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is estimated by solving an expanding set of moment equations. We establish the
asymptotic distributions of our test statistic under the null hypothesis and under
fixed and local alternatives. The proposed test statistic is shown to be more efficient
than that constructed from the true weighting function and can detect local alterna-
tives deviated from the null models at the rate of O(N−1/2). A simulation method
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simulations show that our test exhibits a satisfactory finite-sample performance, and
an application shows its practical value.
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1 Introduction

Causal inference is a central topic in economics, statistics, and machine learning. Although

a randomized trial is the gold standard for identifying causal effects, such trials are often

unavailable or even unethical in practice. Observational data, which are collected when the

participation of an intervention is only observed rather than manipulated by scientists, are

predominantly the type of data that are available. A major challenge for inferring causality

in observational studies is confoundedness, whereby individual characteristics are correlated

with both the treatment variable and the outcome of interest. To identify causality, the

unconfounded treatment assignment condition is frequently imposed in the literature; see

Rosenbaum and Rubin (1983, 1984). For a comprehensive review of causal inference and

its applications, see Imbens and Wooldridge (2009) and Abadie and Cattaneo (2018).

Treatment effect models are used extensively in economics and statistics to evaluate

the causal effect of a treatment or policy. Most of the existing literature focuses on binary

treatment, whereby an individual either does or does not receive the treatment (e.g., Hahn,

1998; Hirano et al., 2003; Donald et al., 2014; Imai and Ratkovic, 2014; Abrevaya et al.,

2015; Chan et al., 2016; Athey et al., 2018; Hsu et al., 2020; Chen et al., 2020; Fan et al.,

2020; Sant’Anna et al., 2020; Ai et al., 2022). Some studies focus on multivalued treatment

(see, e.g., Cattaneo, 2010; Lee, 2018; Ai et al., 2020; Ao et al., 2021). However, in many

applications, the treatment variable is continuously valued, and its causal effect is of great

interest to decision makers. For example, when evaluating how non-labor income affects the

labor supply, the causal effect may depend on not only the introduction of the non-labor

income but also the total non-labor income. Similarly, when evaluating how advertising

affects the campaign contributions for political analysis, the causal effect may depend

not only on whether any advertisements are released but also on how many of them are

distributed.

Estimation of continuous treatment effects has received considerable attention from

researchers (see Hirano and Imbens, 2004; Galvao and Wang, 2015; Kennedy et al., 2017;

Fong et al., 2018; Dong et al., 2019; Huber et al., 2020; Colangelo and Lee, 2020; Ai et al.,

2021, among others). Hirano and Imbens (2004), Galvao and Wang (2015), and Fong et al.

(2018) applied fully parametric methods by modeling either the conditional distribution of
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the treatment given the confounders or that of the observed outcome given the treatment

and the confounders. The shortcoming of these parametric methods is that modeling and

testing the relationship between the treatment and the observed outcome regarding the

confounders are difficult, especially when multiple confounding variables are involved. If the

model is mis-specified, the conclusion can be biased and completely misleading. Kennedy

et al. (2017) and Huber et al. (2020) estimated the continuous treatment effects using the

nonparametric kernel method. Although nonparametric approaches are much more flexible

than parametric ones, the former require smoothing of the data rather than estimating

finite dimensional parameters, which leads to less precise fits and slower convergence rates

(slower than N−1/2). Furthermore, it is usually difficult to interpret nonparametric results.

In a recent article, Ai et al. (2021) studied continuous treatment effects by imposing a

univariate generalized parametric model for the functionals of the potential outcome over

the treatment variable. The general framework includes many important causal parame-

ters as special cases, for example, average and quantile treatment effects. They proposed a

generalized weighting estimator for the causal effect with the weights modeled nonparamet-

rically and estimated by solving an expanding set of equations. They further derived the

semiparametric efficiency bound for the causal effect of treatment under the unconfounded

treatment assignment condition and showed that their estimator is
√
N -asymptotically nor-

mal and attains the semiparametric efficiency bound. Although Ai et al. (2021)’s estimator

enjoys superior asymptotic properties and satisfactory finite sample performance, they did

not detail the specifications of the parametric models for the functionals of the potential

outcomes. If the parametric model is mis-specified, the results developed in Ai et al. (2021)

do not hold.

We study the question of model specification. In particular, we propose a consistent

specification test for the most generalized continuous treatment effect model. That is, we

consider the generalized parametric model in Ai et al. (2021) as the null model while testing

our hypothesis. The potential outcome variable in the model is not observable. However,

under the unconfounded treatment assignment condition, the model can be identified by

a semiparametric weighted conditional model. There is abundant literature on the speci-

fication tests for conditional models ( e.g., Ait-Sahalia et al. (2001); Bierens (1982, 1990);
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Fan and Li (1996); Zheng (1996); Bierens and Ploberger (1997); Stute (1997); Li (1999);

Chen and Fan (1999); Fan and Li (2000); Li et al. (2003); Crump et al. (2008) ). Most

authors have considered the problems of testing a parametric/semiparametric null model

using an integrated type test statistic. Ait-Sahalia et al. (2001) and Chen and Fan (1999)

considered testing nonparametric/semiparametric null models using nonparametric kernel

methods. Li et al. (2003) considered testing the nonparametric/semiparametric using se-

ries methods. Crump et al. (2008) derived a nonparametric Wald test statistic for testing

the conditional average treatment effects under the unconfoundedness condition. For the

binary treatment effect model, Shaikh et al. (2009) parametrically modeled the propensity

score as a conditional expectation of the treatment given the confounders and proposed an

associated specification test. This differs from our problem in the sense that we consider

the specification test for the function of the potential outcome with a continuous treatment

variable.

Specifically, we estimate our semiparametric weighted null model using the framework

developed in Ai et al. (2021) and construct a Cramér–von Mises test statistic and a Kol-

mogorov–Smirnov test one to test the null model. Although the weights in our null model

are estimated nonparametrically, we show that our proposed test statistic is more efficient

than that constructed from the true weights. Moreover, our proposed test statistic can

detect local alternatives that deviate from the null model at the rate of O(N−1/2).

Under the null hypothesis our test statistic is shown to converge in distribution to a

weighted sum of independent chi-squared random variables. It is known that obtaining the

exact critical values of such a distribution is extremely difficult in practice. Most of the

literature suggests using a residual wild bootstrap procedure to approximate the critical

values. This is not applicable in our case because our null model does not imply any explicit

form of relationship among the observed outcome, the treatment, and the confounders for

residual sampling. To resolve this problem, we adopt a special case of the exchangeable

bootstrap to approximate the null limiting distribution. Monte-Carlo simulations and real

data analysis were conducted to demonstrate the numerical properties of our test method

and limiting distribution approximation.

The remainder of the paper is organized as follows. We introduce the problem formu-
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lation and notations in Section 2. Section 3 constructs the test statistic, followed by the

study of the asymptotic properties under null hypothesis, the fixed and the local alterna-

tives in Section 4. In Section 5, we discuss how to approximate the limiting distribution

under the null hypothesis. Finally, Section 6 discusses the choice of the tuning parameters

in the estimation and investigates the finite sample performance through simulations and

U.S. campaign advertisement data. All proofs are detailed in the supplementary file.

