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ABSTRACT
We propose two semiparametric model averaging schemes for nonlinear dynamic time series regression
models with a very large number of covariates including exogenous regressors and auto-regressive lags.
Our objective is to obtain more accurate estimates and forecasts of time series by using a large number of
conditioning variables in anonparametricway. In the first scheme,we introduce a kernel sure independence
screening (KSIS) technique to screen out the regressorswhosemarginal regression (or autoregression) func-
tions do not make a significant contribution to estimating the joint multivariate regression function; we
then propose a semiparametric penalized method of model averaging marginal regression (MAMAR) for
the regressors and auto-regressors that survive the screening procedure, to further select the regressors
that have significant effects on estimating the multivariate regression function and predicting the future
values of the response variable. In the second scheme,we impose an approximate factormodeling structure
on the ultra-high dimensional exogenous regressors and use the principal component analysis to estimate
the latent common factors; we then apply the penalized MAMARmethod to select the estimated common
factors and the lags of the response variable that are significant. In each of the two schemes, we construct
the optimal combination of the significant marginal regression and autoregression functions. Asymptotic
properties for these two schemes are derived under some regularity conditions. Numerical studies includ-
ing both simulation and an empirical application to forecasting inflation are given to illustrate the proposed
methodology. Supplementary materials for this article are available online.

1. Introduction

Nonlinear time series modeling taking account of both dynamic
lags of response variable and exogenous regressors is of wide
interest in applications. We suppose that Yt , t = 1, . . . , n, are n
observations collected from a stationary time series process, and
often we are interested in the multivariate dynamic regression
function

m(x) = E(Yt |Xt = x), (1.1)

where Yt is the response variable, and Xt = (Zᵀ
t ,Yᵀ

t−1)
ᵀ with

Zt = (Zt1,Zt2, . . . ,Ztpn
)ᵀ

and Yt−1 = (Yt−1,Yt−2, . . . ,Yt−dn )
ᵀ

being a pn-dimensional vector consisting of exogenous regres-
sors and a vector of dn lags of Yt , respectively. Here, the super-
script ᵀ stands for the transpose of a vector (or a matrix). We
allow that both pn and dn could increase with the sample size
n, and that Zt could include lags of the exogenous regressors
and has a large dimension pn, allowed to be even larger than
the sample size n. Such an ultra-high dimensional time series
setting poses a great challenge in estimating the regression func-
tionm(x) and the subsequent forecast of the response.
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When the dimension ofXt is low (say 1 or 2), it is well known
that the conditional regression function m(x) can be well esti-
mated by using some commonly used nonparametric methods
such as the kernelmethod, the local polynomialmethod, and the
spline method (see Green and Silverman 1994; Wand and Jones
1995; Fan and Gijbels 1996). However, if Xt is of large dimen-
sion, owing to the so-called “curse of dimensionality,” a direct
use of nonparametric methods leads to a very poor estimation
and forecasting result. Hence, various nonparametric and semi-
parametric models, such as additive models, varying coefficient
models, and partially linear models, have been proposed to deal
with the curse of dimensionality (see Teräsvirta, Tjøstheim, and
Granger 2010). A recent article by Li, Linton, and Lu (2015)
develops a flexible semiparametric forecasting model, termed
“model averaging marginal regression” (MAMAR). It seeks to
optimally combine nonparametric low-dimensional marginal
regressions, which helps to improve the accuracy of predicting
future values of the nonlinear time series.

The idea of the model averaging approach is to combine
several candidate models by assigning higher weights to bet-
ter candidate models. Under the linear regression setting with
the dimension of covariates smaller than the sample size, there
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has been an extensive literature on various model averag-
ing methods—see, for example, the Akaike information crite-
rion (AIC) and Bayesian information criterion (BIC) model
averaging (Akaike 1979; Raftery, Madigan, and Hoeting 1997;
Claeskens and Hjort 2008), the Mallows Cp model averaging
(Hansen 2007; Wan, Zhang, and Zou 2010), and the jackknife
model averaging (Hansen and Racine 2012). However, in the
case of ultra-high-dimensional time series, these methods may
not perform well and the associated asymptotic theory fails.
To address this issue, Ando and Li (2014) proposed a two-step
model averaging method for a high-dimensional linear regres-
sion with the dimension of the covariates larger than the sam-
ple size and show that such a method works well both theo-
retically and numerically. Recently, Cheng and Hansen (2015)
studied the model averaging of the factor-augmented linear
regression by applying the principal component analysis on the
high-dimensional covariates to estimate the unobservable factor
regressors.

In this article, our main objective is to propose semipara-
metric ultra-high dimensional model averaging schemes for
studying the nonlinear dynamic regression structure for (1.1),
which generalizes the existing approaches. On the one hand, we
relax the restriction of linear modeling assumed in Ando and Li
(2014) andCheng andHansen (2015), and on the other hand, we
extend the recent work of Li, Linton, and Lu (2015) to the ultra-
high dimensional case, thereby providing a much more flexible
framework for nonlinear dynamic time series forecasting.

Throughout the article, we assume that the dimension of
the exogenous variables Zt , pn, may diverge at an exponential
rate of n, which implies that the potential explanatory variables
Xt have the dimension of pn + dn diverging at an exponen-
tial rate, that is, pn + dn = O(exp{nδ0}) for some positive con-
stant δ0. To ensure that our semiparametric model averaging
scheme is feasible both theoretically and numerically, we need to
reduce the dimension of the potential covariates Xt and select
those variables thatmake a significant contribution to predicting
the response. In this article, we propose two schemes to achieve
the purpose of dimension reduction. The first scheme is called
as the “KSIS + PMAMAR” method. It reduces the dimension
of the potential covariates by first using the approach of ker-
nel sure independence screening (KSIS), motivated by Fan and Lv
(2008), to screen out the unimportant marginal regression (or
autoregression) functions, and then apply the so-called Penal-
ized Model Averaging MArginal Regression (PMAMAR) to fur-
ther select the most relevant regression functions. The second
scheme is called the “PCA+PMAMAR” method. In this scheme,
we assume that the ultra-high dimensional exogenous regres-
sors Zt satisfy an approximate factor model, which has been
popular in many fields including economics and finance (see
Chamberlain and Rothschild 1983; Fama and French 1992;
Stock and Watson 2002; Bai and Ng 2002, 2006), and estimate
the factor regressors using the principal component analysis
(PCA). Then, similarly to the second step in the first scheme,
the PMAMARmethod is applied to further select the significant
estimated factor regressors and auto-regressors.

Under some regularity conditions, we develop the asymp-
totic properties of the proposed methods. For the KSIS pro-
cedure, we establish the sure screening property, indicating
that the covariates whose marginal regression functions make

a truly significant contribution to estimating the multivariate
regression function m(x) would be selected with probability
approaching to one to form a set of the regressors that would
undergo a further selection in the PMAMAR procedure. The
optimal weight estimation obtained in the PMAMARprocedure
is proved to have the well-known sparsity and oracle property
that the estimated values of the true zero weights are forced
to be zero. For the PCA approach, we show that the estimated
latent factors are uniformly consistent at a convergence rate
that depends on both n and pn, and the kernel estimation of
the marginal regression with the estimated factor regressors
is asymptotically equivalent to the same procedure with the
rotated true factor regressors. Furthermore, extensions of
the proposed semiparametric approaches such as an iterative
KSIS+PMAMAR procedure will be discussed. In the simulation
studies, we find that our methods outperform some existing
methods in terms of forecasting accuracy. We finally apply our
methods to forecasting quarterly inflation in the UK.

The rest of the article is organized as follows. The two semi-
parametric model averaging schemes are proposed in Section 2.
The asymptotic theory for them is then developed in Section 3.
Section 4 discusses some extensions when the methods are
implemented in practice. Numerical studies are reported in
Section 5 including two simulated examples and one empiri-
cal data example. Section 6 concludes. Proofs of the asymptotic
results are given in a supplemental document.

2. Semiparametric Model Averaging

In this section, we propose two semiparametricmodel averaging
approaches, which are named as the KSIS+PMAMAR and the
PCA+PMAMAR in Sections 2.1 and 2.2, respectively.

2.1. KSIS+PMAMARMethod

As mentioned in Section 1, the KSIS+PMAMAR method is a
two-step procedure. We first generalize the sure independence
screening (SIS) method introduced by Fan and Lv (2008) to the
ultra-high dimensional dynamic time series and general non-
parametric setting to screen out covariates whose nonparamet-
ric marginal regression functions have low correlations with
the response. Then, for the covariates that have survived the
screening, we propose a PMAMARmethod with first-stage ker-
nel smoothing to further select the exogenous regressors and
the lags of the response variable, which make significant contri-
bution to estimating the multivariate regression function, and
to determine an optimal linear combination of the significant
marginal regression and autoregression functions.

