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The exponential GARCH (EGARCH) model introduced by Nelson (1991) is a pop-
ular model for discrete time volatility since it allows for asymmetric effects and nat-
urally ensures positivity even when including exogenous variables. Estimation and
inference are usually done via maximum likelihood. Although some progress has
been made recently, a complete distribution theory of MLE for EGARCH models is
still missing. Furthermore, the estimation procedure itself may be highly sensitive
to starting values, the choice of numerical optimization algorithm, etc. We present
an alternative estimator that is available in a simple closed form and which could
be used, for example, as starting values for MLE. The estimator of the dynamic pa-
rameter is independent of the innovation distribution. For the other parameters we
assume that the innovation distribution belongs to the class of Generalized Error
Distributions (GED), profiling out its parameter in the estimation procedure. We
discuss the properties of the proposed estimator and illustrate its performance in a
simulation study and an empirical example.

1. INTRODUCTION

The exponential GARCH (EGARCH) model introduced by Nelson (1991) re-
mains one of the most popular GARCH type models for modelling the volatility
of financial time series. Its advantages over the classical ARCH model of Engle
(1982) and GARCH model of Bollerslev (1986) are manyfold. For example, the
EGARCH model allows for asymmetric effects of positive and negative innova-
tions. Furthermore, the conditional variance is positive by construction, which
allows one to include exogenous variables in the volatility equation. And finally,
stochastic properties of the model such as stationarity are naturally comparable to
linear models of the conditional mean, while for classical GARCH models this is
not the case. The popular software package Eviews offers EGARCH as one of its
main volatility models.
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1014 CHRISTIAN M. HAFNER AND OLIVER LINTON

Despite these methodological advantages, there are some technical issues with
EGARCH due to the inherent difficulty of deriving a concise theory for estima-
tion and inference. In particular, the maximum likelihood estimator proposed by
Nelson (1991) is particularly difficult to analyze, due to the invertibility issue.
Some recent progress has been made by Straumann and Mikosch (2006) but only
for a special case and even then the regularity conditions are hard to interpret.
Wintenberger (2013) proves consistency using continuous invertibility, and pro-
vides sufficient conditions for this to hold, which however seem to be restrictive.
Similarly, Kyriakopoulou (2015) gives sufficient conditions for asymptotic nor-
mality, which also restrict the admissible parameter space. As an alternative to
the MLE, Zaffaroni (2009) proposes a Whittle estimator and shows consistency
and asymptotic normality of the identified parameters under weak conditions.

Unfortunately, the calculation of both these estimators requires the use of nu-
merical multiparameter optimization procedures since closed form expressions
are not available. Therefore, the resulting estimator depends on the implementa-
tion, with different optimization techniques leading to potentially different esti-
mators. This has been demonstrated in Brooks, Burke, and Persand (2001) and
McCullough and Renfro (1999) where different commercially available software
packages were used to estimate EGARCH models by QML. Both studies reported
markedly different outputs across the various packages, reflecting the different
initialization and algorithmic strategies employed.

Instead of using estimators that require numerical optimization, one may want
to consider estimators that are available in closed form, for example based on
some moment conditions of the model. Such closed form estimators are likely
to be less efficient, but have the advantage of being immediately available and
as such could be used, for example, as starting value for estimators that do re-
quire numerical optimization. As they are

√
n-consistent, they can also be used as

such in very large samples, considering that estimators involving numerical op-
timization often require substantial computational effort to achieve convergence
in those situations, which are not rare in financial applications. This line of work
in GARCH models was started by Engle and Mezrich (1996) who introduced the
so-called “target variance” approach, whereby the unconditional variance was es-
timated by the sample variance and as a consequence one less parameter had to
be estimated from the resulting likelihood. In the classical GARCH(1,1) model,
Kristensen and Linton (2006) have introduced a closed form estimator, which
was used for example by Andrews and Guggenberger (2009) in their simulations
on computational grounds. The classical GARCH model is, in many respects,
simpler than the EGARCH model. For example, unconditional moments such as
the unconditional variance do not depend on the innovation distribution in the
GARCH model, whereas they do in the EGARCH model.

In this paper, we propose an estimator of the parameters of the EGARCH model
that is in closed form for a given innovation distribution. For the parameter that
describes the persistence of shocks to volatility, we propose an estimator that
is independent of the innovation distribution and also of the form of the news
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ANALMOST CLOSED FORMESTIMATOR FOR THE EGARCHMODEL 1015

impact function used in the specification of the volatility process. We consider
the special case where the innovation is in the class of generalized error distri-
butions (GED) and we provide a moment-based estimator of this parameter. We
derive the asymptotic properties of our moment-based estimator and illustrate its
small sample performance via a simulation study. Finally, we apply the alternative
estimators to a long series of S&P 500 daily returns.

2. THE SEMIPARAMETRIC EGARCH MODEL

Consider the following exponential GARCH (EGARCH(1,1)) model for the ob-
served zero mean process yt

yt = eht/2ξt , (1)

ht =ω+βht−1 + g(ξt−1), (2)

where the following conditions are satisfied:

Assumption 1. ξt is i.i.d. with bounded density f, where E(ξt ) = 0 and
var(ξt ) = 1, while g(·) is a measurable function such that E

[
g(ξt )

] = 0 and
0< E

[|g(ξt )|2
]
<∞. The parameter |β|< 1.

Under these conditions, the AR(1) process ht is strongly and weakly station-
ary, as well as ergodic (Nelson, 1991, Theorem 2.1). If f has support R, mean-
ing it is positive everywhere, then Carrasco and Chen (2002, Corollary 8) have
shown that ht and yt are strictly stationary and geometrically β-mixing. It fol-
lows that “instantaneous” functions of the series i.e., measurable functions of
(yt , yt−1, . . . , yt−m) for finite m are also stationary and geometrically mixing, see
Davidson (1994, Theorem 14.1).