2 Basic framework

Let T denote a continuous treatment variable with support T ⊂ R, where T is a continuum

subset, and T has a marginal density function fT (t). Let Y ∗(t) denote the potential response

when treatment T = t is assigned. We are interested in testing the null hypothesis:

H0 : ∃ some θ∗ ∈ Θ, s.t. E[m{Y ∗(t); g(t;θ∗)}] = 0 for all t ∈ T , (2.1)

against the alternative hypothesis

H1 : @ any θ ∈ Θ, s.t. E[m{Y ∗(t); g(t;θ)}] = 0 for all t ∈ T ,

where Θ is a compact set in Rp for some integer p ≥ 1, m(·) is some generalized residual

function which could possibly be non-differentiable, and g(t;θ) is a parametric working

model which is differentiable with respect to θ. If H0 holds, for each t, the dose-response

function (DRF) is defined as the value g(t;θ∗) that solves the moment condition in (2.1).

The following examples show that the average dose-response function (ADRF) and the

quantile dose-response function (QDRF) are special cases of g(t;θ∗), which result from

choosing specific forms of m(·).

• (Average) Setting m {Y ∗(t); g(t;θ∗)} = Y ∗(t) − g(t;θ∗) and letting its first moment

equal zero for each t, we obtain g(t;θ∗) = E{Y ∗(t)}, the unconditional ADRF, which

is also called the marginal structural model (Robins et al., 2000) and the average

structural function in nonseparable models (Blundell and Powell, 2003; Imbens and

Newey, 2009). This can recover the average treatment effect (ATE), which is given

by ATE(t1, t0) = E{Y ∗(t1)} − E{Y ∗(t0)}. Examples include the linear marginal
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structure model E{Y ∗(t)} = β0 + β1 · t, and the nonlinear marginal structure model

E{Y ∗(t)} = β0 · t+ 1/(t+ β1)2 studied in Hirano and Imbens (2004)).

• (Quantile) Let τ ∈ (0, 1) and FY ∗(t)(·) be the cumulative distribution function of

Y ∗(t). Setting m {Y ∗(t); g(t;θ∗)} = τ − 1{Y ∗(t) < g(t;θ∗)} and letting its first

moment equal zero for each t, we obtain g(t;θ∗) = F−1
Y ∗(t)(τ) := inf{q : P(Y ∗(t) ≥

q) ≤ τ}, the unconditional QDRF, which is also called the quantile structural model

(Imbens and Newey, 2009). This can recover the quantile treatment effect (QTE),

which is given by QTE(t1, t0) = F−1
Y ∗(t1)(τ)− F−1

Y ∗(t0)(τ). See Firpo (2007) for detailed

discussion on QTE. Examples include the linear model g(t;θ) = θ0 + θ1 · t and the

Box-Cox transformation model g(t;θ) = hλ (θ0 + θ1 · t) studied in Buchinsky (1995),

where hλ(z) = (λz + 1)−1/λ.

We consider an observational study in which the potential outcome Y ∗(t) is not observed

for all t. Let Y := Y ∗(T ) denote the observed response. Under the null hypothesis, one

may attempt to solve the following equation to find θ∗:

E[m{Y ; g(T ;θ)}|T ] = 0.

However, if there is a selection into treatment, even under the null hypothesis, the true

value θ∗ does not solve the above equation. Indeed, in this case, the observed response

and the treatment assignment data alone cannot identify θ∗. To address this identification

issue, most studies in the literature impose a selection on the observable condition (e.g.,

Hirano et al., 2003; Imai and van Dyk, 2004; Fong et al., 2018; Ai et al., 2021). Specifically,

let X ∈ Rr, for some integer r ≥ 1, denote a vector of observable covariates. The following

condition shall be maintained throughout the paper.

Assumption 1 (Unconfounded Treatment Assignment). For all t ∈ T , given X, T is

independent of Y ∗(t), that is, Y ∗(t) ⊥ T |X, for all t ∈ T .

Let {Ti,X i, Yi}Ni=1 be an independent and identically distributed (i.i.d.) sample drawn

from the joint distribution of (T,X, Y ). Let fT |X denote the conditional density of T

given the observed covariates X. Under Assumption 1, Ai et al. (2021) showed that

E[m{Y ∗(t); g(t;θ)}] can be identified as follows:

E[m{Y ∗(t); g(t;θ)}] = E[π0(T,X)m{Y ; g(T ;θ)}|T = t], ∀t ∈ T
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where

π0(T,X) :=
fT (T )

fT |X(T | X)
.

The function π0(T,X) is called the stabilized weights in Robins et al. (2000).

The null and alternative hypothesis in (2.1) can then be re-written as

H0 : P (E[π0(T,X)m{Y ; g(T ;θ∗)}|T ] = 0) = 1 for some θ∗ ∈ Θ , (2.2)

against the alternative hypothesis

H1 : P (E[π0(T,X)m{Y ; g(T ;θ)}|T ] 6= 0) > 0 for all θ ∈ Θ .

This converts the test for (2.1) to a specification test for a univariate regression model, if

both π0(T,X) and θ∗ were given. Specially, letting

Ui := π0(Ti,X i)m{Yi; g(Ti;θ
∗)} , (2.3)

the null hypothesis H0 is equivalent to P{E(Ui|Ti) = 0} = 1. A popular technique for

testing such a conditional moment model is to convert it to an unconditional one.

Note that P{E(Ui|Ti) = 0} = 1 if and only if E{UiM(Ti)} = 0 for all bounded and

measurable functions M(·). Following Bierens and Ploberger (1997), Stinchcombe and

White (1998), Stute (1997), and Li et al. (2003), by choosing a proper weight function

H (·, ·), E(Ui|Ti) = 0 is a.s. equivalent to

E {UiH (Ti, t)} = 0 for all t ∈ T . (2.4)

Popular choices of such a weight function are the logistic function H (Ti, t) = 1/{1+exp(c−

t · Ti)} with c 6= 0, cosine-sine function H (Ti, t) = cos(t · Ti) + sin(t · Ti) and the indicator

function H (Ti, t) = 1(Ti ≤ t) (see Stinchcombe and White, 1998 and Stute, 1997 for more

detailed discussion). Now, letting

J0
N(t) =

1√
N

N∑
i=1

UiH (Ti, t) , (2.5)

the sample analogue of E {UiH (Ti, t)} multiplied by
√
N , one can test H0 using the

Cramér–von Mises (CM)-type statistic

CM0
N =

∫
{J0

N(t)}2F̂T (dt) =
1

N

N∑
i=1

{J0
N(Ti)}2, (2.6)
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or the Kolmogorov-Smirnov (KS)-type statistic

KS0
N = sup

t∈T
|J0
N(t)|, (2.7)

where F̂T (·) is the empirical distribution of T1, ..., TN . However, both π0(T,X) and θ∗ are

unknown in practice so that the Ui’s are unavailable. We must replace the Ui’s with some

estimates, which is studied in the following section.

Remark 1. Note that in our model, the stabilized weights π0(T,X) are nonparamet-

ric. The conditional distribution of the treatment, given the confounders fT |X(T |X),

which is known as the generalized propensity score (Hirano and Imbens, 2004), is also

nonparametric. Under the unconfoundedness assumption, an alternative identification

of the null model is through the conditional distribution of the outcome given the treat-

ment and the confounders and the marginal distribution of the confounders, that is,

E[m{Y ∗(t); g(t;θ)}] = E
(
E[m{Y ; g(T ;θ)}|X, T = t]

)
holds under Assumption 1.