Step one: KSIS. For notational simplicity, we let

Xt j =
{
Zt j, j = 1, . . . , pn,
Yt−( j−pn), j = pn + 1, . . . , pn + dn.

To measure the contribution made by the univariate covariate
Xt j to estimating the multivariate regression function m(x) =
E(Yt

∣∣Xt = x), we consider the marginal regression function
defined by

mj(x j) = E
(
Yt |Xt j = x j

)
, j = 1, . . . , pn + dn,
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which is the projection of Yt onto the univariate component
space spanned byXt j. This function can also be seen as the solu-
tion to the following nonparametric optimization problem (see
Fan, Feng, and Song 2011):

min
g j∈L2(P)

E
[
Yt − gj(Xtj)

]2
,

where L2(P) is the class of square integrable functions under
the probability measure P. We estimate the functions mj(·) by
the commonly used kernel smoothing method, although other
nonparametric estimationmethods such as the local polynomial
smoothing and smoothing spline method are also applicable.
The kernel smoother ofmj(x j) is

m̂ j(x j) =
∑n

t=1YtKt j(x j)∑n
t=1 Kt j(x j)

, Kt j(x j) = K
(
Xt j − x j

h1

)
,

j = 1, . . . , pn + dn, (2.1)

where K(·) is a kernel function and h1 is a bandwidth. To make
the above kernel estimation method feasible, we assume that
the initial observations,Y0,Y−1, . . . ,Y−dn+1, of the response are
available.

When the observations are independent and the response
variable has zero mean, the article of Fan, Feng, and Song
(2011) ranks the importance of the covariates by calculating the
L2-norm of m̂ j(·), and chooses those covariates whose corre-
sponding norms are larger than a predetermined threshold that
usually tends to zero. However, in our time series setting, for j
such that j − pn > 0, Xt j becomes the lag of the response vari-
able Yt−( j−pn ) and mj(·) = E

(
Yt |Yt−( j−pn) = ·). For time series

that are stationary and weakly dependent, it is often reasonable
to assume that E

(
Yt |Yt−( j−pn)

) P→ E(Yt ) when j − pn → ∞.
On the other hand, under some regularity conditions, using the
uniform consistency result for the kernel smoothing method
(see Li, Linton, and Lu 2012), we have m̂ j(x j)

P→ mj(x j) uni-
formly for x j in a compact set. Combining the above arguments,
we may show that as j − pn → ∞

m̂ j(x j)
P→ mj(x j) → E(Yt)

uniformly for x j in a compact set. When E(Yt) is nonzero,
the norm of m̂ j(·) would tend to a nonzero quantity when
j − pn → ∞. As a consequence, if covariates are chosen
according to the L2-norm of their corresponding marginal
regression functions, quite a few unimportant lags might be
chosen. To address this issue, we consider ranking the impor-
tance of the covariates by calculating the correlation between
the response variable and marginal regression

cor(j) = cov(j)√
v(Y) · v(j) =

[
v(j)
v(Y)

]1/2
, (2.2)

where v(Y) = var(Yt), v(j) = var(mj(Xtj)), and cov(j) =
cov(Yt,mj(Xtj)) = var(mj(Xtj)) = v(j). Equation (2.2) indi-
cates that the value of cor(j) is nonnegative for all j and the
ranking of cor(j) is equivalent to the ranking of v(j) as v(Y) is
positive and invariant across j. The sample version of cor(j) can

be constructed as

ˆcor( j) = ˆcov( j)√
v̂(Y ) · v̂( j) =

[
v̂( j)
v̂(Y )

]1/2
, (2.3)

where

v̂(Y ) = 1
n

n∑
t=1

Y 2
t −

(
1
n

n∑
t=1

Yt

)2

,

ˆcov( j) = v̂( j) = 1
n

n∑
t=1

m̂2
j (Xt j) −

[
1
n

n∑
t=1

m̂ j(Xt j)

]2
,

j = 1, 2, . . . , pn + dn.

The screened submodel can be determined by

Ŝ = { j ∈ {1, 2, . . . , pn + dn} : v̂( j) ≥ ρn
}
, (2.4)

where ρn is a predetermined positive number. By (2.3), the
criterion in (2.4) is equivalent to

Ŝ = { j ∈ {1, 2, . . . , pn + dn} : ˆcor( j) ≥ ρ�
n
}
,

where ρ�
n = ρ

1/2
n /
√
v̂(Y ). We let X∗

t = (X∗
t1,X∗

t2, . . . ,X∗
tqn

)ᵀ
be

the covariates chosen according to the criterion (2.4).
The abovemodel selection procedure can be seen as the non-

parametric kernel extension of the SIS method introduced by
Fan and Lv (2008) in the context of linear regression models.
Recent extensions to nonparametric additive models and vary-
ing coefficient models can be found in Fan, Feng, and Song
(2011), Fan, Ma, and Dai (2014), and Liu, Li, and Wu (2014).
However, the existing literature usually considers the case where
the observations are either independent or collected from cor-
related and sparse longitudinal data (see Cheng et al. 2014),
which rules out the nonlinear dynamic time series setting (over
a long time span). In this article, we relax such a restriction and
show that theKSIS approachworkswell in the ultra-high dimen-
sional time series and semiparametric setting. Also, differently
from Fan, Feng, and Song (2011) using the B-splines method,
our article applies the kernel smoothing method to estimate the
marginal regression functions, with different mathematical tool
required to derive our asymptotic theory.

Step two: PMAMAR. In the second step, we propose using a
semiparametric method of model averaging lower dimensional
regression functions to estimate

m∗(x) = E(Yt |X∗
t = x), (2.5)

where x = (x1, x2, . . . , xqn )
ᵀ . Specifically, we approximate the

conditional regression functionm∗(x) by an affine combination
of one-dimensional conditional component regressions

m∗
j (x j) = E(Yt |X∗

t j = x j), j = 1, . . . , qn.

Each marginal regression m∗
j (·) can be treated as a “nonlin-

ear candidate model” and the number of such nonlinear can-
didate models is qn. A weighted average of m∗

j (x j) is then used
to approximatem∗(x), that is,

m∗(x) ≈ w0 +
qn∑
j=1

w jm∗
j (x j), (2.6)
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where w j, j = 0, 1, . . . , qn, are to be determined later and
can be seen as the weights for different candidate models.
The linear combination in (2.6) is called as model averaging
marginal regressions or MAMAR (see Li, Linton, and Lu 2015)
and is applied by Chen et al. (2016) in the dynamic portfo-
lio choice with many conditioning variables. As the conditional
component regressionsm∗

j (X∗
t j) = E(Yt |X∗

t j), j = 1, . . . , qn, are
unknown but univariate, in practice, they can be well estimated
by various nonparametric approaches that would not suffer
from the curse of dimensionality problem. Hence, the first stage
in the semiparametric PMAMAR procedure is to estimate the
marginal regression functions m∗

j (·) by the kernel smoothing
method

m̂∗
j (x j) =

∑n
t=1YtKt j(x j)∑n
t=1 Kt j(x j)

, Kt j(x j) = K
(X∗

t j − x j

h2

)
,

j = 1, . . . , qn, (2.7)

where h2 is a bandwidth. Let

M̂( j) = [m̂∗
j (X

∗
1 j), . . . , m̂

∗
j (X

∗
n j)
]ᵀ

be the estimated values of

M( j) =
[
m∗

j (X
∗
1 j), . . . ,m

∗
j (X

∗
n j)
]ᵀ

for j = 1, . . . , qn. By using (2.7), we have

M̂( j) = Sn( j)Yn, j = 1, . . . , qn,

where Sn( j) is the n × n smoothing matrix whose (k, l)-
component is Kl j(X∗

k j)/
[∑n

t=1 Kt j(X∗
k j)
]
, and Yn =

(Y1, . . . ,Yn)
ᵀ .