Assumption 1 and equations (1) and (2) define a semiparametric model with
regard to the error density f and the news impact curve g.We will later specialize
according to popular choices for f and g, but without further assumptions we
record below the second order properties of the series

zt = log y2
t = ht + logξ2

t , (3)

which is the sum of an AR(1) process and an iid process (and hence an
ARMA(1,1) process in the weak sense, see Proposition 1 below), and strongly
and weakly stationary and ergodic. Define the mean zero vector of shocks
xt = (vt ,gt , ũt )

ᵀ
, where vt = logξ2

t − E logξ2
t , ũt = ut − Eut , where ut =

sign(yt ) = sign(ξt ), and gt = g(ξt ). Then, with: C0( f ) = E(ut ), C1( f ) =
E
[

logξ2
t

]
, C2( f ) = σ 2

v = var(vt ), D1( f ; g)= var(gt ), D2( f ; g)= cov(vt ,gt ),
D3( f ; g)= cov(ut ,vt ), D4( f ; g)= cov(ut ,gt ), we have

Ext x
ᵀ
t =

⎡⎣ C2( f ) D2( f ; g) D3( f ; g)
D2( f ; g) D1( f ; g) D4( f ; g)
D3( f ; g) D4( f ; g) 1 − C2

0( f )

⎤⎦ .
Then define δ = D2( f ; g)/C2( f ), and σ 2

ε = D1( f ; g)− D2
2( f ; g)/C2( f ). Then

let φ = δ−β, and:
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1016 CHRISTIAN M. HAFNER AND OLIVER LINTON

d = φσ 2
v

σ 2
ε +σ 2

v

(
1 +φ2

) ∈ [− 1/2,1/2
]

π = 1 −√
1 − 4d2

2d
∈ [− 1,1

]
σ 2

e = σ 2
ε +σ 2

v

(
1 +φ2

)(
1 +π2

) ≥ 0.

PROPOSITION 1. Under Assumption 1, for ω∗ = ω+ (1 −β)C1( f ) and π
given above, we have (“to second order”)

zt = ω∗ +βzt−1 + et +πet−1, (4)

where et is iid with mean zero and finite variance σ 2
e . Furthermore, with ω∗∗ =

ω∗/(1 −β) and ϑ0 = 1, ϑj = (π+β)β j−1, j ≥ 1,

zt = ω∗∗ +
∞∑

j=0

ϑj et− j .

Finally, γu(k)= cov(ut ,ut−k)= 0, and:

μ= E[zt ] = C1( f )+ ω

1 −β (5)

γz(0)= var(zt )= D1( f ; g)

1 −β2 + C2( f ) (6)

γz(k)= cov[zt ,zt−k ] = βk−1
(
βD1( f ; g)

1 −β2 + D2( f ; g)

)
, k ≥ 1 (7)

γzu(k)= cov(zt ,ut−k)=
⎧⎨⎩

0 if k < 0
D3( f ; g) if k = 0

βk−1 D4( f ; g) if k > 0.
(8)

The autocorrelations are defined through ρz(k) = γz(k)/γz(0). Depending on
the relative magnitudes of D1( f ; g) and D2( f ; g), the autocovariances and au-
tocorrelations of z can in principle be positive or negative, although we would
expect them to be positive for financial data. In the pure MA case (β = 0),
ρz(k) ∈ (−1/2,1/2), but in the general case there is no such restriction on the
autocorrelations. For β < 1, the autocovariances and autocorrelations decay geo-
metrically. The cross autocorrelations depend on the sign of D4( f ; g).

It follows from (7) that

β = γz(k + 1)

γz(k)
= ρz(k + 1)

ρz(k)
(9)

for all k ≥ 1, which identifies the parameter β regardless of f,g.
It follows from (4) to (8) that we can identify at most four parameters from the

first and second order properties of zt alone (and we need π �= 0 and π �= −β in
order to do this). The information in γzu(k) permits the identification of one fur-
ther parameter at most. The functions g(.) and f (.) are not separately identifiable
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ANALMOST CLOSED FORMESTIMATOR FOR THE EGARCHMODEL 1017

from this information without further structure that reduces the number of free
parameters.

The second order structure of z was used in Zaffaroni (2009) to form the Whit-
tle likelihood to estimate a subset of the parameters of Nelson’s model. As he
remarked, it contains insufficient information to identify all the parameters of
Nelson’s model (which is a special case of (1) and (2)) and one must consider the
bivariate process (zt ,ut ) as we have done. We turn to Nelson’s special case next.

3. NELSON’S NEWS IMPACT CURVE

We now specialize to the model considered by Nelson (1991). He proposed a
specific parametric news impact function g,

g(ξt )= θξt +α(|ξt |− E|ξt |), (10)

where θ and α are unknown parameters. In total there are four parameters in ht :
ω,β,α, and θ. Proposition 1 suggests we may identify all these parameters from
the second order properties of (zt ,ut ) given knowledge of f. First, we have

ω( f )= (1 −β)(μ− C1( f )), (11)

which identifies ω given the density f . By Jensen’s inequality, C1( f ) ≤ 0,
so that (1 − β)μ ≤ ω. Let C3( f ) = var(|ξt |), C4( f ) = E |ξt |, and C5( f ) =
cov(log

(
ξ2

t

)
, |ξt |). We have C3( f ) = 1 − C2

4 ( f ). Provided the error distribution
is symmetric about zero:

D1( f ; g)= θ2 +α2C3( f )

D2( f ; g)= αC5( f ) ; D3( f ; g)= 0 ; D4( f ; g)= θC4( f ).

It is then straightforward to show that γzu(1)= θC4( f ). Hence, write

θ( f )= γzu(1)

C4( f )
. (12)

We may also use the ratios θ( f )= γzu(k)/C4( f )βk−1 for k = 2,3, . . . .
Furthermore, we have γz(1)− βγz(0) = D2( f ; g)− βC2( f ) = αC5( f ) −

βC2( f ), from which we obtain

α( f )= γz(1)−β (γz(0)− C2( f ))

C5( f )
. (13)

Therefore, given knowledge of the symmetric density f, we can identify the
true parameters α,θ of this news impact curve as well as the parameters ω,β. In
the absence of this information, we have a mapping from f 
→ ω( f ),α( f ),θ( f )
that defines “pseudo true” parameter values. Specifically,

ω( f )= ωo + (C1( fo)− C1( f ))(1 −βo) ; θ( f )= θo
C4( fo)

C4( f )

α( f )= αo
C5( fo)

C5( f )
+βo

C2( fo)− C2( f )

C5( f )
,
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1018 CHRISTIAN M. HAFNER AND OLIVER LINTON

where subscript o denotes true value. If f = fo, then: ω( f ) = ωo, α( f ) = αo,
and θ( f )= θo.