3 Test statistic

One obvious approach for estimating the Ui’s is to estimate fT (Ti) and fT |X(Ti|X i), then

construct the estimators of π0(Ti,X i) and θ∗. However, it is well-known that this ratio

estimator of π0(T,X) is very sensitive to small values of fT |X(T |X) because small estima-

tion errors in estimating fT |X(T |X) result in large estimation errors of the estimator of

π0(T,X). To avoid or mitigate this problem, Ai et al. (2021) directly estimated π0(T,X)

as a whole using the generalized empirical likelihood (GEL). We adopt their estimator and

elaborate its construction as follows. Note that the weighting function satisfies

E {π0(T,X)u(T )v(X)} = E{u(T )} · E{v(X)} (3.1)

for any suitable functions u(t) and v(x). Ai et al. (2021, Theorem 2) showed that the re-

striction (3.1) identifies the weighting function π0(T,X). This result suggests that one may

estimate the π0(Ti,X i)’s by solving the sample analogue of (3.1). The challenge is that (3.1)

implies an infinite number of equations, which is impossible to solve with a finite sample

of observations. To overcome this difficulty, Ai et al. (2021) suggested approximating the
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infinite-dimensional function space by a sequence of finite-dimensional sieve spaces. Specif-

ically, let uK1(T ) = (uK1,1(T ), . . . , uK1,K1(T ))> and vK2(X) =
(
vK2,1(X), . . . , vK2,K2(X)

)>
denote some known basis functions with dimensions K1 ∈ N and K2 ∈ N respectively, and

let K := K1 · K2. The functions uK1(t) and vK2(x) are called the approximation sieves,

such as B-splines or power series (see Newey, 1997; Chen, 2007, for more discussion on

sieve approximation). Because the sieve approximating space is a subspace of the original

function space, π0(T,X) also satisfies

E
{
π0(T,X)uK1(T )vK2(X)>

}
= E{uK1(T )} · E{vK2(X)}> . (3.2)

Following Ai et al. (2021), we estimate the π0(Ti,X i)’s consistently by the π̂i’s that

maximize the generalized empirical likelihood (GEL) function, subject to the sample analog

of (3.2):
{π̂i}Ni=1 = arg max

(
−N−1

∑N
i=1 πi log πi

)
subject to 1

N

∑N
i=1 πiuK1(Ti)vK2(Xi)

> =
{

1
N

∑N
i=1 uK1(Ti)

}{
1
N

∑N
j=1 vK2(Xj)

>
}
.

(3.3)

Two observations are immediately clear. First, by including a constant of one in the sieve

base functions, (3.3) guarantees that N−1
∑N

i=1 π̂i = 1. Second, we notice that

max

(
−N−1

N∑
i=1

πi log πi

)
= −min

{
N∑
i=1

(N−1πi) · log

(
N−1πi
N−1

)}
.

The entropy maximization problem minimizes the Kullback-Leibler divergence between the

weights {N−1πi}Ni=1 and the empirical frequencies {N−1}, subject to the sample analogue

of (3.2). Further, Ai et al. (2021) showed that the dual solution of the primal problem

(3.3) is

π̂K(Ti,X i) := ρ′
{
uK1(Ti)

>Λ̂K1×K2vK2(X i)
}
, (3.4)

where ρ′ is the first derivative of ρ with ρ(u) = − exp(−u−1), and Λ̂K1×K2 is the maximizer

of the strictly concave function ĜK1×K2 defined by

ĜK1×K2(Λ)

:=
1

N

N∑
i=1

ρ
{
uK1(Ti)

>ΛvK2(X i)
}
−

{
1

N

N∑
i=1

uK1(Ti)

}>
Λ

{
1

N

N∑
j=1

vK2(Xj)

}
. (3.5)
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The first order condition of (3.5) implies that {π̂K(Ti,X i)}Ni=1 satisfies the sample analog

of (3.2); such restrictions reduce the chance of obtaining extreme weights. The concavity

of (3.5) enables us to obtain the solution quickly via the Gauss-Newton algorithm. To

ensure a consistent estimate of π0(T,X), the dimensions of the bases, K1 and K2, shall

increase as the sample size increases. The choice of K1 and K2 in practice will be discussed

in Section 6.1.

Having estimated the weights, we now propose an extremum estimator for θ∗ (e.g., Pakes

and Pollard, 1989, Chen et al., 2003, de Castro et al., 2019). Note that under H0, the true

value θ∗ solves the following equation:

E [π0(T,X)m{Y ; g(T ;θ)}w(T ;θ)] = 0, (3.6)

where w(T ;θ) (which may possibly not involve θ) is a prespecified q-dimensional vector

with q ≥ p such that, under H0, θ∗ is identified or over-identified. Examples of such

vectors include w(T ;θ) = (1, T, ..., T q−1)> or w(T ;θ) = ∇θg(T ;θ), where “∇θ” denotes

the derivative with respect to θ. We then estimate θ∗ by

θ̂ := arg min
θ∈Θ
‖MN(θ, π̂K)‖ , (3.7)

where ‖ · ‖ is the Euclidean norm, and

MN(θ, π) :=
1

N

N∑
i=1

π(Ti,X i)m{Yi; g(Ti;θ)}w(Ti;θ) .

With the estimators {π̂K(Ti,X i)}Ni=1 of {π0(Ti,X i)}Ni=1 and θ̂ of θ, we estimate Ui by

Ûi = π̂K(Ti,X i)m{Yi; g(Ti; θ̂)}, for i = 1, . . . , N . Replacing the Ui’s in (2.5) by the Ûi’s,

we have a feasible test statistic for H0 based on

ĴN(t) =
1√
N

N∑
i=1

ÛiH (Ti, t) ,

the corresponding estimators of the Cramér–von Mises (CM)-type statistic in (2.6) and the

Kolmogorov-Smirnov (KS)-type statistic in (2.7) are, respectively,

ĈMN =
1

N

N∑
i=1

{ĴN(Ti)}2 and K̂SN = sup
t∈T
|ĴN(t)| , (3.8)
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where the supremum is calculated as the maximum value over a discretization of T in

practice.

Remark 2. An alternative estimator of θ∗ can be constructed under H0. Suppose that,

under H0, θ∗ is identified by the unique solution to the following optimization problem:

θ∗ = arg min
θ∈Θ

CM(θ) := N ×
∫
T
{E [Ui(θ)H(Ti, t)]}2 fT (t)dt,

where Ui(θ) := π0(Ti,X i)m{Yi; g(Ti;θ)}. Let Ûi(θ) := π̂K(Ti,X i)m{Yi; g(Ti;θ)} and

ĴN(t;θ) := N−1/2
∑N

i=1 Ûi(θ)H (Ti, t). Under H0, the estimator of θ∗ can be defined by

θ̂opt := arg min
θ∈Θ

ĈMN(θ) := arg min
θ∈Θ

1

N

N∑
i=1

{ĴN(Ti;θ)}2. (3.9)

Therefore, the alternative test statistic is ĈMN(θ̂opt). However, seeking the global min-

imizer of ĈMN(θ) is difficult as ĈMN(θ) may not be differentiable, convex, and even

continuous. For example, taking m{Yi; g(Ti;θ)} = τ − 1{Yi ≤ g(Ti;θ)} for QDRF, a

unique solution to the problem does not exist. Under a stronger condition that m(y; g) is

differentiable in g, we establish the asymptotic results for both ĴN(t; θ̂opt) and ĈMN(θ̂opt)

in section E in the supplementary file.