The second stage of PMAMAR is to replace m∗
j (X∗

t j), j =
1, . . . , qn, by their corresponding nonparametric estimates
m̂∗

j (X∗
t j), and use the penalized approach to select the significant

marginal regression functions in the following “approximate lin-
ear model”:

Yt ≈ w0 +
qn∑
j=1

w jm̂∗
j (X

∗
t j). (2.8)

Without loss of generality, we further assume that E(Yt ) =
0, otherwise, we can simply replace Yt by Yt −Y = Yt −
1
n
∑n

s=1Ys. It is easy to show that the intercept termw0 in (2.6) is
zero under this assumption. In the sequel, we let wo := won =
(wo1, . . . ,woqn ) be the optimal values of the weights in the
model averaging defined as in Li, Linton, and Lu (2015). Based
on the approximate linear modeling framework (2.8), for given
wn = (w1, . . . ,wqn )

ᵀ , we define the objective function by

Qn(wn) = [Yn − M̂(wn)
]ᵀ[Yn − M̂(wn)

]+ n
qn∑
j=1

pλ(|w j|),

(2.9)
where

M̂(wn) = [w1Sn(1) + · · · + wqnSn(qn)
]Yn = Sn(Y )wn,

Sn(Y ) = [Sn(1)Yn, . . . ,Sn(qn)Yn
]
, and pλ(·) is a penalty

function with a tuning parameter λ. The vector M̂(wn) in (2.9)

can be seen as the kernel estimate of

M(wn) =
⎡⎣ qn∑

j=1

w jm∗
j (X

∗
1 j), . . . ,

qn∑
j=1

w jm∗
j (X

∗
n j)

⎤⎦ᵀ

for given wn. Our semiparametric estimator of the optimal
weights wo can be obtained through minimizing the objective
functionQn(wn):

ŵn = argmin
wn

Qn(wn). (2.10)

There has been extensive discussion on the choice of the
penalty function for parametric linear and nonlinear mod-
els. Many popular variable selection criteria, such as AIC and
BIC, correspond to the penalized estimation method with
pλ(|z|) = 0.5λ2I(|z| 	= 0) with different values of λ. However,
as mentioned by Fan and Li (2001), such traditional penal-
ized approaches are expensive in computational cost when qn is
large. To avoid the computational burden and the lack of sta-
bility, some other penalty functions have been introduced in
recent years. For example, the LASSO penalty pλ(|z|) = λ|z|
has been extensively studied by many authors (see Tibshirani
1996, 1997); Frank and Friedman (1993) considered the Lq-
penalty pλ(|z|) = λ|z|q for 0 < q < 1; Fan and Li (2001) sug-
gested using the SCAD penalty function whose derivative is
defined by

p′
λ(z) = λ

[
I(z ≤ λ) + a0λ − z

(a0 − 1)λ
I(z > λ)

]
with pλ(0) = 0, where a0 > 2, λ > 0, and I(·) is the indicator
function.

2.2. PCA+PMAMARMethod

Because of dependence within the exogenous variables in Zt ,
sparsity may be an issue when its dimension is high. It is well
known that we may also achieve dimension reduction through
the use of factor models when analyzing high-dimensional
time series data. In this subsection, we assume that the high-
dimensional exogenous variables Zt follow the approximate fac-
tor model:

Ztk = (b0k)ᵀ f0t + utk, k = 1, . . . , pn, (2.11)

where b0k is an r-dimensional vector of factor loadings, f0t is
an r-dimensional vector of common factors, and utk is called
an idiosyncratic error. The number of the common factors, r,
is assumed to be fixed throughout the article, but it is usually
unknown in practice and its determination method will be dis-
cussed in Section 4.

From the approximate factor model (2.11), we can find
that the main information in the exogenous regressors may
be summarized in the common factors f0t that have a much
lower dimension. The aim of dimension reduction can thus be
achieved, and it may be reasonable to replace Zt with an ultra-
high dimension by the unobservable ft with a fixed dimension
in estimating the conditional multivariate regression function
and predicting the future value of the response variable Yt . In
the framework of linear regression or autoregression, such an
idea has been frequently used in the literature since Stock and
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Watson (2002) and Bernanke, Boivin, and Eliasz (2005). How-
ever, so far as we know, there is virtually no work on com-
bining the factor model (2.11) with the nonparametric nonlin-
ear regression. The only exception is the article by Härdle and
Tsybakov (1995), which considers the additive regressionmodel
on principal components when the observations are indepen-
dent and the dimension of the potential regressors is fixed. The
latter restriction is relaxed in this article.

Instead of directly studying the multivariate regression func-
tion m(x) defined in (1.1), we next consider the multivariate
regression function defined by

mf (x1, x2) = E
(
Yt|f0t = x1,Yt−1 = x2

)
, (2.12)

whereYt−1 is defined as in Section 1, x1 is r-dimensional, and x2
is dn-dimensional. To develop a feasible estimation approach for
the factor augmented nonlinear regression function in (2.12),
we need to estimate the unobservable factor regressors f0t in the
first step. This will be done through the PCA approach and we
denote

X̂∗
t, f = (f̂ᵀt ,Y

ᵀ
t−1
)ᵀ = ( f̂t1, . . . , f̂tr, . . . ,Yᵀ

t−1
)ᵀ

as a combination of the estimated factor regressors and lags of
response variables, where f̂t is the estimated factor via PCA and
f̂tk is the kth element of f̂t , k = 1, . . . , r. In the second step, we
use the PMAMARmethod to conduct a further selection among
the (r + dn)-dimensional regressors and determine an opti-
mal combination of the significant marginal regressions. This
PCA+PMAMAR method substantially generalizes the frame-
work of factor-augmented linear regression or autoregression
(see Stock andWatson 2002; Bernanke, Boivin, and Eliasz 2005;
Bai and Ng 2006; Pesaran, Pick, and Timmermann 2011; Cheng
and Hansen 2015) to the general semiparametric framework.

Step one: PCA on the exogenous regressors. Letting

B0
n = (b01, . . . , b0pn)ᵀ and Ut = (ut1, . . . , ut pn )

ᵀ
,

we may rewrite the approximate factor model (2.11) as

Zt = B0
nf

0
t + Ut . (2.13)

We next apply the PCA approach to obtain the estimation of
the common factors f0t . DenoteZn = (Z1, . . . ,Zn)

ᵀ , the n × pn
matrix of the observations of the exogenous variables. We then
construct F̂n = (f̂1, . . . , f̂n)

ᵀ as the n × r matrix consisting of
the r eigenvectors (multiplied by

√
n) associated with the r

largest eigenvalues of the n × n matrix ZnZᵀ
n /(npn). Further-

more, the estimate of the factor loadingmatrix (with rotation) is
defined as

B̂n = (b̂1, . . . , b̂pn
)ᵀ = Zᵀ

n F̂n/n,

by noting that F̂ᵀ
n F̂n/n = Ir.

As shown in the literature (see also Theorem3 in Section 3.2),
f̂t is a consistent estimator of the rotated common factor Hf0t ,
where

H = V̂−1(F̂ᵀ
n F0

n/n
) [(

B0
n
)ᵀ
B0
n/pn

]
, F0

n = (f01 , . . . , f0n)ᵀ ,

and V̂ is the r × r diagonal matrix of the first r largest eigen-
values of ZnZᵀ

n /(npn) arranged in descending order. Conse-
quently, we may consider the following multivariate regression

function with rotated latent factors:

m∗
f (x1, x2) = E

(
Yt |Hf0t = x1,Yt−1 = x2

)
. (2.14)

In the subsequent PMAMAR step, we can use f̂t to replace Hf0t
in the semiparametric procedure. The factormodeling and PCA
estimation ensure that most of the useful information contained
in the exogenous variables Zt can be extracted before the sec-
ond step of PMAMAR, which may lead to possible good perfor-
mance in forecasting Yt through the use of the estimated com-
mon factors. In contrast, as discussed in some existing literature
such as Fan and Lv (2008), when irrelevant exogenous variables
are highly correlated with some relevant ones, they might be
selected into a model by the SIS or KSIS procedure with higher
priority than some other relevant exogenous variables, which
results in high false positive rates and low true positive rates and
leads to loss of useful information in the potential covariates,
see, for example, the discussion in Section 4.1.

Step two: PMAMAR using estimated factor regressors. Recall
that

X̂∗
t, f = (f̂ᵀt ,Y

ᵀ
t−1
)ᵀ = ( f̂t1, . . . , f̂tr,Yᵀ

t−1
)ᵀ

,

where f̂tk is the kth element of f̂t , k = 1, . . . , r. We may apply
the two-stage semiparametric PMAMAR procedure, which is
exactly the same as that in Section 2.1 to the process (Yt , X̂∗

t, f ),
t = 1, . . . , n, and then obtain the estimation of the optimal
weights ŵn, f . To save space, we next only sketch the kernel esti-
mation of the marginal regression function with the estimated
factor regressors obtained via PCA.