In Section 4 we discuss estimation of η( f ) = (ω( f ),β,θ( f ),α( f )) based on
the expressions (9), (11), (12), and (13).

4. THE CLOSED FORM ESTIMATOR

Suppose we have a sample y1, . . . , yn from (1) and (2). Define the sample mean
and autocovariance function (for k = 0,1,2, . . .) :

μ̂= 1

n

n∑
t=1

zt

γ̂ z(k)=
1

n

n∑
t=k+1

(
zt − μ̂)(zt−k − μ̂)

γ̂ zu(k)=
1

n

n∑
t=k+1

(
zt − μ̂)ut−k,

and define the sample autocorrelation function ρ̂z(k)= γ̂ z(k)/γ̂ z(0).
Motivated by Proposition 1 and (9), we propose the following moment estima-

tors for β

β̂ =
p∑

k=1

γ̂ z(k + 1)

γ̂ z(k)
wk =

p∑
k=1

ρ̂z(k + 1)

ρ̂z(k)
wk, (14)

where p ≥ 1 and wk are some known weights such that
∑p

k=1wk = 1 (for ex-
ample, wk = λk−1/

∑p
j=1λ

j−1 for some λ ∈ (0,1)). This is similar to Kristensen

and Linton (2006). Note that β̂ is independent of the specification of g(·) and of
the innovation distribution f . In practice, the median of the ratios or a trimmed
mean may provide superior performance, especially when p is large (so that some
correlations may be small), and this is discussed further in the numerical section.

The remaining parameters of (2) and (10) depend on the error distribution f .
Using (5)–(12), we obtain

ω̂( f )= (μ̂− C1( f )
)(

1 − β̂
)

θ̂ ( f )= 1

C4( f )

p∑
k=1

γ̂ zu(k)

β̂
k−1

w′
k

α̂( f )= 1

C5( f )

{ p∑
k=1

γ̂ z(k)

β̂
k−1

w′′
k − β̂(γ̂ z(0)− C2( f )

)}
,

for p ≥ 1 and w′
k,w

′′
k some known weights such that

∑p
k=1w

′
k =∑p

k=1w
′′
k = 1.

If f were known, e.g., when f is standard Gaussian, this would be a complete
estimation procedure. If f is not known, then we are estimating the pseudo-true
parameters ω( f ),θ( f ), and α( f ).
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5. ESTIMATION OF PARAMETERS OF THE GED ERROR DENSITY

Nelson (1991) also assumed that ξt followed a standardized generalized error
distribution, ξt ∼ G E D(ν), with mean zero, variance one, and with density func-
tion given by

fν (ξ)= ν exp
{− (1/2)|ξ/λ(ν)|ν}

λ(ν)21+1/ν�(1/ν)
, ν > 0 (15)

where λ(ν)= {2−2/ν�(1/ν)/�(3/ν)
}1/2 and � is the gamma function. The GED

includes the normal as a special case (ν = 2), but allows for fat tails (ν < 2) while
maintaining finiteness of all moments of ξt . This density is also called the EPD
(Exponential power distribution) and the Subbotin distribution (Subbotin, 1923).
For ν > 1, it is a log concave density, although the only member of this family
that is strictly log-concave is ν = 2, see Example 2.14 of Saumard and Wellner
(2014). It is infinitely differentiable in ν except at the point ξ = 0.

With an abuse of notation we now denote C1(ν) = E
[
logξ2

t

]
, C2(ν) =

var
(

logξ2
t

)
, D2(ν; g) = cov

(
log
(
ξ2

t

)
,g(ξt )

)
, C3(ν) = var(|ξt |) = 1 − C2

4 (ν),

C4(ν)= E |ξt |, and C5(ν)= cov
(

log
(
ξ2

t

)
, |ξt |

)
. These quantities can be computed

numerically for any ν and have “almost closed form” expressions, such as:

C1(ν)= 2

ν
ψ(1/ν)+ ln�(1/ν)− ln�(3/ν), (16)

C4(ν)= λ(ν)21/ν�(2/ν)/�(1/ν), (17)

C2(ν)= (2/ν)2�(1/ν) ; C5(ν)= (2/ν)C4(ν)(ψ(2/ν)−ψ(1/ν)), (18)

where ψ,� are, respectively, the digamma and trigamma functions (the first and
second derivative of log�). Equation (16) is shown in the appendix, (17) is given
by (A1.8) of Nelson (1991), and (18) by Zaffaroni (2009, eq. 19). These are
smooth functions of ν.1

We next consider how to estimate ν from the data in Nelson’s model (10) and
(15). So far we have used two pieces of information: γzu(1) and γz(1)−βγz(0) to
identify the parameters θ and α given the value of ν.We propose to identify ν (and
hence the parameters θ and α (and ω)) from the remaining information contained
in γz(0). We define our approach for the estimation of ν given our closed form
estimators of η(ν)= (ω(ν),β,θ(ν),α(ν)).