Remark 3. In order to estimate π0(T,X), Fong et al. (2018) noted the moment conditions

E [π0(T,X)TX] = E(T )E(X), E [π0(T,X)T ] = E(T ), E [π0(T,X)X] = E(X) ,

(3.10)

which are special cases of our moment condition (3.2). They then proposed estimating

π0(T,X) by maximizing the empirical likelihood of T and X under the constraints of the

sample analogue of (3.10) and estimating E{Y ∗(t)} by a simple linear model. This can be

considered as fixing uK1(T ) = (1, T )> and vK2(X) = (1,X>)>, taking m{Y ∗(t), g(t,θ∗)} =

Y ∗(t)−g(t,θ∗) and g as a simple linear model in the estimation method of Ai et al. (2021).

However, the equation (3.10) is of finite dimension and cannot nonparametrically identify

π0(T,X). Hence, Fong et al. (2018) imposed a parametric model for the stabilized weights

to achieve consistent estimation. We adopt the estimator proposed by Ai et al. (2021) that

does not impose any parametric structure on the stabilized weights.

Remark 4. Once our specification test rejects the null model and no better parametric
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model can be proposed, several solutions are available. For example, one may consider the

double robustness estimator. Colangelo and Lee (2020) estimate the average dose-response

function E[Y ∗(t)] based on the following double robustness representation:

E[Y ∗(t)] = E
{
E [Y |T = t,X] + lim

h→0
E
[
Kh (T − t)
fT |X(t|X)

{Y − E [Y |T = t,X]}
]}

,

where Kh (T − t) is a kernel weighting observation T with treatment value of approximately

t in a distance of h. They estimate both the general propensity score fT |X(t|X) and the out-

come regression function E [Y |T = t,X] using nonparametric techniques with cross-fitting.

An alternative solution to the misspecification of the dose-response function g(t;θ) is to

consider a fully nonparametric specification g(t), that is, to estimate g(t) from the moment

E[m(Y ∗(t); g(t))] = 0 for all t ∈ T . Under Assumption 1, g(t) can be identified through

the conditional moment E[π0(T,X)m(Y ; g(T ))|T ] = 0. We can define the sieve minimum

distance (SMD) estimator (Ai and Chen, 2003) of g(T ) by

ĝ(·) := arg min
h(·)∈HK3

1

N

N∑
i=1

{
Ê[π̂K(T,X)m(Y ;h(T ))|T = Ti]

}2

Σ−1(Ti),

where Σ(Ti) is a user-specified weighting function, and

Ê[π̂K(T,X)m(Y ;h(T ))|T ] :=

[
N∑
i=1

π̂K(Ti,X)m(Yi;h(Ti))u
>
K3

(Ti)

]

×

[
N∑
i=1

uK3(Ti)u
>
K3

(Ti)

]−1

uK3(T ),

and HK3 := {λ>uK3(T ) : λ ∈ RK3} is a linear sieve space. Ai et al. (2021, Theorem 6)

established the large sample property for the nonparametric estimator of the average dose-

response function Ê[π̂K(T,X)Y |T = t].

The extension of these methods to the general dose-response function including the quantile

dose-response and the development of the corresponding large sample property is beyond the

scope of this paper.

Remark 5. If the residual function m(y; g(t;θ)) is smooth in (t, y), the sieve minimum

distance (SMD) estimator of θ∗ developed by Ai and Chen (2003) is semiparametrically effi-

cient with respect to the conditional model E[π0(T,X)m{T ; g(T ;θ∗)}|T ] = 0. This efficient

estimation result can also be achieved based on our unconditional moment (3.6); indeed, by
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replacing π0(T,X) with its estimate π̂K(T,X) and setting w(T ;θ) to be a q-dimensional

sieve basis, for example, w(T ;θ) = (1, T, ..., T q−1)>, with q → ∞ at an appropriate rate,

it can be shown that the generalized method of moments (GMM) (Hansen, 1982) estima-

tor of θ∗ constructed from (3.6) is asymptotically equivalent to the SMD estimator (see Ai

et al. (2020) for an analogous finding). However, if the residual function m(y; g(t;θ)) is

non-smooth, it remains an open problem regarding whether the efficient estimation of θ∗

from the conditional model E[π0(T,X)m{T ; g(T ;θ∗)}|T ] = 0 can be established. For this

reason, and to avoid introducing an extra tuning parameter q, we estimate θ∗ through (3.6)

with w(T ;θ) as a fixed vector.

4 Large sample properties

This section studies the asymptotic properties of ĴN(·), the test statistics ĈMN and K̂SN .

4.1 Asymptotic properties under null hypothesis

To establish the asymptotic properties of ĴN(·), ĈMN and K̂SN , the following additional

assumptions are imposed.

Assumption 2. Under H0, (i) θ∗ is an interior point of Θ, where Θ is a compact set in Rp;

(ii) ‖MN(θ̂, π̂K)‖ = infθ∈Θδ ‖MN(θ, π̂K)‖+oP (N−1/2), where Θδ := {θ ∈ Θ : ‖θ−θ∗‖ ≤ δ}.

Assumption 3. Let η(T,X, Y ; t) be defined in (4.2), V ar{η(T,X, Y ; t)} < ∞ for all

t ∈ T .

Assumption 4.

(i) g(t;θ) is twice continuously differentiable in θ ∈ Θ;

(ii) E[m{Y ; g(T ;θ∗)}|T = t,X = x] is continuously differentiable in (t,x);

(iii) E [π0(T,X)m{Y ; g(T ;θ)}w(T ;θ)|T = t,X = x] is differentiable w.r.t. θ and

∇θE[π0(T,X)m{Y ; g(T ;θ)}w(T ;θ)]
∣∣
θ=θ∗

is of full (column) rank.

13



Assumption 5. (i) E
[
supθ∈Θ |m{Y ; g(T ;θ)}|2+δ

]
<∞ for some δ > 0; (ii) The function

class
{
m{Y ; g(T ;θ)} : θ ∈ Θ

}
satisfies:

E

[
sup

θ1:‖θ1−θ‖<δ
|m{Y ; g(T ;θ1)} −m{Y ; g(T ;θ)}|2

]1/2

≤ C · δ

for any θ ∈ Θ and any small δ > 0 and for some finite positive constant C.

Assumption 2 is essentially stating that the estimating equation is a.s. approximately

satisfied; see Pakes and Pollard (1989) and Chen et al. (2003). Assumption 3 is needed

to bound the asymptotic variance of the test statistic. Assumption 4 (i) and (ii) impose

sufficient regularity conditions on both the link function g and residual function m. As-

sumption 4 (iii) ensures that the variance of the test statistic is finite. Assumption 5 is a

stochastic equicontinuity condition, which is needed to establish the weak convergence of

our test statistic; see Andrews (1994). Again, this is satisfied by widely used residual func-

tions such as m{y, g(t;θ)} = y − g(t;θ) and m{y, g(t;θ)} = τ − 1{y < g(t;θ)} discussed

in Section 2.