For k = 1, . . . , r, define

m∗
k, f (zk) = E

[
Yt|f̃ 0tk = zk

]
, f̃ 0tk = e

ᵀ
r (k)Hf0t ,

where er(k) is an r-dimensional column vector with the kth
element being one and zeros elsewhere, k = 1, . . . , r. As in
Section 2.1, we estimate m∗

k, f (zk) by the kernel smoothing
method:

m̂∗
k, f (zk) =

∑n
t=1YtK̃tk(zk)∑n
t=1 K̃tk(zk)

, K̃tk(zk) = K

(
f̂tk − zk
h3

)
,

j = 1, . . . r, (2.15)

where h3 is a bandwidth. In Section 3.2, we will show that
m̂∗

k, f (zk) is asymptotically equivalent to m̃∗
k, f (zk), which is

defined as in (2.15) but with f̂tk replaced by f̃ 0tk. The latter ker-
nel estimation is infeasible in practice as the factor regressor
involved is unobservable. As we may show that the asymptotic
order of m̂∗

k, f (zk) − m̃∗
k, f (zk) is oP(n

−1/2) under somemild con-
ditions (see Theorem 3), the influence of replacing f̃ 0tk by the
estimated factor regressors f̂tk in the PMAMAR procedure is
asymptotically negligible.

3. TheMain Theoretical Results

In this section, we establish the asymptotic properties for the
methodologies developed in Section 2. The asymptotic theory
for the KSIS+PMAMARmethod is given in Section 3.1 and that
for the PCA+PMAMAR method is given in Section 3.2.
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3.1. Asymptotic Theory for KSIS+PMAMAR

In this subsection, we first derive the sure screening property for
the developed KSIS method, which implies that the covariates
whose marginal regression functions make significant contri-
bution to estimating the multivariate regression function m(x)
would be chosen in the screening with probability approaching
one. The following regularity conditions are needed in the proof
of this property.
A1. The process {(Yt ,Xt )} is stationary and α-mixing with

the mixing coefficient decaying at a geometric rate:
α(k) ∼ cαθ k

0 , where 0 < cα < ∞ and 0 < θ0 < 1.
A2. Let f j(·) be the marginal density function of Xt j, the jth

element of Xt . Assume that f j(·) has continuous deriva-
tives up to the second order and

0 < c ≤ inf
j

inf
x j∈C j

f j(x j) ≤ sup
j

sup
x j∈C j

f j(x j) ≤ c < ∞,

where C j is the compact support of Xt j. For each j, the
conditional density functions of Yt for given Xt j exists
and satisfies the Lipschitz continuous condition. Fur-
thermore, the length of C j is uniformly bounded by a
positive constant.

A3. The kernel functionK(·) is a Lipschitz continuous, sym-
metric, and bounded probability density function with
a compact support. Let the bandwidth satisfy h1 ∼ n−θ1

with 1/6 < θ1 < 1.
A4. The marginal regression function mj(·) has continuous

derivatives up to the second order and there exists a
positive constant cm such that sup j supx j∈C j

[|mj(x j)| +
|m′

j(x j)| + |m′′
j (x j)|

] ≤ cm.
A5. The response variable Yt satisfies E[exp{ς |Yt|}] < ∞,

where ς is a positive constant.

Remark 1. The condition A1 imposes the stationary α-mixing
dependence structure on the observations, which is not uncom-
mon in the time series literature (see Bosq 1998). It might be
possible to consider a more general dependence structure such
as the near epoch dependence studied in Lu and Linton (2007)
and Li, Linton, and Lu (2012), however, the technical proofs
would be more involved. Hence, we impose the mixing depen-
dence structure and focus on the ideas proposed. The restriction
of geometric decaying rate on the mixing coefficient is due to
the ultra-high dimensional setting and it may be relaxed if the
dimension of the covariates diverges at a polynomial rate. The
conditions A2 and A4 give some smoothness restrictions on the
marginal density functions and marginal regression functions.
To simplify the discussion, we assume that all of the marginal
density functions have compact support. Such an assumption
might be too restrictive for time series data, but it could be
relaxed by slightly modifying our methodology. For example,
if the marginal density function of Xt j is the standard normal
density that does not have a compact support, we can trun-
cate the tail of Xt j in the KSIS procedure by replacing Xt j with
Xt jI

(|Xt j| ≤ ζn
)
and ζn divergent to infinity at a slow rate. The

condition A3 is a commonly used condition on the kernel func-
tion as well as the bandwidth. The strong moment condition on
Yt in A5 is also quite common in the SIS literature such as Fan,
Feng, and Song (2011) and Liu, Li, and Wu (2014).

Define the index set of “true” candidate models as

S = { j = 1, 2, . . . , pn + dn : v(j) 	= 0
}
.

The following theorem gives the sure screening property for the
KSIS procedure.

Theorem 1. Suppose that the conditions A1–A5 are satisfied.

(i) For any small δ1 > 0, there exists a positive constant δ2
such that

P
(

max
1≤j≤pn+dn

|v̂(j) − v(j)| > δ1n−2(1−θ1 )/5
)

= O
(
M(n) exp

{−δ2n(1−θ1)/5
})

, (3.1)

where M(n) = (pn + dn)n(17+18θ1 )/10 and θ1 is defined
in the condition A3.

(ii) If we choose the predetermined tuning parameter ρn =
δ1n−2(1−θ1)/5 and assume

min
j∈S

v(j) ≥ 2δ1n−2(1−θ1)/5, (3.2)

then we have

P
(S ⊂ Ŝ) ≥ 1 − O

(
MS (n) exp

{−δ2n(1−θ1)/5
})

,

(3.3)
where MS (n) = |S|n(17+18θ1)/10 with |S| being the car-
dinality of S .

Remark 2. The above theorem shows that the covariates whose
marginal regressions have not too small positive correlations
with the response variable would be included in the screened
model with probability approaching one at a possible exponen-
tial rate of n. The condition (3.2) guarantees that the correla-
tions between the response and the marginal regression func-
tions for covariates whose indices belong to S are bounded
away from zero, but the lower bound may converge to zero.
As pn + dn = O(exp{nδ0}), to ensure the validity of Theorem
1(i), we need to impose the restriction δ0 < (1 − θ1)/5, which
reduces to δ0 < 4/25 if the order of the optimal bandwidth in
kernel smoothing (i.e., θ1 = 1/5) is used. Our theorem general-
izes the results in Fan, Feng, and Song (2011) and Liu, Li, and
Wu (2014) to dynamic time series case and those in Ando and
Li (2014) to the flexible nonparametric setting.

We next study the asymptotic properties for the PMAMAR
method including the well-known sparsity and oracle property.
Recall that qn = |Ŝ| and the dimension of the potential covari-
ates is reduced from pn + dn to qn after implementing the KSIS
procedure. As above, we let X∗

t be the KSIS-chosen covariates,
which may include both the exogenous regressors and lags of
Yt . Define

an = max
1≤ j≤qn

{|p′
λ(|woj|)|, |woj| 	= 0

}
and

bn = max
1≤ j≤qn

{|p′′
λ(|woj|)|, |woj| 	= 0

}
.

We need to introduce some additional conditions to derive the
asymptotic theory.
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A6. The matrix

�n :=

⎛⎜⎜⎝
E
[
m∗

1(X∗
t1)m∗

1(X∗
t1)
]

. . . E
[
m∗

1(Xt1)m∗
qn (X

∗
tqn )
]

...
...

...
E
[
m∗

qn (X
∗
tqn )m

∗
1(Xt1)

]
. . . E

[
mqn (X∗

tqn )mqn (X∗
tqn )
]
⎞⎟⎟⎠

is positive definite with the eigenvalues bounded away
from zero and infinity. In particular, the smallest eigen-
value of �n is larger than χ , a small positive constant.

A7. The bandwidth h2 satisfies

s2nnh
4
2 → 0, n

1
2−ξh2 → ∞, q2n

(
τn + h22

) = o(1)
(3.4)

as n → ∞, where sn is the number of nonzero elements
in the optimal weight vector, ξ is positive but arbitrarily
small, and τn = (

log n
nh2

)1/2.
A8. Let an = O(n−1/2), bn = o(1), pλ(0) = 0, and there exit

two positive constants C1 and C2 such that
∣∣p′′

λ(w1) −
p′′

λ(w2)
∣∣ ≤ C2|w1 − w2| when w1,w2 > C1λ.