5.1. The Moment Estimator

We propose to estimate ν from the remaining information contained in γz(0) us-
ing a purely moment-based estimator, see the review of Renault (2009) for other
applications of moment-based estimators to volatility models. Let

M(ν)= (1 −β2
o

){
γz(0)− C2(ν)

}− θ2(ν)−α2(ν)C3(ν),

= θ2
o − θ2(ν)+α2

oC3(νo)−α2(ν)C3(ν)+
(
1 −β2

o

){
C2(νo)− C2(ν)

}
,

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000256
Downloaded from https://www.cambridge.org/core. Pendlebury Library of Music, on 21 Jan 2019 at 16:04:47, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466616000256
https://www.cambridge.org/core


1020 CHRISTIAN M. HAFNER AND OLIVER LINTON

where subscript o denotes true value,α(ν)= [γz(1)−βo (γz(0)− C2(ν))
]
/C5(ν),

and θ(ν) = γzu(1)/C4(ν). We have M(νo) = 0. We will assume that M(ν) �= 0
at least in a neighborhood of νo. In Figure 1 we show M(ν) for three different
values of νo : νo = 1.5, νo = 2, and νo = 2.5, and the parameter values βo = 0.97,
αo = 0.5, θo = −0.1. In each case there is a unique crossing of zero on the range
[1,3]. Note that the slope of M at νo, M ′(νo), decreases from the case νo = 1.5
to the case νo = 2.5, although even in that case there is a well defined unique
solution on this range of parameter values.

We now turn to estimation. Define for each ν ∈ V

Mn(ν)=
(

1 − β̂2
){
γ̂ z(0)− C2(ν)

}− θ̂ (ν)2 − α̂(ν)2C3(ν). (19)

We define ν̂ as any zero of Mn(ν) over V or (if there is no zero) more generally

ν̂ = argmin
ν∈V

|Mn(ν)| ,
which always exists. This can also be computed by a univariate grid search. For
the purpose of defining a numerical grid-search algorithm, we shall restrict atten-
tion to ν ∈ V , where V = [ν,ν] ⊂ (0,∞) is a compact set with arbitrary lower
and upper bounds. It is convenient, but not necessary under our assumptions, to
set ν = 1, as this ensures a finite unconditional variance of yt by Theorem A1.2
of Nelson (1991). For the numerical results of Section 7 we shall use V = [1,3].

The advantage of this method is that it is purely based on sample moments
of observables and so there is no need to define a recursive dynamic equation

FIGURE 1. The solid line corresponds to νo = 1.5, the dashed to νo = 2, and the dotted to
νo = 2.5.
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based on estimated parameters. The theoretical properties are much easier to han-
dle: The quantity Mn(ν) is a smooth function of the autocovariances of z and
the cross autocovariances with ut as well as a nonlinear function of ν. Conse-
quently, one can obtain consistency and asymptotic normality of all the parameter
estimates by standard methods. On the other hand, these estimators are not fully
efficient. We suppose that our estimators may be used in their own right where
computational and theoretical reasons impel, but they also may be used as start-
ing values to compute the MLE, as in Kristensen and Linton (2006) proposed
for GARCH models. In the working paper version of this paper, we outlined a
specific Newton–Raphson algorithm for this purpose. There are some theoretical
results that support the idea that a one step of this algorithm can achieve very
close approximation to the MLE, see Robinson (1988, Theorem 2).

6. ASYMPTOTIC PROPERTIES

We present some properties of the estimators defined in Sections 4 and 5. We
first give the assumptions we shall use, we then consider the closed form/profiled
estimators of Section 4, and then consider in particular the estimator of the full
parameter vector defined in Section 5.1.

6.1. Assumptions

To recap, we have defined a semiparametric EGARCH model with two sub-
models: one where g is parametrically specified, and the second where both
g and f are parametrically specified. We strengthen the moment conditions in
Assumption 1 for the purposes of conducting inference. The three different mod-
els are defined through the following assumptions.

Assumption 1i. ξt is i.i.d. with bounded density f,which has support R, where
E(ξt )= 0 and var(ξt )= 1 and E

[|ξt |4
]
<∞, while g(·) is a measurable function

such that E
[
g(ξt )

]= 0 and 0< E
[|g(ξt )|4

]
<∞. The parameter β satisfies β �= 0

and |β|< 1.

Assumption 2i. In addition to Assumption 1i, the unknown density f is sym-
metric about zero and g(ξt )= θξt +α(|ξt |− E|ξt |), where C5( f ) �= 0.

Assumption 3i. In addition to Assumption 2i, the density f is GED with un-
known parameter ν ∈ V , where V is a compact subset of (0,∞).

The moment conditions on the innovations are quite mild and there is no re-
striction on the implied moments for yt so far, unlike in Kristensen and Linton
(2006). The boundedness of the density of ξt implies that all moments of logξ2

t
exist.2 This assumption could be weakened to allow the density to grow at the
origin at rate less than unity.

The estimator β̂ is a smooth function of the first p+1 autocorrelations of zt and
so (provided β ∈ (0,1)) the asymptotic distribution of β̂ follows without the addi-
tional structure provided by Nelson’s model. To repeat, the estimator β̂ is robust to
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1022 CHRISTIAN M. HAFNER AND OLIVER LINTON

both f and g, in the sense that it is consistent for a large class of these functions,
unlike the GED MLE proposed by Nelson (1991), which certainly requires cor-
rect specification of the news impact curve and may also require at least symmetry
of the true density to be consistent. This in turn implies the root-n asymptotic nor-
mality of ω̂(ν) and α̂(ν) around some limiting value (the argument for θ̂ (ν) is
similar as it only depends additionally on the sign of ξt ). This is true without the
GED assumption, although the probability limit would obviously depend on the
underlying distribution f.

6.2. Asymptotics of the Closed Form/Profiled Estimator

Define the vector χt =
[
a
ᵀ
t ,b

ᵀ
t ,c

ᵀ
t

]ᵀ
with components

at =
[

zt −μ
(zt −μ)2

]
; bt =

⎡⎢⎣ (zt −μ)(zt−1 −μ)
...