To aid presentation of the asymptotic properties of the test statistic, define the following

quantities:

φ(Ti,X i; t) :=π0(Ti,X i) ·H (Ti, t) · E[m {Yi; g(Ti;θ
∗)} |Ti,Xi]

− E[π0(Ti,X i)m {Yi; g(Ti;θ
∗)} ·H (Ti, t)|X i],

and

ψ(Ti,X i, Yi; t) :=E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
×
{
E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

· E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · w(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]}−1

× E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

×
{
π0(Ti,X i)m {Yi; g(Ti;θ

∗)}w(Ti;θ
∗)

− π0(Ti,X i)w(Ti;θ
∗) · E[m {Yi; g(Ti;θ

∗)} |Ti,X i]
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+ E[π0(Ti,X i)w(Ti;θ
∗)m {Yi; g(Ti;θ

∗)} |X i]

}
, (4.1)

and

η(Ti,X i, Yi; t) := UiH (Ti, t)− φ(Ti,X i; t)− ψ(Ti,X i, Yi; t). (4.2)

The next theorem establishes the weak convergence of ĴN(·) and ĈMN under H0.

Theorem 1. Suppose that Assumptions 1-5 and Assumptions A.1-A.4 listed in section A

of the supplementary file hold; then, under H0,

(i) ĴN(t) =
1√
N

N∑
i=1

η(Ti,X i, Yi; t) + oP (1) holds uniformly over t ∈ T ,

(ii) ĴN(·) converges weakly to J∞(·) in L2{T , dFT (t)} ,

where J∞ is a Gaussian process with zero mean and covariance function given by

Σ(t, t′) = E {η(Ti,X i, Yi; t)η(Ti,X i, Yi; t
′)} .

Furthermore,

(iii) ĈMN converges to

∫
{J∞(t)}2dFT (t) in distribution,

(iv) K̂SN converges to sup
t∈T
|J∞(t)| in distribution.

The proof of Theorem 1 is relegated to section B in the supplementary file. Similar to

Bierens and Ploberger (1997), Chen and Fan (1999), it can be shown that
∫
{J∞(t)}2dFT (t)

can be written as an infinite sum of weighted (independent) χ2
1 random variables with

weights depending on the unknown distribution of (Ti,X i, Yi). Hence, it is difficult to

obtain the exact critical values. We suggest a simulation method to approximate the

critical values for the null limiting distribution of ĈMN ; see Section 5.

The effect of the vector w(T ;θ) on the asymptotic property of our test statistic is

reflected in the term ψ(Ti,X i, Yi, t). It is unclear which choice of w(T ;θ) would minimize

the variance of Σ(t, t). A common choice is w(T ;θ) = ∇θg(T ;θ). Then, the second and

fourth terms of ψ(Ti,X i, Yi, t) in (4.1) are canceled out, which also simplifies the calculation

approximating the null limiting distribution in practice.
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The next theorem shows that the proposed test statistic is more efficient than the

infeasible test statistic constructed by using the true π0(T,X). Suppose that π0(T,X) was

known, let θ̂0 be the estimator of θ∗ constructed by using the true ratio function π0(T,X),

which is defined by minimizing the following criterion function:

θ̂0 = arg min
θ∈Θ
‖MN(θ, π0)‖.

The infeasible test statistic for H0 is then based on

Ĵ0(t) =
1√
N

N∑
i=1

Û0iH (Ti, t), where Û0i = π0(Ti,X i)m
{
Yi; g(Ti; θ̂0)

}
.

Let

ψ0(Ti,X i, Yi; t) :=E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
×
{
E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

· E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · w(Ti;θ
∗)∇>θ g(Ti;θ

∗)

]}−1

× E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

× π0(Ti,X i)m {Yi; g(Ti;θ
∗)}w(Ti;θ

∗),

and

η0(Ti,X i, Yi; t) := UiH (Ti, t)− ψ0(Ti,X i, Yi; t).

The following theorem establishes the weak convergence of Ĵ0(·) under H0 and shows

that the asymptotic variance of the proposed test statistic ĴN(t) is smaller than that of

Ĵ0(t) for any t ∈ T .

Theorem 2. Suppose that Assumptions 3-5 hold, then under H0,

(i) Ĵ0(t) =
1√
N

N∑
i=1

η0(Ti,X i, Yi; t) + oP (1) holds uniformly over t ∈ T ,

(ii) Ĵ0(·) converges weakly to J0,∞(·) in L2{T , dFT (t)},
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where J0,∞ is a Gaussian process with zero mean and covariance function given by

Σ0(t, t′) = E {η0(Ti,X i, Yi; t)η0(Ti,X i, Yi; t
′)} .

Furthermore, Σ0(t, t) > Σ(t, t) for any t ∈ T .

The proof of Theorem 2 is presented in section C in the supplementary file. In the

estimation of the average treatment effects with binary and multiple treatments, it is a

well-known paradox that using a nonparametric estimated propensity score is more efficient

than using the true one; see Hirano et al. (2003), Chan et al. (2016), and Lee (2018) among

others. Theorem 2 shows that this is also the case for continuous treatments.

4.2 Special cases

This section discusses two important special continuous treatment effect models, the av-

erage and quantile continuous treatment models. In the case of testing for the average

dose-response model, that is,

H0 : ∃ some θ∗ ∈ Θ ⊂ Rp, s.t. E{Y ∗(t)} = g(t;θ∗) for all t ∈ T , (4.3)

against the alternative hypothesis

H1 : @ any θ ∈ Θ ⊂ Rp, s.t. E{Y ∗(t)} = g(t;θ) = 0 for all t ∈ T ,

m {Y ∗(t); g(t;θ∗)} = Y ∗(t) − g(t;θ∗), UADRF
i = π0(Ti,X i){Yi − g(Ti;θ

∗)} and the test

statistics for H0 are

ĈM
ADRF

N =
1

N

N∑
i=1

{ĴADRFN (Ti)}2 and K̂S
ADRF

N = sup
t∈T
|ĴADRFN (t)|,

where

ĴADRFN (t) =
1√
N

N∑
i=1

ÛADRF
i H (Ti, t), Û

ADRF
i = π̂K(Ti,X i)

{
Yi − g(Ti; θ̂)

}
.

In this special case, the notations φ(Ti,X i; t), ψ(Ti,X i, Yi; t), and η(Ti,X i, Yi; t) in Theo-

rem 1 become

φADRF (Ti,X i; t) :=π0(Ti,X i) ·H (Ti, t) · E{Yi − g(Ti;θ
∗)|Ti,Xi}
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− E[π0(Ti,X i){Yi − g(Ti;θ
∗)} ·H (Ti, t)|X i],

and

ψADRF (Ti,X i, Yi; t) := E
[
π0(Ti,X i) · ∇θg(Ti;θ

∗)>H (Ti, t)
]

×
{
E
[
π0(Ti,X i)∇θg(Ti;θ

∗)w(Ti;θ
∗)>
]
· E
[
π0(Ti,X i)w(Ti;θ

∗)∇>θ g(Ti;θ
∗)
]}−1

× E
[
π0(Ti,X i)∇θg(Ti;θ

∗)w(Ti;θ
∗)>
]

×
{
π0(Ti,X i)w(Ti;θ

∗)Yi − π0(Ti,X i)w(Ti;θ
∗) · E(Yi|Ti,X i)

+ E[π0(Ti,X i)w(Ti;θ
∗){Yi − g(Ti;θ

∗)}|X i]

}
,

and

ηADRF (Ti,X i, Yi; t) := UADRF
i H (Ti, t)− φADRF (Ti,X i; t)− ψADRF (Ti,X i, Yi; t).

Then Theorem 1 implies the following result.