Remark 3. The conditionA6 gives some regularity conditions on
the eigenvalues of the qn × qn positive definitematrix�n, which
are similar to those in the existing literature dealing with inde-
pendent observations (see Fan and Peng 2004). We may relax
these conditions by allowing that some eigenvalues tend to zero
at certain rates and slightly modifying the conditions A7 and
A8, and as a consequence, the convergence rate in Theorem 2(i)
would be slightly different (see Chen et al. 2015). The restric-
tions in the condition A7 imply that undersmoothing is needed
in our semiparametric procedure and qn can only be divergent
at a polynomial rate of n. The condition A8 is a commonly used
condition on the penalty function pλ(·), similar to that in Fan
and Peng (2004).

Without loss of generality, we define the vector of the optimal
weights

wo = (wo1, . . . ,woqn )
ᵀ = [wᵀ

o (1), w
ᵀ
o (2)

]ᵀ
,

where wo(1) is composed of nonzero weights with dimension
sn andwo(2) is composed of zero weights with dimension (qn −
sn), and assume that the observations X∗

t j are in the interior of
the respective support (which is to avoid the kernel boundary
effect in the asymptotic analysis). To give the asymptotic nor-
mality for ŵn(1), the estimator of wo(1), we need to introduce
some further notation. Define

η∗
t = Yt −

qn∑
j=1

wojm∗
j (X

∗
t j), η∗

t j = Yt − m∗
j (X

∗
t j)

and ξt = (ξt1, . . . , ξtsn )
ᵀ with ξt j = η∗

t j − η̃∗
t j, η∗

t j =
m∗

j (X∗
t j)η

∗
t ,

η̃∗
t j =

qn∑
k=1

wokη
∗
tkβ jk(X∗

tk) =
sn∑
k=1

wokη
∗
tkβ jk(X∗

tk),

β jk(xk) = E
[
m∗

j (X
∗
t j)|X∗

tk = xk
]
.

Obviously, the mean of ξt is zero, and we define �n =∑∞
t=−∞ E

(
ξ0ξ

ᵀ
t
)
and�n1 as the top-left sn × sn submatrix of�n.

Let

ωn = [p′
λ(|wo1|)sgn(wo1), . . . , p′

λ(|wosn |)sgn(wosn )
]ᵀ

and

�n = diag
{
p′′

λ(|wo1|), . . . , p′′
λ(|wosn |)

}
,

where sgn(·) is the sign function. In the following theorem, we
give the asymptotic theory of ŵn obtained by the PMAMAR
method.

Theorem 2. Suppose that the conditions A1–A8 are satisfied.

(i) There exists a local minimizer ŵn of the objective func-
tionQn(·) defined in (2.9) such that

‖ŵn − wo‖ = OP

(√
qn(n−1/2 + an)

)
= OP

(√
qn/n

)
,

(3.5)
where an is defined in the condition A8 and ‖ · ‖ denotes
the Euclidean norm.

(ii) Let ŵn(2) be the estimator of wo(2) and further assume
that

λ → 0,
√
nλ√qn

→ ∞, lim inf
n→∞ lim inf

w→0+
p′

λ(w)

λ
> 0.

(3.6)
Then, the local minimizer ŵn of the objective function
Qn(·) satisfies ŵn(2) = 0 with probability approaching
one.

(iii) Letting ŵn(1) be the estimator of wo(1),
√
nAn�

−1/2
n
(
�n1 + �n

)[
ŵn(1) − wo(1)

− (�n1 + �n)
−1ωn

]
d−→ N(0,A0), (3.7)

where 0 is a null vector whose dimension may change
from line to line, An is an s × sn matrix such that
E[
∥∥An�

−1/2
n ξt

∥∥2+δ�] < ∞ for some δ� > 0 andAnA
ᵀ
n →

A0 in which A0 is an s × s symmetric and nonnegative
definite matrix and s is a fixed positive integer.

Remark 4. Theorem 2(i) shows that the convergence rate of the
estimator ŵn is the same as that in Theorem 1 of Fan and Peng
(2004) who consider the case of independent observations. Fur-
thermore, when qn is fixed and an = O(n−1/2), we could derive
the root-n convergence rate for ŵn as in Theorem 3.1 of Li,
Linton, and Lu (2015). Theorem 2(ii) shows that the estima-
tor of wo(2) is equal to zero with probability approaching one,
which indicates that the PMAMAR procedure possesses the
well-known sparsity property, and thus can be used as a model
selector. Theorem 2(ii) and (iii) shows that the proposed esti-
mator of the optimal weights enjoy the oracle property, which
takes wo(2) = 0 as a prerequisite. Furthermore, when n is large
enough and λ tends to zero sufficiently fast for some penalty
functions (such as the SCAD penalty), the asymptotic distribu-
tion in (3.7) would reduce to

√
nAn�

−1/2
n �n1

[
ŵn(1) − wo(1)

] d−→ N(0,A0), (3.8)

which is exactly the same as that in Theorem 3.3 of Li, Linton,
and Lu (2015).
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3.2. Asymptotic Theory for PCA+PMAMAR

In this subsection, we show that the estimated common factors
consistently estimate the true common factors (with rotation),
and the asymptotic order of the difference between m̂∗

k, f (zk)
defined in (2.15) and the infeasible kernel estimation m̃∗

k, f (zk)
is oP(n−1/2) uniformly.We start with some regularity conditions
that are used when proving the asymptotic results.
B1. Given the rotation matrix H, the process {(Yt , ft ,Ut ) :

t = 1, . . . , n} is stationary and α-mixing with the mix-
ing coefficient decaying at a geometric rate.

B2. The random common factors satisfy the conditions that
E(f0t ) = 0, maxt

∥∥f0t ∥∥ = OP(1), the r × r matrix �F :=
E
[
f0t (f0t )

ᵀ] is positive definite and E
[‖f0t ‖4+τ

]
< ∞ for

some 0 < τ < ∞.
B3. The matrix (B0

n)
ᵀB0

n/pn is positive definite with the
smallest eigenvalue bounded away from zero and
maxk ‖b0k‖ is bounded.

B4. The idiosyncratic error satisfies E(utk) = 0, E(utkf0t ) =
0, and maxk E[|utk|16] < ∞. Furthermore, there exist
two positive constantsC3 andC4 such that

max
t

E

⎡⎣∥∥∥∥∥
pn∑
k=1

utkb0k

∥∥∥∥∥
4
⎤⎦ ≤ C3p2n (3.9)

and

max
t1,t2

E

⎡⎣∣∣∣∣∣
pn∑
k=1

{
ut1kut2k − E[ut1kut2k]

}∣∣∣∣∣
8
⎤⎦ ≤ C4p4n,

(3.10)
and maxk E[exp{ς‖utkf0t ‖}] < ∞ where ς is a positive
constant as in the condition A5.

B5.
(i) The kernel function K(·) is positive, symmetric, and

has continuous derivatives up to the second order
with a compact support. In addition, the derivative
functions of K(·) are bounded.

(ii) There exists 1/7 < γ0 < 1/6 such that n1−γ0h33 →
∞. In addition, nh43 = O(1), pnh93 → ∞, and n =
o(p2nh133 ).

(iii) The marginal regression functions (corresponding
to the factor regressors)m∗

k, f (·) have continuous and
bounded derivatives up to the second order.

Remark 5. Some of the above conditions have been commonly
used in the literature. For example, the conditions B2 and B3 are
similar to Assumptions A and B in Bai and Ng (2002), whereas
the condition B4 is similar to the corresponding conditions in
Assumption 3.4 in Fan, Liao, and Mincheva (2013). In par-
ticular, the exponential bound maxk E[exp{ς‖utkf0t ‖}] < ∞ in
the condition B4 is crucial to ensure that pn can diverge at an
exponential rate of n. The conditional mixing condition in B1
seems somehow restrictive, butmay be replaced by someweaker
(and high-level) conditions. The technical conditions in B5(ii)
indicate that the dimension pn diverges to infinity at a faster
rate than the time series length n (a commonly used setting in
high-dimensional factor analysis), which aremainly used for the
proof of Theorem 3(ii) in Appendix B.