(zt −μ)(zt−p−1 −μ)

⎤⎥⎦ ; ct =
⎡⎢⎣ (zt −μ)ut−1

...
(zt −μ)ut−p

⎤⎥⎦ ,
and let at = (a1t ,a2t )

ᵀ
, bt = (b1t , . . . ,bpt )

ᵀ
, and ct = (c1t , . . . ,cpt )

ᵀ
. Then define

the (2 p + 2)× (2 p+ 2)matrix � as the long run variance of χt

�( f,g)= lim
n→∞ var

⎛⎝ 1√
n

n∑
t=p+1

χt

⎞⎠=
∞∑

j=−∞
�χ( j)

=
⎡⎣�aa �ab �ac

�ba �bb �bc

�ca �cb �cc

⎤⎦=
[
�L L �L N

�N L �N N

]
, (20)

where �χ( j) denotes the autocovariance matrix of the vector χt . Here, �L L is

the submatrix of � corresponding to the vector
[
a
ᵀ
t ,b

ᵀ
t

]ᵀ
. The limit in (20) exists

by virtue of the moment and mixing properties of the process χt . One could in
principle derive an explicit formula for � in terms of the parameters ω,β, and

the first four moments of the vector of shocks xt = (vt ,gt , ũt
)ᵀ

by extending the
calculations in Proposition 1 to consider fourth order properties of the process
(zt ,ut )

ᵀ
. This would be similar to the calculations performed in Francq, Horváth,

and Zakoı̈an (2011, Theorem 2.1) for the variance targeting GARCH estimator,
except more complicated due to the more complicated news impact curve in this
case. For example, the long run variance of at1 = zt −μ is

γz(0)+ 2
∞∑

j=1

γz( j)= D1( f ; g)

1 −β2
+ C2( f )+ 2

∞∑
j=1

β j−1
(
βD1( f ; g)

1 −β2
+ D2( f ; g)

)

= D1( f ; g)

1 −β2
+ C2( f )+ 2

1 −β
(
βD1( f ; g)

1 −β2
+ D2( f ; g)

)
.

For the other quantities, similar expressions could be obtained except that
they involve additional constants depending on f,g. One key difference from
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Francq et al. (2011), however, is that in the EGARCH model, we do not have
consistent estimates of the parameters ωo,θo,αo unless we know f. Even for the
parameter β, where knowledge of f,g is not necessary for consistent estimation,
it is required for evaluation of the asymptotic variance because the relevant part
of �( f,g) even in that case depends on f,g.

Define the weight vectors:

π0(w)=
(

−w1ρz(2)

ρz(1)2
,
w2

ρz(1)
− w3ρz(3)

ρz(2)2
, . . . ,

wp

ρz(p)
− wp+1ρz(p)

ρz(p − 1)2
,−wp+1

ρz(p)

)
π1(w,β)=

(
w1,

w2

β
,. . . ,

wp

β p−1
,0

)ᵀ

,

π2(w,β)= −
(

0,
w2

β2
, . . . ,

(p − 1)wp

β p

)ᵀ

.

Then define the 4 × (2 p+ 2)matrix

A( f )=

⎡⎢⎢⎢⎢⎣
1−β 0 −(μ− C1( f ))π0(w)

ᵀ
0

0 0 π0(w)
ᵀ

0

0 0 i
ᵀ
π2(w

′ ,β)
C4 ( f ) π

ᵀ
0

1
C4( f ) π1

(
w′,β

)ᵀ
0 − β

C5 ( f )
1

C5( f ) π1(w,β)
ᵀ −
(
π2(w

′′ ,β)ᵀ γz
C5 ( f ) + γz (0)−C2 ( f )

C5( f )

)
π

ᵀ
0 0

⎤⎥⎥⎥⎥⎦ , (21)

where γz = (γz(1), . . . ,γz(p + 1))
ᵀ

and i = (1,1, . . . ,1)
ᵀ
. Define η̂( f ) =(

ω̂( f ), β̂, θ̂ ( f ), α̂( f )
)� for the given f, and let η( f )= (ω( f ),βo,θ( f ),α( f ))�

be defined as the probability limit of η̂( f ) under the given density f . Note that
we do not assume that f = fo the true error density.

THEOREM 1. Suppose that Assumption 1i holds. Then,
√

n
[
β̂−βo

]
=⇒ N

(
0,π0(w)

ᵀ
�bb( f,g)π0(w)

)
. (22)

Suppose further that Assumption 2i holds. Then
√

n
[̂
η( f )−η( f )

]=⇒ N
(

0,A( f )�( f,g)A( f )
ᵀ)
. (23)

For the construction of consistent confidence intervals, it suffices to apply a
suitable nonparametric estimator of the long run variance of the estimable se-
ries χt or to use the subsampling method applied directly to the data (Politis and
Romano, 1994). If one assumes knowledge of f, then there is a simpler option—
to use the parametric bootstrap and simulate from this error density, see below for
more discussion in the concrete GED case.

If Assumption 3i holds, then:

ω(ν)=ωo + (C1(νo)− C1(ν))(1 −βo) ; θ(ν)= θo
C4(νo)

C4(ν)

α(ν)= αo
C5(νo)

C5(ν)
+βo

C2(νo)− C2(ν)

C5(ν)
,

where subscript o denotes true value. If ν0 were known, Theorem 1 could be used
to provide standard errors and conduct inference about η(νo). Standard errors can
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1024 CHRISTIAN M. HAFNER AND OLIVER LINTON

be constructed by the methods discussed above. On the other hand, if ν ∈ V is
unknown, then one could use (23) to conduct conservative inference. Specifically,
suppose that Cn(ν) is a consistent confidence region for some subvector of η(ν),
say ω(ν), i.e., for each ν

Pr
[
ω(ν) ∈ Cn(ν)

]→ 1 −α.
Then ∪ν∈V Cn(ν) is a conservative confidence region for ω(νo), i.e.,

lim
n→∞ Pr

[
ω(νo) ∈ ∪ν∈V Cn(ν)

]≥ 1 −α.