Corollary 3. Suppose that Assumptions 1-3 and Assumptions A.1-A.4 listed in section A

of the supplementary file hold; then, under H0,

(i) ĴADRFN (t) =
1√
N

N∑
i=1

ηADRF (Ti,X i, Yi; t) + oP (1) holds uniformly over t ∈ T ,

(ii) ĴADRFN (·) converges weakly to JADRF∞ (·) in L2{T , dFT (t)},

where JADRF∞ is a Gaussian process with zero mean and covariance function given by

ΣADRF (t, t′) = E
{
ηADRF (Ti,X i, Yi; t)η

ADRF (Ti,X i, Yi; t
′)
}
.

Furthermore,

(iii) ĈM
ADRF

N converges to

∫
{JADRF∞ (t)}2dFT (t) in distribution,

(iv) K̂S
ADRF

N converges to sup
t∈T

∣∣JADRF∞ (t)
∣∣ in distribution.

In the case of testing for the quantile dose-response model, that is,

H0 : ∃ some θ∗ ∈ Θ ⊂ Rp, s.t. F−1
Y ∗(t)(τ) = g(t;θ∗) for all t ∈ T , (4.4)
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against the alternative hypothesis

H1 : @ any θ ∈ Θ ⊂ Rp, s.t. F−1
Y ∗(t)(τ) = g(t;θ) for all t ∈ T ,

m {Y ∗(t); g(t;θ∗)} = τ − 1{Y ∗(t) < g(t;θ∗)}, UQDRF
i = π0(Ti,X i)

[
τ − 1{Yi < g(Ti;θ

∗)}
]
,

and the test statistics for H0 are

ĈM
QDRF

N =
1

N

N∑
i=1

[ĴQDRFN (Ti)]
2 and K̂S

QDRF

N = sup
t∈T

∣∣∣ĴQDRFN (t)
∣∣∣ ,

where

ĴQDRFN (t) =
1√
N

N∑
i=1

ÛQDRF
i H (Ti, t), Û

QDRF
i = π̂K(Ti,X i)

[
τ − 1{Yi < g(t; θ̂)}

]
.

Again, in this special case, the notations φ(Ti,X i; t), ψ(Ti,X i, Yi; t), and η(Ti,X i, Yi; t) in

Theorem 1 become

φQDRF (Ti,X i; t) :=π0(Ti,X i) · E
(

[τ − 1{Yi < g(Ti;θ
∗)}] ·H (Ti, t)|Ti,Xi

)
− E

{
π0(Ti,X i) [τ − 1{Yi < g(Ti;θ

∗)}] ·H (Ti, t)|X i

}
,

and

ψQDRF (Ti,X i, Yi; t) :=E
[
π0(Ti,X i) · fY |T,X{g(Ti;θ

∗)|Ti,X i} · ∇θg(Ti;θ
∗)>H (Ti, t)

]
×
{
E
[
π0(Ti,X i) · fY |T,X{g(Ti;θ

∗)|Ti,X i} · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

· E
[
π0(Ti,X i) · fY |T,X{g(Ti;θ

∗)|Ti,X i} · w(Ti;θ
∗)∇θg(Ti;θ

∗)>
]}−1

× E
[
π0(Ti,X i) · fY |T,X{g(Ti;θ

∗)|Ti,X i} · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

×
{
− π0(Ti,X i)w(Ti;θ

∗)1{Yi < g(Ti;θ
∗)}

+ π0(Ti,X i)w(Ti;θ
∗) · E[1{Yi < g(Ti;θ

∗)}|Ti,X i]

+ E
[
π0(Ti,X i)w(Ti;θ

∗) [τ − 1{Yi < g(Ti;θ
∗)}] |X i

]}
,

and

ηQDRF (Ti,X i, Yi; t) := UQDRF
i H (Ti, t)− φQDRF (Ti,X i; t)− ψQDRF (Ti,X i, Yi; t).

Then, Theorem 1 implies the following result.
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Corollary 4. Suppose that Assumptions 1-3 and Assumptions A.1-A.4 listed in section A

of the supplementary file hold; then, under H0,

(i) ĴQDRFN (t) =
1√
N

N∑
i=1

ηQDRF (Ti,X i, Yi; t) + oP (1) holds uniformly over t ∈ T ,

(ii) ĴQDRFN (·) converges weakly to JQDRF∞ (·) in L2{T , dFT (t)},

where JQDRF∞ is a Gaussian process with zero mean and covariance function given by

ΣQDRF (t, t′) = E
{
ηQDRF (Ti,X i, Yi; t)η

QDRF (Ti,X i, Yi; t
′)
}
.

Furthermore,

(iii) ĈM
QDRF

N converges to

∫
{JQDRF∞ (t)}2dFT (t) in distribution,

(iv) K̂S
QDRF

N converges to sup
t∈T

∣∣JQDRF∞ (t)
∣∣ in distribution.

4.3 Asymptotic properties under the fixed and local alternative

hypothesis

This section studies the asymptotic distribution of ĴN(·) under the fixed and Pitman local

alternatives. The Pitman local alternative is given by

HL : E
[
m

{
Y ∗(t); g(t;θ∗N) +

1√
N
· δ(t)

}]
= 0 for some θ∗N ∈ Θ and all t ∈ T ,

where
∫
{δ(t)}2dFT (t) <∞. With Assumption 1, HL can be represented by

HL : E
[
π0(T,X)m

{
Y ; g(T ;θ∗N) +

1√
N
· δ(T )

} ∣∣∣∣T = t

]
= 0 for some θ∗N ∈ Θ and all t ∈ T ,

which deviates from the null model at the rate of O(N−1/2). Let θ∗ be the limit of θ∗N as

N →∞, hence it solves the following equation:

E
[
π0(T,X)m {Y ; g(T ;θ∗)}

∣∣∣∣T = t

]
= 0 for all t ∈ T .

Define

µ(t) :=E
[
π0(Ti,X i) ·

∂

∂g
E[m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)>H (Ti, t)

]
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×

{
E
[
π0(Ti,X i) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

· E
[
π0(Ti,X i) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,X i] · w(Ti;θ
∗)∇θg(Ti;θ

∗)>
]}−1

× E
[
π0(Ti,X i) ·

∂

∂g
E [m {Yi; g(Ti;θ

∗)} |Ti,X i] · ∇θg(Ti;θ
∗)w(Ti;θ

∗)>
]

× E
[
π0(Ti,X i) ·

∂

∂g
E
[
m {Yi; g(Ti;θ

∗
N))}

∣∣Ti,X i

]
· δ(Ti) · w(Ti;θ

∗)

]
.

The following theorem gives the asymptotic distribution of ĴN(·) under the local alter-

native HL and the fixed alternative H1.

Theorem 5. Suppose that Assumptions 1-5 and Assumptions A.1-A.4 listed in section A

of the supplementary file hold. Under the local alternative hypothesis HL,

(i) ĴN(t) =
1√
N

N∑
i=1

η(Ti,X i, Yi; t) + µ(t) + oP (1) holds uniformly over t ∈ T , (4.5)

(ii) ĴN(·) converges weakly to J∞,µ(·) in L2{T , dFT (t)},

where J∞,µ is a Gaussian process with mean function µ(t) and covariance function given

by

Σ(t, t′) = E {η(Ti,X i, Yi; t)η(Ti,X i, Yi; t
′)} .

Under the fixed H1,

(iii)
1√
N
ĴN(·) converges to µ1(·) in probability in L2(T , dt),

where µ1(t) := E [π0(Ti,X i)m {Yi; g(Ti;θ
∗)}H (Ti, t)].