Theorem 3. Suppose that the conditions B1–B4 are satisfied,
and

n = o
(
p2n
)
, pn = O

(
exp{nδ∗ }) , 0 ≤ δ∗ < 1/3. (3.11)

(i) For the PCA estimation f̂t , we have

max
t

∥∥f̂t − Hf0t
∥∥ = OP

(
n−1/2 + n1/4p−1/2

n
)
, (3.12)

whereH is defined in Section 2.2.
(ii) In addition, suppose that the conditions A5 and B5 are

satisfied and the latent factor f0t has a compact support. Then we
have

max
1≤k≤r

sup
zk∈F∗

k

∣∣m̂∗
k, f (zk) − m̃∗

k, f (zk)
∣∣ = oP

(
n−1/2) , (3.13)

where F∗
k is the compact support of f̃ 0tk.

Remark 6. Theorem 3(i) gives the uniform consistency result
for the estimation of the common factors, which is very sim-
ilar to some existing results on PCA estimation of the high-
dimensional factormodels such asTheorem3.3 in Fan, Liao, and
Mincheva (2013). If we further assume that n3 = o(p2n), which
automatically holds when pn is divergent at an exponential rate
of n, the uniform convergence rate in (3.12) would beOP(n−1/2).
Theorem 3(ii) shows that we may replace m̂∗

k, f (·) by the infeasi-
ble kernel estimation m̃∗

k, f (·)when deriving the asymptotic the-
ory for the PMAMAR method introduced in Section 3.2, and
Theorem 2 in Section 3.1 may hold with some notational modi-
fications (say, qn in (3.5) needs to be replaced by dn). The restric-
tion of compact support on f0t can be removed if we slightly
modify the methodology as discussed in Remark 1.

4. Some Extensions

This section discusses some extensions by introducing an itera-
tive KSIS+PMAMAR procedure when the covariates are highly
correlated, and an extended PCA+PMAMAR approach with
selection of the number of the latent factors in model (2.11).

4.1. An Iterative KSIS+PMAMAR Procedure

When the covariates are highly correlated with each other, dif-
ficulties in variable selection arise. As documented in Fan and
Lv (2008), when the covariate dimension is large, even if the
covariates are mutually independent, the data generated from
them may exhibit significant spurious correlation. Fan and Lv
(2008) noticed that when irrelevant covariates are highly cor-
related with some relevant ones, they might be selected into a
model with higher priority than some other relevant covariates,
which results in high false positive rates and low true positive
rates. Such a problemmay become even worse in this article due
to the time series nature of the data, where both the responseYt
and the covariates Xt are autocorrelated over time t . Since the
covariates Xt j, j = pn + 1, . . . , pn + dn, are generated from the
lags ofYt , both temporal autocorrelation and the cross-sectional
correlation among them arise. Hence, if we try to estimate or
predictYt by running first the KSIS with all the potential covari-
ates, Xt j, j = 1, . . . , pn + dn, and second the PMAMAR with
those that have survived the screening procedure, the results
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could be unsatisfactory. It is especially so when pn + dn is much
larger than the sample size n. Due to the presence of autocorrela-
tion in time series data, the iterative sure independence screen-
ing procedure developed in Fan, Feng, and Song (2011) cannot
be applied in our context. This is because their iterative proce-
dure involves a permutation step in which the observed data are
randomly permuted to obtain a data-driven screening thresh-
old for each iteration. When the data are autocorrelated, per-
mutation would destroy the inherent serial dependence struc-
ture and hencemay lead to erroneous thresholds being obtained.
To alleviate the problem, we provide an iterative version of the
KSIS+PMAMAR procedure in Appendix C of the supplemen-
tary document. This iterative procedure can be seen as a greedy
selection algorithm, since atmost one variable is selected in each
iteration. The simulated Example 1 in Section 5 shows that, in
general, the iterative procedure helps reduce false positive rates
and increase true positive rates, especially when the exogenous
covariates (i.e., the Z’s) are not correlated. This leads to the iter-
ative procedure producing generally more accurate estimation
and prediction.

4.2. The PCA+KSIS+PMAMAR Procedure

In reality, the number of common factors, r, in the approximate
factormodel (2.11) is usually unknown.We hence need to select
it from an eigenanalysis of the matrix ZnZᵀ

n /(npn). Two ways
are possible to address this issue. The first is to set a maximum
number, say rmax (not too large usually), for the factors. Since the
factors extracted from the eigenanalysis are orthogonal to each
other, the over-extracted insignificant factors will be discarded
in the PMAMAR step. Another approach is to select the first
few eigenvectors (corresponding to the first few largest eigenval-
ues) of ZnZᵀ

n /(npn) so that a predetermined amount, say 95%,
of the total variation is accounted for. See Boneva, Linton, and
Vogt (2015) for more information on the selection of the num-
ber of common component functions. Other selection criteria
such as BIC can be found in Bai and Ng (2002) and Fan, Liao,
and Mincheva (2013).

In the second step of the PCA+PMAMAR procedure pro-
posed in Section 2.2, the estimated factors and the dn candi-
date lags of Y undergo a PMAMAR regression. However, since
the lags of Y are often highly correlated, dn is usually large and
the PMAMAR regression usually cannot produce satisfactory
results in selecting the truly significant lags. This may lead to
poor performance of the PCA+PMAMARprocedure predicting
the future values ofY . To alleviate this problem, a KSIS step can
be added in between the PCA and PMAMAR steps so that the
candidate lags of Y first undergo a KSIS to preliminarily screen
out some insignificant lags. The simulation results in Example
2 confirm that this PCA+KSIS+PMAMAR procedure improves
the prediction performance of the PCA+PMAMAR procedure.

5. Numerical Studies

In this section, we report simulation studies (Examples 1 and
2) and an empirical application (Example 3). Throughout this
section the rule of thumb bandwidth is used as our methods do
not seem to be sensitive to the choice of bandwidth.

5.1. Simulation Studies

Example 1. In this example, the sample size is set to be n =
100, and the numbers of candidate exogenous covariates and
lagged terms are (pn, dn) = (30, 10) and (pn, dn) = (150, 50).
The data-generating model is defined by

Yt = m1(Zt1) + m2(Zt2) + m3(Zt3) + m4(Zt4) + m5(Yt−1)

+m6(Yt−2) + m7(Yt−3) + εt , (5.1)

for t ≥ 1, where we set

mi(x) = − sin(2x), i = 1, 5, 6, 7,
m2(x) = x2 − 25/12, m3(x) = x,

m4(x) = e−x − 2
5
sinh(5/2),

the exogenous covariates Zt = (Zt1,Zt2, . . . ,Ztpn )
ᵀ are inde-

pendently drawn from pn-dimensional Gaussian distribution
with zero mean and covariance matrix cov(Z) = Ipn or CZ,
whose main-diagonal entries are 1 and off-diagonal entries are
1/2; the error term εt are independently generated from the
N(0, 0.72) distribution. The additive functionsmi(·) have been
chosen to be the same as those in the simulated example of
Meier, van de Geer, and Bühlmann (2009), although they con-
sidered a static rather than a dynamic model. The real size of
exogenous regressors is 4 and the real lag length is 3. We gen-
erate 100 + n observations from the process (5.1) with initial
statesY−2 = Y−1 = Y0 = 0 and discard the first 100 − dn obser-
vations.

The aim of this simulation is to compare the performance
of the iterative KSIS+PMAMAR (IKSIS+PMAMAR) procedure
in Section 4.1 with the (noniterative) KSIS+PMAMAR proce-
dure in Section 2.1. To further the comparison, we also employ
the iterative sure independence screening (ISIS) method pro-
posed in Fan and Lv (2008), the penalized method for high-
dimensional generalized additive models (penGAM) proposed
in Meier, van de Geer, and Bühlmann (2009), and the oracle
additive modeling with backfitting algorithm (Oracle, in which
the true relevant variables are known). For theKSIS+PMAMAR,
we choose [10n1/6] variables from the screening step, which then
undergo a PMAMAR with the SCAD penalty. The measures of
performance considered are the true positive (TP) and false pos-
itive (FP), defined, respectively, as the numbers of true and false
relevant variables selected, the mean squared estimation error
(MSEE) defined as MSEE = 1

n
∑n

t=1(Yt − Ŷt )2, where Ŷt is the
fitted value of Y at t obtained from a particular method. We
also generate a prediction test set of size n∗ = 10 and calculate
1-step-ahead forecasts forY based on model selection and esti-
mation from the training dataset of size n. To compare their pre-
diction performance, we calculate the mean squared prediction
error (MSPE) of each of the methods. The MSPE is defined as
MSPE = 1

n∗
∑n∗

s=1(Yn+s − Ŷn+s)
2, where Ŷn+s is the forecast ofY

for time n + s. The tuning parameters in the penalized regres-
sions are chosen by the cross-validation. The SCAD penalized
regression is implemented using the R package “ncvreg,” the ISIS
method implemented using the “SIS” R package, the penGAM
method implemented using the “penGAM” package, and the
oracle additive modeling implemented using the R package of
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“gam.” The results in Table 1 are based on 200 simulation replica-
tions, and the numbers in the parentheses are the standard errors
of TP, FP, MSEE, and MSPE over 200 replications.