6.3. Asymptotics of the Full Parameter Estimator

We now turn to the properties of the estimator of all parameters pro-
posed in Sections 3 and 4.2 under the full Nelson specification. Let φ̂m =(
ω̂
(̂
νm
)
, β̂, θ̂

(̂
νm
)
, α̂
(̂
νm
)
, ν̂m

)� and φo = (ωo,βo,θo,αo,νo)
�. Define:

�φφ(φo)=
[
�ηη �ην
�

ᵀ
ην �νν

]
; �νν(φo)= B(νo)

ᵀ
�(φo)B(νo)

[M ′(νo)]2

�ηη(φo)=
[
A(νo)+η′(νo)

[
M ′(νo)

]−1B(νo)
ᵀ]
�(φo)

[
A(νo)+η′(νo)

[
M ′(νo)

]−1 B(νo)
ᵀ]ᵀ

�ην(φo)= 1

M ′(νo)

[
A(νo)+η′(νo)

[
M ′(νo)

]−1B(νo)
ᵀ]
�(φo)B(νo)

B(νo)=

⎡⎢⎢⎢⎢⎢⎢⎣

0(
1−β2

o

)+2αo
βoC3(νo)

C5(νo)[ −2αoC3(νo)
1

C5(νo)
π1(w,βo)

ᵀ

−
(

2βo(γz(0)−C2(νo))+2θo
i
ᵀ
π2(w

′,βo)
C4(νo)

+ π2(w
′′,βo)

ᵀ
γz

C5(νo)
+ γz(0)−C2(νo)

C5(νo)

)
π0(w)

ᵀ

]
− 2θo

C4(νo)
π1(w

′,βo)
ᵀ

⎤⎥⎥⎥⎥⎥⎥⎦ .

The quantities η′(νo) and M ′(νo) can be calculated by numerical differentiation,
but we give explicit formulae in the appendix.

THEOREM 2. Suppose that Assumption 3i holds and suppose that M ′(νo) �= 0.
Then
√

n
(
φ̂m −φo

)=⇒ N(0,�φφ(φo)).

For inference we may consider the parametric bootstrap (Andrews, 1997;
Bai, 2003). The conditional distribution of yt given the past is parametric, i.e.,
yt |Ft−1 ∼ F(·|Ft−1,φ)= Fν

(
e−ht (η)/2yt

)
, where Fν is the c.d.f. of the GED dis-

tribution with parameter ν. Therefore, we may proceed as follows. For given φ̂m
we generate a sample recursively by sampling repeatedly

y∗
t ∼ F

(
· |F∗

t−1, φ̂m

)
,

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000256
Downloaded from https://www.cambridge.org/core. Pendlebury Library of Music, on 21 Jan 2019 at 16:04:47, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466616000256
https://www.cambridge.org/core
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where F∗
t−1 = {y∗

t−1, . . . , y∗
1

}
. We then compute the estimator φ̂

∗
m from the sample{

y∗
T , . . . , y∗

1

}
, and repeat to obtain B bootstrap samples, see Kheifets (2015) for

recent discussion and theoretical analysis. Mineo and Ruggieri (2005) provide R
code for simulating from the GED that is publicly available.

7. SOME EXTENSIONS

7.1. A Pivotal Test of the Leverage Effect

We next show that one can carry out a test of leverage in the model (10) without
knowledge of ν or even f (so long as it is symmetric about zero), i.e., we are oper-
ating under Assumption 2i. Our estimator θ̂ ( f ), for any f, can be used to test for
a leverage effect within the Nelson model (10). The reason is that in constructing
the t-ratio the constant term C4( f ) is cancelled out. That is, we may compute

t = θ̂ ( f )

se
(
θ̂ ( f )

) =
1
n

∑n
t=1 ζt√

nlrvar(ζt )
,

where ζt = zt sgn(yt−1) and lrvar(xt ) denotes the long run variance of a series xt . In
fact, the series zt sgn(yt−1)= zt ut−1 is serially uncorrelated (provided only that f
is symmetric about zero) so that lrvar(ζt )= var(ζt ). By direct calculation we have

var(zt ut−1)= Ez2
t − E2zt ut−1 = θ2 +α2C3( f )

1 −β2

+ C2( f )+
(

C1( f )+ ω

1 −β
)2

− θ2C2
4 ( f ).

This can be estimated by the plug in method or from the sample variance of ζt

itself, which in practice is easier. Let

t̂ =
√

nζ√
1

n−1

∑n
t=1

(
ζt − ζ )2 , ζ = 1

n

n∑
t=1

ζt . (24)

Then under the null hypothesis of no leverage, θ = 0, and under Assumption 2i,
the statistic t̂ is asymptotically standard normal.

7.2. A Unit Root Test

The development so far has assumed that |β| < 1, we now consider what hap-
pens in the unit root case, i.e., when β = +1, but otherwise Assumption 1i holds.
In this case, the correlogram of the level series is not informative. Consider the
differenced series

�zt = ω+ (β− 1)ht−1 + gt−1 + logξ2
t − logξ2

t−1

= ω+ (β− 1)zt−1 + gt−1 + logξ2
t −β logξ2

t−1.

Under the unit root hypothesis, �zt = ω+ gt−1 + vt − vt−1 is a stationary first
order moving average process
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1026 CHRISTIAN M. HAFNER AND OLIVER LINTON

PROPOSITION 2. Suppose that Assumption 1i holds except that β = 1.
Then, the first two moments of�zt are given by

μ�z = E[�zt ] = ω,

γ�z(0)= var(�zt )= D1( f,g)+ 2C2( f )− D2( f,g),

γ�z(k)= cov[�zt ,�zt−k] =
{

D2( f,g)− C2( f ) if k = 1
0 if k > 1.

Therefore we can test the unit root hypothesis by examining γ�z(k), k = 2, . . ..
Specifically, we let

τ = n
p∑

k=1

ρ̂2
�z(2k), (25)

where ρ�z(k)= γ�z(k)/γ�z(0) and ρ̂�z(k) is the sample quantity (for an MA(1)
process the autocorrelations ρ̂�z(2k), k = 1,2, . . . are asymptotically indepen-
dent). Then under the null hypothesis (that β = 1), τ =⇒ χ2(p).

8. NUMERICAL RESULTS

8.1. A Simulation Study

We explore the finite sample properties of the proposed estimators through a
Monte Carlo simulation study. We generate EGARCH processes with Gaussian
(i.e., ν = 2) and GED (ν = 1.5) innovations, and the following parameters: ω =
−0.3, α = 0.5, β = 0.9, and θ = −0.1, which represent typical values for financial
time series. We consider various sample sizes n and use 1000 replications.