Comparing Theorem 5 (ii) to Theorem 1 (ii), we see that our test statistic is able to

detect the local alternatives deviated from the null model at the rate of O(N−1/2).

5 Approximation for the null limiting distribution

We know from Theorem 1 that ĈMN converges in distribution to
∫
{J∞(t)}2 dFT (t). Using

techniques similar to those in Bierens and Ploberger (1997) and Chen and Fan (1999), one
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can show that
∫
{J∞(t)}2 dFT (t) is an infinite sum of weighted (independent) χ2

1 random

variables, where the weights depend on the unknown distribution of the (X i, Ti, Yi)’s (see

also Li et al., 2003). Obtaining the exact critical values is difficult and we here propose a

simulation method to approximate the null limiting distribution. The method is a special

case of the exchangeable bootstrap (Praestgaard and Wellner, 1993; Van Der Vaart and

Wellner, 1996; Chernozhukov et al., 2013; Donald and Hsu, 2014). Specifically, we first

generate B sets of N independent standard normal random variables w1,b, . . . , wN,b, for

b = 1, . . . , B and B a large enough integer. Then we define

Ĵ∗N,b(t) =
1√
N

N∑
i=1

wi,bη̂(Ti,X i, Yi; t) , (5.1)

where η̂(Ti,X i, Yi; t) = ÛiH (Ti, t) − φ̂(Ti,X i; t) − ψ̂(Ti,X i, Yi; t), with φ̂(Ti,X i; t) and

ψ̂(Ti,X i, Yi; t) respectively some consistent nonparametric plug-in estimators of φ(Ti,X i; t)

and ψ(Ti,X i, Yi; t) defined above in Theorem 1, for example the additive penalized spline

estimator(see Ruppert et al., 2003 for example) or the series estimator used in Donald and

Hsu (2014).

It is easy to see that E∗{wi,bη̂(Ti,X i, Yi; t)} = 0 and E∗{w2
i,bη̂(Ti,X i, Yi; t)η̂(Ti,X i, Yi;

t′)} = η̂(Ti,X i, Yi; t)η̂(Ti,X i, Yi; t
′), for i = 1, . . . , N , b = 1, . . . , B and all t, t′ ∈ T ,

where E∗{·} is the conditional expectation given the data (Ti,X i, Yi)
N
i=1. Because η̂ is

a consistent estimator of η, then Ĵ∗N,b(·) has the same asymptotic behavior as ĴN(·) for

b = 1, . . . , B. Then, we can approximate the limiting distributions of ĈMN and K̂SN

under H0, respectively, by

ĈM
∗
N,b =

1

N

N∑
i=1

{
Ĵ∗N,b(Ti)

}2
and K̂S

∗
N,b = sup

t∈T

∣∣Ĵ∗N,b(t)∣∣,
for b = 1, . . . , B. That is, we can approximate the p-value for the CM-type statistic by

B−1
∑B

b=1 1(ĈM
∗
N,b ≥ ĈMN) and that for the KS-type statistic by B−1

∑B
b=1 1(K̂S

∗
N,b ≥

K̂SN).
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6 Numerical studies

6.1 Choosing K1 and K2

The large-sample properties of the proposed estimator hold for a range of values of K1

and K2. This presents a dilemma for applied researchers, who have only one finite sample.

Too little smoothing yields a large variance and too much smoothing yields a large bias.

Therefore, applied researchers would benefit from guidance on the choice of K1 and K2. In

this section, we propose a cross-validation method for choosing the smoothing parameters

K1 and K2. Specifically, we split the data set into F sets (say F = 5 or 10), and select K1

and K2 that minimize the following quantity

CV (K1, K2) =
F∑
j=1

 1

|Sj|
∑
k∈Sj

π̂
(−j)
K (Tk,Xk)m

{
Yk; g

(
Tk; θ̂

(−j))}2

, (6.1)

where Sj denotes the jth set of data of T,X and Y , |Sj| denotes the number of individuals

in the set Sj, and for j = 1, . . . , F ,

θ̂
(−j)

= arg min
θ∈Θ

∥∥∥M (−j)
N

(
θ, π̂

(−j)
K

)∥∥∥ ,
where

M
(−j)
N

(
θ, π̂

(−j)
K

)
:=

1

N

∑
i/∈Sj

π̂
(−j)
K (Ti,X i)m{Yi; g(Ti,θ)}w(Ti;θ) ,

with π̂
(−j)
K (Ti,X i) obtained in a method identical to that introduced in Section 2 via (3.4)

and (3.5), but excluding samples in Sj.

6.2 Simulation study

To assess the performance of our specification test method, we conducted Monte Carlo

simulation studies on the following four data generating processes (DGPs):

DGP0-L T = 1 + 0.2X + ξ, and Y = 1 +X + T + ε,

DGP0-NL T = 0.1X2 + ξ, and Y = X2 + T + ε,

DGP1-L T = 1 + 0.2X + ξ, and Y = 1 +X + 0.1T 3 + ε,

DGP1-NL T = 0.1X2 + ξ, and Y = X2 + 0.2T 3 + ε,
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where ξ and ε are independent standard normal random variables, and X is a uniform

random variable supported on [0, 1]. For all the four scenarios, we considered the two-

sided hypothesis testing in (2.1), where m{Y ∗(t); g(t;θ∗)} = Y ∗(t)− g(t;θ∗) (average) and

m{Y ∗(t); g(t;θ∗)} = 0.5− 1{Y ∗(t) < g(t;θ∗)} (median), and

g{t; (θ∗0, θ
∗
1)} = θ∗0 + θ∗1t .

We take the vector w(T ;θ) = ∇θg(T ;θ) and adopt the algorithm of de Castro et al.

(2019) for estimating the quantile dose-response function to overcome the computational

difficulties with the discontinuity of the indicator function.

Clearly, H0 is true for DGP0-L and DGP0-NL, but fails for DGP1-L and DGP1-

NL. For each case, we generated 1000 samples of size 100, 200, and 500. The number of

samples for the simulation-based approximation of the limiting process is B = 500 and the

number of folds in the cross-validation (6.1) was taken to be F = 10. We compared the

three commonly used weight functions H that are mentioned in Section 2, namely logistic,

cosine-sine, and indicator functions. Specifically, for the logistic weight function, we took

the constant c = 5. We tested all models using both CM-type and KS-type statistics. The

results of the two methods are similar; here, we present those of the CM-type statistic.

Results of the KS-type one can be found in the supplementary materials of this paper.

Tables 1 and 2 summarize the empirical rejection probabilities computed at significance

levels 1%, 5%, and 10% for each case, which respectively show the estimated sizes (DGP0-L

and DGP0NL) and the estimated powers (DGP1-L and DGP1-NL) of our test method.

We can see from Table 1 that the estimated sizes of our method with cosine-sine and

indicator weight functions are quite close to the nominal sizes from N = 100 to 500 for all

cases. The estimated sizes when using the logistic weight function are obviously over-sized

when the sample size is small, especially for nonlinear X cases, but they also improve as

the sample size increases and are close to the nominal sizes when N = 500.

From Table 2, we observe that all tests become more and more powerful as N or

significance level increases and reach a considerably high power level when N = 200.