It can be seen from Table 1 that when the number of can-
didate covariates (pn + dn = 150 + 50) is much larger than the
sample size, the iterative version of KSIS+PMAMAR increases
the TP of the noniterative version, and it decreases the FP in all
cases except when cov(Z) = CZ and (pn, dn) = (150, 50). This
results in a better performance of the IKSIS+PMAMAR than
the KSIS+PMAMAR in estimation when (pn, dn) = (150, 50)
and in prediction in all cases but when cov(Z) = CZ and
(pn, dn) = (150, 50). Among the four variable selection pro-
cedures (i.e., IKSIS+PMAMAR, KSIS+PMAMAR, penGAM,
and ISIS), the penGAM has the highest TP as well as FP. This
makes it the approach that has the lowest MSEE, since within
the same linear or nonlinear modeling framework it is gener-
ally the case that the more variables are selected the smaller
the MSEE is. This does not hold true with MSPE. The ISIS,
in contrast to the other approaches, assumes a linear model-
ing structure and hence is unable to correctly select truly rele-
vant variables when the underlying data-generating process is
nonlinear, leading to it having the lowest TP among the four
selection procedures. This poor performance of the ISIS in
variable selection also results in its poor estimation and pre-
diction results. The prediction performance of an approach
largely depends on its accuracy in variable selection, and a
low TP and high FP will lead to a high MSPE. The estima-
tion and prediction results for the Oracle serve as a bench-
mark for those of the other approaches. The MSPEs from the
IKSIS+PMAMAR and KSIS+PMAMAR are the closest among
all the approaches to those of the Oracle. It can also be
observed, by a comparison of the first two panels of Table 1
with the last two, that when the correlation among the exoge-
nous variables increases, the performance of all approaches
worsens.

For a fuller comparison of the above methods in this exam-
ple, we have also recorded the average and median computation
times for a single running of each of them. These results are pre-
sented in Table D.1 in Appendix D of the supplementary docu-
ment, and the interested reader is referred to it for details.

Example 2. The exogenous variables Zt in this example are gen-
erated through an approximate factor model:

Zt = Bft + zt ,

where the rows of the pn × r loadingsmatrixB and the common
factors ft , t = 1, . . . , n, are independently generated from the
multivariate N(0, Ir) distribution, and the pn-dimensional error
terms zt , t = 1, . . . , n, from the 0.1N(0, Ipn ) distribution.We set
pn = 30 or 150, r = 3, and generate the response variable via

Yt = m1( ft1) + m2( ft2) + m3( ft3) + m4(Yt−1)

+m5(Yt−2) + m6(Yt−3) + εt ,

where fti is the ith component of ft , m1(x) = x2 − 25/12,
m2(x) = x, m3(x) = e−x − 2

5 sinh(5/2), m4(x) = m5(x) =
m6(x) = − sin(2x) (these functions are the same as those in
Example 1), and εt , t = 1, . . . , n, are independently drawn from
the N(0, 0.72) distribution. In this example, we set the number
of candidate lags of Y as dn = 10. We compare the perfor-
mance, in terms of estimation error and prediction error, of the
following methods: PCA+PMAMAR, PCA+KSIS+PMAMAR,
KSIS+PMAMAR, penGAM, ISIS, and Oracle. Since in reality
both r and the factors ft are unobservable, the factors in the
first two methods are estimated by the first r̂ eigenvectors of
ZnZᵀ

n /(npn), where Zn = (Z1, . . . ,Zn)
�, and r is estimated

by r̂, where r̂ is chosen so that 95% of the variation in Zn is
accounted for. In the PCA+PMAMAR method, the estimated
factors and dn potential lags ofY directly undergo a PMAMAR
with the SCAD penalty, while in the PCA+KSIS+PMAMAR the

Table . Average results on variable selection and accuracy of estimation and prediction in Example  over  replications.

Model Method TP FP MSEE MSPE

IKSIS+PMAMAR . (.) . (.) . (.) . (.)
Example  KSIS+PMAMAR . (.) . (.) . (.) . (.)
cov(Z) = Ipn

penGAM . (.) . (.) 5.6817 × 10−4 . (.)

(3.9801 × 10−4)
(pn, dn) = (30, 10) ISIS . (.) . (.) . (.) . (.)

Oracle . (.) . (.) . (.) . (.)
IKSIS+PMAMAR . (.) . (.) . (.) . (.)

Example  KSIS+PMAMAR . (.) . (.) . (.) . (.)
cov(Z) = Ipn

penGAM . (.) . (.) 8.7218 × 10−5 . (.)

(5.4755 × 10−5)
(pn, dn) = (150, 50) ISIS . (.) . (.) . (.) . (.)

Oracle . (.) . (.) . (.) . (.)
IKSIS+PMAMAR . (.) . (.) . (.) . (.)

Example  KSIS+PMAMAR . (.) . (.) . (.) . (.)
cov(Z) = CZ penGAM . (.) . (.) 9.2095 × 10−4 . (.)

(8.7475 × 10−4)
(pn, dn) = (30, 10) ISIS . (.) . (.) . (.) . (.)

Oracle . (.) . (.) . (.) . (.)
IKSIS+PMAMAR . (.) . (.) . (.) . (.)

Example  KSIS+PMAMAR . (.) . (.) . (.) . (.)
cov(Z) = CZ penGAM . (.) . (.) 1.1801 × 10−4 . (.)

(1.0156 × 10−4)
(pn, dn) = (150, 50) ISIS . (.) . (.) . (.) . (.)

Oracle . (.) . (.) . (.) . (.)
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Table . Accuracy of estimation and prediction in Example  over  replications.

Model Method MSEE MSPE

PCA+PMAMAR . (.) . (.)
PCA+KSIS+PMAMAR . (.) . (.)

Example  KSIS+PMAMAR . (.) . (.)
(pn, dn) = (30, 10) penGAM . (.) . (.)

ISIS . (.) . (.)
Oracle . (.) . (.)
PCA+PMAMAR . (.) . (.)
PCA+KSIS+PMAMAR . (.) . (.)

Example  KSIS+PMAMAR . (.) . (.)
(pn, dn) penGAM . (.) . (.)
= (,) ISIS . (.) . (.)

Oracle . (.) . (.)

potential lags of Y first undergo the KSIS and then the selected
lags together with the estimated factors undergo a PMAMAR.
The KSIS+PMAMAR, penGAM, and ISIS deal directly with pn
exogenous variables in Zt and dn lags ofY as in Example 1, and
the Oracle uses the three factors and the first three lags, as in
the true data-generating process.

As in Example 1, the sample size is set as n = 100 and the
experiment is repeated for 200 times. The results are summa-
rized in Table 2. It can be seen from these results that as in
Example 1, the penGAM has the lowest MSEE but the high-
est MSPE as a result of it selecting a large number of vari-
ables. When the number of exogenous variables pn is not so
large compared with the sample size n (i.e., 30 compared to
100), the KSIS+PMAMAR outperforms the two PCA-based
approaches (i.e., PCA+PMAMAR and PCA+KSIS+PMAMAR),
in terms of estimation and prediction accuracy. However, when
pn becomes larger than n, the PCA-based approaches show their
advantage in effective dimension reduction of the exogenous
covariates, which results in their lower MSEE and MSPE. The
PCA+PMAMAR has a lower MSEE but higher MSPE than the
PCA+KSIS+PMAMAR. This is because without the screening
step the PCA+PMAMAR selects more false lags of Y , and the
higher FP leads to a higher MSPE and lower MSEE under the
same PMAMAR framework. The above suggests that if the focus
of a study is to predict future values, there may be benefits in
having the KSIS step between the PCA and PMAMAR steps to
screen out insignificant lags ofY .

The computation times of the methods considered in this
example are given in Table D.2 in Appendix D of the supple-
mentary document. This table shows that the insertion of the
KSIS step between PCA and PMAMAR speeds up the follow-
ing PMAMAR step (as less variables undergo the PMAMAR
step), leading to PCA+KSIS+PMAMAR being overall faster

than PCA+PMAMAR. The interested reader is referred to Table
D.2 for details.