We first analyse the properties of alternative estimators of β. The first, β̂e, is a
simple mean of ratios, i.e., it is the estimator in (14) withwj = 1/p; the second, β̂w ,
is a mean of ratios with linearly declining weights, i.e., it is the estimator in (14) with
wj = 2(1 − j/(p + 1))/p; the third is the median: β̂rob = med

{
γ̂ ( j + 1)/γ̂ ( j)

}
,

and the fourth is the OLS without intercept regression estimator given by (26)

β̂R = (a
ᵀ
a)−1a

ᵀ
e, (26)

where e = (γ̂ z(2)w
1/2
1 , . . . , γ̂ z(p + 1)w1/2

p
)ᵀ
, a = (γ̂ z(1)w

1/2
1 , . . . , γ̂ z(p)w1/2

p
)ᵀ

.
All four estimators depend on the number of terms p included, which we increase
in steps of ten from 10 to 50. For higher values of p, the estimates of the ACF of
zt become too noisy and all estimates of β suffer from high variability. Results are
reported in Table 1. It is remarkable that both the weighted and unweighted means
underperform for higher p, due to high variability of estimated ACF. Median and
OLS estimates are robust to these, and mean square errors are reasonably small.
The median has a smaller bias for small values of p, while the OLS estimate has
generally a smaller standard deviation.

We next consider the performance of the closed form estimator of the remaining
model parameters. For the estimator of β we use a fixed order p = 10 and equal
weights, while for the estimator of α we use q = 1. Experiments with higher q

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000256
Downloaded from https://www.cambridge.org/core. Pendlebury Library of Music, on 21 Jan 2019 at 16:04:47, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466616000256
https://www.cambridge.org/core


ANALMOST CLOSED FORMESTIMATOR FOR THE EGARCHMODEL 1027

TABLE 1. Simulation results: estimation of β using simple mean
(
β̂e
)
, weighted

mean
(
β̂w
)
, median

(
β̂rob

)
, and regression without intercept

(
β̂ols

)
. Simulated pro-

cess:EGARCH(1,1)withGED(ν= 1.5) innovations,β= 0.9,ω= −0.3,θ = −0.1,
and α = 0.5. s.d. is the standard deviation, and the number of replications is 1000

p β̂e s.d. β̂w s.d. β̂rob s.d. β̂ols s.d.

n = 1,000

10 0.957 0.542 0.950 0.324 0.907 0.099 0.868 0.060
20 0.795 3.647 0.892 2.038 0.875 0.131 0.845 0.070
30 0.643 5.838 0.762 2.946 0.831 0.161 0.824 0.080
40 0.518 6.418 0.694 3.857 0.805 0.173 0.808 0.087
50 0.516 5.379 0.624 4.322 0.788 0.177 0.798 0.092

n = 10,000

10 0.905 0.015 0.904 0.012 0.900 0.024 0.897 0.013
20 0.918 0.216 0.912 0.042 0.900 0.024 0.894 0.012
30 0.899 2.030 0.928 0.552 0.892 0.035 0.892 0.013
40 0.747 4.314 0.880 1.451 0.874 0.050 0.889 0.013
50 0.729 3.894 0.838 2.251 0.856 0.061 0.887 0.013

did not improve the results with q = 1 in terms of mean squared error, so we only
report the latter results. For the estimation of ν we use the estimator proposed in
Section 5.1, found by a grid search on the interval [1,3]. We compare with two
other estimators, the full EGARCH MLE that maximizes L(φ)=∑n

t=1 �t (φ)with
respect to φ = (ω,β,θ,α,ν)� ∈ R

5, where:

�t (φ)= ln
(
ν/λ21+1/ν�(1/ν)

)
− 1

2

{|ξt (φ)/λ|ν + ht (φ)
}
,

ht (φ)= ω+ θξt−1(φ)+α(|ξt−1(φ)|− C4(ν))+βht−1(φ),

where ξt (φ) = yt exp(−ht (φ)/2) and h1(φ) = ω/(1 − β). We also compare
with a profiled Likelihood method that uses our closed form estimators η̂(ν) =(
ω̂(ν), β̂, θ̂ (ν), α̂(ν)

)
to define a profiled likelihood L̂(ν)=∑n

t=1 �̂t (ν), where:

�̂t (ν)= ln
(
ν/λ21+1/ν�(1/ν)

)
− 1

2

{
|ξ̂ t (ν)/λ|ν + ĥt (ν)

}
,

where ξ̂ t (ν)= exp
{

− ĥt (ν)/2
}

yt , and:

ĥt (ν)= ω̂(ν)+ θ̂ (ν)ξ̂ t−1(ν)+ α̂(ν)
(
|ξ̂ t−1(ν)|− C4(ν)

)
+ β̂ĥt−1(ν) (27)

ĥ1(ν)= ω̂(ν)

1 − β̂ = (μ̂− C1(ν)). (28)

We maximize L̂(ν) w.r.t. ν using a univariate grid search over the compact set
V . Let ν̂L denote the maximizer of L̂(ν). We argue that this estimator could be
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1028 CHRISTIAN M. HAFNER AND OLIVER LINTON

considered as similar in spirit to the “target variance” estimators of Engle and
Mezrich (1996), because all parameters except ν are profiled out based on the
first and second moment structure of zt and the remaining parameter is found by
maximizing the profiled likelihood.3 Unfortunately, it is difficult to prove rigor-
ously the consistency even of this estimator of ν. The issue is due to the nonlinear
recursive equation (27), which are very difficult to analyze away from the true
parameter value, which is exactly the same problem as for the original EGARCH
MLE. Although we do not provide analytical results regarding this estimator it
may be of value in terms of its computational benefits relative to the full MLE, so
we include it in our numerical comparison.