Overall, the simulation studies confirmed our asymptotic theorems and showed that,

in practice, the cosine-sine and indicator weight functions might perform better than the

logistic one for nonlinear X cases.
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Table 1: Estimated sizes

Logistic Cosine-Sine Indicator

m(·) Model N 1% 5% 10% 1% 5% 10% 1% 5% 10%

Average

DGP0-L

100 0.020 0.076 0.131 0.016 0.071 0.138 0.014 0.055 0.115

200 0.015 0.050 0.105 0.016 0.056 0.118 0.011 0.057 0.114

500 0.011 0.051 0.109 0.012 0.050 0.101 0.014 0.049 0.111

DGP0-NL

100 0.033 0.094 0.172 0.016 0.080 0.134 0.018 0.061 0.124

200 0.024 0.079 0.138 0.010 0.060 0.117 0.010 0.062 0.120

500 0.024 0.067 0.129 0.011 0.056 0.101 0.011 0.052 0.118

Median

DGP0-L

100 0.036 0.117 0.171 0.028 0.090 0.141 0.035 0.100 0.178

200 0.016 0.076 0.144 0.017 0.066 0.124 0.018 0.068 0.135

500 0.010 0.047 0.104 0.009 0.063 0.117 0.012 0.063 0.120

DGP0-NL

100 0.044 0.135 0.217 0.014 0.072 0.139 0.022 0.083 0.168

200 0.026 0.101 0.160 0.015 0.060 0.113 0.016 0.066 0.141

500 0.020 0.078 0.130 0.010 0.054 0.111 0.013 0.061 0.119

6.3 Real data analysis

In this section, we applied our method to examine the model assumption made on the U.S.

presidential campaign data in Ai et al. (2021). The data have been analyzed several times

in the treatment effect literature (Urban and Niebler, 2014; Fong et al., 2018), where the

interest was to explore the casual relationship between advertising and campaign contri-

butions. The treatment of interest is the number of political advertisements aired in each

zip code from non-competitive states, which ranges from 0 to 22379 across N = 16265 zip

codes.

The data were first analyzed by Urban and Niebler (2014), who used a binary model

to compare the campaign contributions of the 5230 zip codes that received more than

1000 advertisements with those of the other 11035 zip codes that received less than 1000

advertisements. Their research suggested that advertising in non-competitive states had a

significant casual effect on the level of campaign contributions.

By contrast, Ai et al. (2021) considered the treatment variable (number of political

advertisements) as continuous and assumed that

E{Y ∗(t)} = β1 + β2t+ β3t
2 , (6.2)
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Table 2: Estimated power

Logistic Cosine-Sine Indicator

m(·) Model N 1% 5% 10% 1% 5% 10% 1% 5% 10%

Average

DGP1-L
100 0.829 0.931 0.963 0.566 0.797 0.868 0.697 0.848 0.895

200 0.987 0.998 0.999 0.918 0.980 0.994 0.969 0.996 0.998

DGP1-NL
100 0.543 0.739 0.838 0.531 0.743 0.835 0.458 0.669 0.767

200 0.854 0.945 0.972 0.865 0.950 0.971 0.835 0.925 0.953

Median

DGP1-L
100 0.529 0.744 0.832 0.259 0.517 0.656 0.391 0.633 0.743

200 0.870 0.957 0.984 0.580 0.818 0.891 0.760 0.903 0.946

DGP1-NL
100 0.250 0.476 0.619 0.207 0.438 0.590 0.196 0.407 0.542

200 0.545 0.769 0.876 0.511 0.762 0.849 0.471 0.710 0.809

where the observed outcome Y ∗(T ) = log(Contribution + 1) and T = log(#ads + 1), where

#ads denotes the number of advertisements. The covariates X considered were

X =



log(Population)

%Age over 65

log(Median Income)

%Hispanic

%Black

log(Population density + 1)

%College graduates

1(Can commute to a competitive state)



.

The definition of each covariate is almost self-explanatory, and one can refer to Fong et al.

(2018) for more details. Ai et al. (2021) found that the 95% confidence intervals for β2 and

β3 were respectively [−0.025, 0.232] and [−0.025, 0.001], indicating that no significant causal

link between advertising and campaign contributions was found from the linear model.

Similar results were also reported by Fong et al. (2018). The authors then concluded that

such opposing results from binary models and continuous linear models suggested a rather

complex relationship between advertising and campaign contributions.

We reached the same conclusion in our data analysis. Indeed, when we applied our

method with logistic, cosine-sine, and indicator weight functions with a B = 500 simulation-

based approximation to test the model in (6.2), all the methods rejected the model with
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Figure 1: The histogram of the original campaign contribution data (top left) and the Box-

Cox transformed contributions defined at (6.3) (bottom left), the histogram of the original

counts of advertisements data (top right), and that of the transformed ones (bottom right).

the p-values equal to 0.

We examined the histogram of the original campaign contribution data and the number

of advertisements T . From the first row of Figure 1, we can see that both histograms are

highly right-skewed. That is, they are not likely to fit any linear models. We then conducted

a log-transformation, as in Ai et al. (2021). However, the results were similar. To make the

data more likely to fit a linear model, we searched across Box-Cox transformations of the

response data of the form BoxCox(Contribution, λ1, λ2) := {(Contribution + λ2)λ1 − 1}/λ1

w.r.t. λ1, λ2 to find a transformation of the contribution whose sample quantiles have the

largest correlation with those of a standard normal distribution. This yielded (λ̃1, λ̃2) =
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(0.1397, 0.0176). We then take

Y = BoxCox(Contribution, λ̃1, λ̃2)−min
{

BoxCox(Contribution, λ̃1, λ̃2)
}
, (6.3)

so that the minimum response data is 0. The histogram of Y is shown in the bottom left

of Figure 1. We can see that the transformed data remain highly right-skewed. However,

now, it appears to be a truncated normal distribution.

Table 3: Estimated p-values from the U.S. presidential campaign data

Statistic Logistic Cosine-Sine Indicator

CM 0.610 0.430 0.740

KS 0.718 0.667 0.718
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Figure 2: The plot of the estimated Tobit Model of the BoxCox transformed Campaign

contribution versus the number of advertisements distributed.

Now, it seems more reasonable to assume a Tobit model for the data. Specifically, let

Y (t) = β>t+ ε ,

for some unknown parameter β in a compact set in Rp, where t = (1, t, t2, . . . , tp−1)> and ε

is a normal random variable with mean 0 and unknown variance σ2. We test a Tobit linear
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model on the potential outcome:

Y ∗(t) =

Y (t) if Y (t) > 0,

0 if Y (t) ≤ 0 .

The details of the estimation of this model and the test statistics can be found in the

supplementary material of this paper. We then tested the Tobit model with several different

transformations of the treatment data #ads and the polynomial order p. We found the

Tobit model with T = log(log(log(#ads + 1) + 1) + 2) and p = 5 gives the most reasonable

results. The corresponding p-values are shown in Table 3, and the estimated model is

depicted in Figure 2. It indicates that the campaign contribution increases rapidly with a

relatively small increase in the number of advertisements from 0, and then the improvement

gradually becomes marginal.

SUPPLEMENTARY MATERIAL

Supplementary materials are only for online publication. The supplementary file con-

tains the simulation results of the KS-type statistic, the details of the estimation and the

test statistics for the Tobit model used in section 6.3, the proofs of Theorems 1, 2, 5, and

the asymptotic properties of ĴN(t; θ̂opt) and ĈMN(θ̂opt).
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