5.2. An Empirical Application

Example 3. We next apply the proposed semiparametric model
averagingmethods to forecast inflation in theUK. The data were
collected from the Office for National Statistics (ONS) and the
Bank of England (BoE) websites and included quarterly obser-
vations on CPI and some other economics variables over the
period Q1 1997 to Q4 2013. All the variables are seasonally
adjusted. We use 53 series measuring aggregate real activity and
other economic indicators to forecast CPI. Given the possible
temporal persistence of CPI, we also add its four lags as predic-
tors. Data from Q1 1997 to Q4 2012 are used as the training set
and those in Q1–Q4 2013 are used for forecasting. As in Stock
andWatson (1998, 1999), wemake four types of transformations
on different variables, depending on their nature: (i) logarithm,
(ii) first difference of logarithms; (iii) first difference, and (iv) no
transformation. Logarithms are usually taken on positive series
that are not in rates or percentages, and first differences are taken
of quantity series and of price indices. All series are standardized
to havemean zero and unit variance after these transformations.
Figure 1 plots both the original and transformed CPI series.

We use the training set to select the significant variables
among the 53 exogenous economic variables and the four lags of
CPI, as well as to estimate themodel averaging weights ormodel
coefficients. These selected variables and estimated coefficients
are then used to obtain the mean squared estimation error
(MSEE) and form forecasts of CPI in the four quarters of 2013.
We compare the forecasting capacity of the IKSIS+PMAMAR,
KSIS+PMAMAR, PCA+PMAMAR, penGAM, and ISIS meth-
ods via themean squared prediction error (MSPE) and themean
absolute prediction error (MAPE), which are defined, respec-
tively, as

MSPE = 1
4

4∑
s=1

(Yn+s − Ŷn+s)
2, MAPE = 1

4

4∑
s=1

∣∣Yn+s − Ŷn+s
∣∣ ,

where Ŷn+s is the 1-step-ahead forecast ofY at time n + s calcu-
lated based on model selection and estimation from the train-
ing dataset of size n. In addition, we also compare the estima-
tion accuracy of the methods via the mean squared estimation
error (MSEE) and the mean absolute estimation error (MAEE),

Figure . Plot of the UK CPI series. Left panel: the original UK CPI values from Q  to Q ; and right panel: the normalized� log(CPI).
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defined by

MSEE = 1
n

n∑
t=1

(Yt − Ŷt )2, MAEE = 1
n

n∑
t=1

∣∣Yt − Ŷt
∣∣ ,

where Ŷt is the fitted value ofY at time t .
Due to the small number of candidate lags of the

response (d = 4), there is not much necessity to use the
PCA+KSIS+PMAMAR approach in this example, and hence
it is not included in the comparison. Similarly to Stock and
Watson (2002), in the PCA+PMAMAR approach, common
factors extracted from the exogenous variables together with
lags of the response are used to forecast the response. The
difference with Stock and Watson’s (2002) approach is that the
PCA+PMAMAR allows these factors and lags to contribute to
forecasting the response in a possibly nonlinear way. We also
calculate forecasts based on the Phillips curve specification

It+1 − It = α + β(L)Ut + γ (L)�It + εt+1,

where It is the CPI in the tth quarter, Ut is the unemployment
rate, β(L) = β0 + β1L + β2L2 + β3L3 and γ (L) = γ0 + γ1L +
γ2L2 + γ3L3 are lag polynomials with L being the lag opera-
tor, and � is the first difference operator. We further employ
some of the most commonly used models from the BoE’s suite
of statistical forecasting models to model and forecast the CPI
data. These include the autoregressive (AR) model, the vector
autoregressive (VAR) model consisting of output, CPI, oil price,
effective sterling exchange rate, and BoE’s base interest rate, and
the smooth transition autoregressive (STAR) model. The order
of autoregression in these models is selected by AIC, and the
number of regimes in the STAR model is selected based on an
LM test.

The MSEEs, MSPEs, MAEEs, and MAPEs of the above
approaches are summarized in Table 3, which shows that
the IKSIS+PMAMAR has the smallest MSPE followed by the
AR and penGAM, then KSIS+PMAMAR. The VAR and ISIS
have comparable MSPEs, which are smaller than those from
PCA+PMAMAR and STAR. The Phillips curve forecasts are
much worse than those of the other methods. In terms of good-
ness of fit measured in either MSEE or MAEE, the Phillips
curve, the AR, the VAR, and the STAR provide a comparable
fit that is worse than that obtained from the PMAMAR-based
methods or the ISIS. As in the simulation studies, the penGAM
gives the smallest estimation error due to a relatively large
number of variables being selected. Among the variable selec-
tion/screening methods, the IKSIS+PMAMAR selects 8 exoge-
nous variables and 2 lags of the response; the KSIS+PMAMAR
selects 3 exogenous and 2 lags of response; the PCA+PMAMAR

Table . Estimation and forecasting for UK inflation data.

Method MSEE MSPE MAEE MAPE

IKSIS+PMAMAR . . . .
KSIS+PMAMAR . . . .
PCA+PMAMAR . . . .
penGAM 1.3559 × 10−5 . . .
ISIS . . . .
Phillips Curve . . . .
AR . . . .
VAR . . . .
STAR . . . .

Figure . Plot of Y (normalized � log(CPI)), observed and fitted values from the
methods considered.

Figure . Plot ofY (normalized� log(CPI)) from Q  to Q  and their fore-
casts from the methods considered.

selects 14 common factors (which account for around 90% of
the total variation) from the 53 exogenous variables and 3 lags
of response; the penGAM selects 31 exogenous variables and 2
lags; and the ISIS selects 10 exogenous and 2 lags. Figure 2 pro-
vides the fitted values of the CPI observations in the training set
by using the methods described above, and Figure 3 provides
the predicted values of the CPI from Q1 2013 to Q4 2013 using
these methods. The findings from Figures 2 and 3 are consistent
with those from Table 3. Appendix D of the supplementary doc-
ument also lists the estimated models from the above methods,
and the interested reader is referred to it for details.

6. Conclusion

In this article, we have developed two types of semiparametric
methods to achieve dimension reduction on the candidate
covariates and obtain good forecasting performance for the
response variable. The KSIS technique, as the first step of the
KSIS+PMAMARmethod and the generalization of the SIS tech-
nique proposed by Fan and Lv (2008), screens out the regressors
whose marginal regression functions do not make significant
contribution to estimating the joint regression function and
reduces the dimension of the regressors from an ultra large size
to a moderately large size. The sure screening property devel-
oped in Theorem 1 shows that, through KSIS, the covariates
whose marginal regression functions make truly significant
contribution would be selected with probability approaching
one. An iterative version of the KSIS is further developed in
Section 4.1 (with details given in Appendix C) and it can be
seen as a possible solution to address the issue of false selection
of some irrelevant covariates, which are highly correlated to the
significant covariates. The PMAMAR approach, as the second
step of the two semiparametric dimension-reduction methods,
is an extension of theMAMAR approximation introduced in Li,
Linton, and Lu (2015). Theorem 2 proves that the PMAMAR
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enjoys some well-known properties in high-dimensional vari-
able selection such as the sparsity and oracle property. Both the
simulated and empirical examples in Section 5 show that the
KSIS+PMAMAR and its iterative version perform reasonably
well in finite samples.

The second PCA+PMAMAR method is a generalization of
the well-known factor-augmented linear regression and autore-
gression models (see Stock andWatson 2002; Bernanke, Boivin,
and Eliasz 2005; Bai and Ng 2006). By assuming an approx-
imate factor structure on the ultra-high dimensional exoge-
nous regressors and implementing the PCA, we estimate the
unobservable factor regressors and achieve dimension reduc-
tion on the exogenous regressors. Our Theorem 3 shows that
the estimated factor regressors are uniformly consistent and the
asymptotic properties for the subsequent PMAMAR method
may remain valid for further selection of the estimated factor
regressors and the time series lags. Example 2 shows that the
PCA+PMAMARmethod performs well in predicting the future
value of the time series when the dimension of covariates is
larger than the sample size. Furthermore, we may extend the
methodology and theory developed in this article to the more
general case where some lags of the estimated factor regressors
are included in the PMAMAR procedure.

SupplementaryMaterials

The supplemental document contains the detailed proofs of the
main asymptotic theorems given in Section 3 and some related
technical lemmas. It also includes two tables recording the aver-
age andmedian computation times of the various methods con-
sidered in Examples 1 and 2, and lists the estimatedmodels from
the methods used in Example 3.
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