2j)Hj−1(z)e−z2dz

=4 4√π

∞∑
i=1

ci10[(−1)i − 1],

imilar to (a) and (b). Thus, we define δ̂12 = 4 4
√
π
∑k1−1

i=1 ĉi10[(−1)i−1] and hence δ̂12−δ12 = 4 4
√
π
∑k1−1

i=1 (̂ci10−ci10)[(−1)i−
] − 4 4

√
π
∑

∞

i=k1
ci10[(−1)i − 1]. Therefore, the assertion follows in the same fashion as (b).

(e) Similarly, after the same calculation we define δ̂13 = 4 4
√
π
∑k1−1

i=1 ĉi01[(−1)i −1] and δ̂13 − δ13 = 4 4
√
π
∑k1−1

i=1 (̂ci01 −

i01)[(−1)i − 1] − 4 4
√
π
∑

∞

i=k1
ci01[(−1)i − 1]. Once again, the assertion follows in the same fashion as (b).

(f) By the similar calculation, δ23 = 8
√
πc011 and then define δ̂23 = 8

√
π ĉ011. Then, the assertion follows similarly as

a). This finishes the proof. □

roof of Theorem 3.3. The assertion about χ0 follows exactly the same as that for δ1 in Theorem 3.2, so we omit the
roof.
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A

R

A
A
A
A

B

B
C
C

C

C

C

C
C

D
D
D
D

E
G
G
G

H
H
H

H
I

Observe that

χ̂1(r) − χ1(r) =

∫
V×R

[m̂n(r, z, x) − m0(r, z, x)]f (z)w(x)dzdx

=

∫
V×R

Zk(r, z, x)
⊺
f (z)w(x)dzdx(̂c − c) −

∫
V×R

γk(r, z, x)f (z)w(x)dzdx.

Note that Zk(r, z, x) has elements Bijℓ(r, z, x) = ϕi(r)pj(z)hℓ(x) with i ≤ k1 −1, j ≤ k2 −1 and ℓ ≤ k3 −1, and moreover,∫
V pj(z)f (z)dz = 0 unless j = 0 and

∫
hℓ(x)w(x)dx = 0 unless ℓ = 0. Thus, the vector

∫
V×R Zk(r, z, x)

⊺
f (z)w(x)dzdx reduces

to (ϕ0(r), . . . , ϕk1−1(r), 0, . . . , 0). Meanwhile,
∫
V×R γk(r, z, x)f (z)w(x)dzdx =

∑
∞

i=k1
ci00ϕi(r). This situation is the same as

Theorem 3.2 since Φk1 (r)
⊺

:= (ϕ0(r), . . . , ϕk1−1(r), 0, . . . , 0) plays the same role as ℓ2. Let A2
1n(r) = σ 2

e Φk1 (r)
⊺
ΩnKΦk1 (r).

Then, similar to Theorem 3.2, we have
1

A1n(r)
(χ̂1(r) − χ1(r)) →D N(0, 1)

as n → ∞.
Using the orthogonality of the sequence and the similar argument, we may have the normality for χ̂2(z) − χ2(z) and

χ3(x)−χ3(x), respectively. Precisely, let Pk2 (z)
⊺

:= (0, . . . , 0, p0(z), . . . , pk2−1(z), 0 · · · , 0) and A2
2n(z) := σ 2

e Pk2 (z)
⊺
ΩnKPk2 (z);

Uk3 (x) := (0, . . . , 0, h0(x), · · · , hk3−1(x))⊺ and A2
3n(x) := σ 2

e Uk3 (x)
⊺ΩnKUk3 (x). Then,

1
A2n(z)

(χ̂2(z) − χ2(z)) →DN(0, 1),

1
A3n(x)

(χ̂3(x) − χ3(x)) →DN(0, 1),

as n → ∞. □

ppendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.03.024.
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