In Table 2, we report the performance of the estimators. The results corroborate
the theoretical finding that the estimators are consistent. Estimation of ω, the scale
parameter, and θ , the sign effect, seems rather unaffected by the estimation of ν.
That is, bias and variance of ω̂ and θ̂ are almost identical under the likelihood and

TABLE 2. Simulation results for estimated EGARCH(1,1) processes. True pa-
rameters are β = 0.9, ω = −0.3, θ = −0.1, and α = 0.5. s.d. is the standard
deviation, and the number of replications is 1000

Gaussian (ν = 2) GED with ν = 1.5

n = 1,000 n = 10,000 n = 1,000 n = 10,000

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

β 0.933 0.115 0.904 0.016 0.931 0.140 0.904 0.015

Profiled moment estimator

ω −0.196 0.333 −0.285 0.047 −0.214 0.405 −0.286 0.047
θ 0.105 0.189 −0.098 0.060 −0.091 0.201 −0.098 0.069
α 0.275 0.275 0.481 0.047 0.159 0.333 0.481 0.048
ν 2.355 0.535 2.024 0.182 1.879 0.495 1.518 0.098

Profiled likelihood estimator

ω −0.211 0.412 −0.284 0.048 −0.218 0.423 −0.299 0.050
θ −0.096 0.197 −0.099 0.061 −0.096 0.218 −0.099 0.071
α 0.560 0.234 0.501 0.042 0.542 0.223 0.504 0.038
ν 1.796 0.344 1.964 0.123 1.398 0.232 1.485 0.078

Full MLE

β 0.891 0.049 0.900 0.006 0.892 0.045 0.899 0.007
ω −0.323 0.133 −0.297 0.019 −0.323 0.126 −0.302 0.022
θ −0.099 0.031 −0.101 0.009 −0.099 0.037 −0.100 0.012
α 0.501 0.079 0.497 0.016 0.495 0.080 0.498 0.020
ν 2.005 0.160 2.003 0.043 1.510 0.105 1.500 0.033
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the moment estimation. The precision of both ω̂ and θ̂ is only slightly higher un-
der Gaussian compared to GED (ν = 1.5) innovations. Quite different results are
obtained for the estimation of the size effect, α, and the GED parameter ν. The
moment estimator of α has a negative bias and higher variance than the likelihood
estimator. Moreover, the moment estimator deteriorates under fat tails of the inno-
vation distribution in the sense that the bias aggravates and the variance increases.
For the likelihood estimator, on the other hand, exploiting the information of the
innovation distribution turns out to be beneficial: both bias and variance decrease
under GED compared to Gaussian innovations. For the estimation of ν, the mo-
ment estimator has a positive, the likelihood estimator a negative bias, while the
latter has a smaller variance than the former. Again, the likelihood estimator is
more precise under GED innovations than under Gaussianity, and now this also
holds for the moment estimator.

8.2. Application

We investigated the performance of our different estimators of β on a large
dataset, the demeaned daily (close to close) return on the S&P500 index from
1950 to 2012, a total of 15,757 observations. This data is quite heavy tailed, with
a tail thickness parameter around three, which implies that the second moments
of returns may exist but the fourth ones do not. Eviews computed the following
parameter estimates using the default numerical optimization algorithm. It took
26 iterations to achieve convergence and the results are shown below.

Estimate Standard error
β 0.9866 0.00135
ω −0.2542 0.01729
θ −0.0685 0.00367
α 0.1353 0.00650
ν 1.3726 0.01248

The process is quite persistent, which agrees with much earlier work. We car-
ried out the unit root test of Section 6.2 and found the following test statistics
with associated p-values: τ5 = 6.91 (0.227), τ10 = 14.37 (0.157), and τ25 = 47.15
(0.0047). The evidence against the unit root hypothesis only comes out once long
lags are considered.

The estimated tail thickness parameter is lower than that in Nelson. The para-
metric test of the leverage effect yields a t-statistic of nearly −19, indicating
strong evidence against the null of no leverage effect. However, the nonparametric
test based on (24) yields a smaller t-statistic of −4.666, which is still significant
but less so. This test however, is robust to the choice of error distribution so long
as it is symmetric.

We then investigate three estimators of β with regard to the choice of p : the
mean of the ratio, the median of the ratio, and the no intercept regression estima-
tor. In Figure 2, we show the value of the estimated β against the number of lags
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FIGURE 2. S&P 500: Three estimators of β as a function of the number of lags. The solid
reference line is the maximum likelihood estimator.

p used for p = 4, . . . ,100. The straight mean of the ratio estimator is generally
above one in value. The median estimator is generally below the MLE, while the
no intercept regression estimator is much closer to the MLE value than the others.
We also looked at using p up to a thousand, and more or less the same outcome
is observed, except as may be expected, the mean of the ratio estimator becomes

FIGURE 3. S&P 500: Scatter plot of empirical autocorrelations of log squared returns of
order k +1 (vertical axis) and k (horizontal axis), for k = 1, . . . ,1001, and regression lines
corresponding to the alternative estimators.
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FIGURE 4. S&P 500: Profiled estimator of θ as a function of ν.

very volatile due to the appearance of occasional small and negative values at the
long lags; this affects the median and the regression estimators much less.

We next show a scatter plot of the empirical autocorrelations along with the
fitted regression line, see Figure 3. We show the first 1,001 values, where the
estimator is determined from the first p = 100 of them. The scatter plot shows
fairly good agreement with a linear fit. The lines corresponding to the mean or
median estimator of β are very close to the regression line. We have β̂ = 1.002,
β̂ols = 0.986, and β̂rob = 0.976, all of which are quite close although the straight
average of the ratio violates the stationarity constraint, which could pose problems
if it were plugged into a numerical optimization algorithm.

Based on the least squares estimator for β, the remaining parameters are es-
timated using the order p = q = 100 as follows: ω̂ = −0.1437, θ̂ = −0.0760,
and α̂ = 0.1955 for a given tail thickness estimator ν̂ = 1.58 which minimizes
|Mn(ν)|. These estimates are quite close to the MLE. We computed the profiled
estimators as functions of ν: ω and θ are relatively stable w.r.t. ν, while α is
strongly varying, changing sign at about ν ≈ 1.8. We show in Figure 4 below the
profiled estimator of θ .

9. CONCLUSIONS

We have shown that a simple closed form estimator of the EGARCH model is
consistent, asymptotically normally distributed, and has reasonable finite sample
properties. We recommend this estimator in large samples, or as starting values for
estimators requiring numerical optimization. In applications involving a rolling
window scheme and/or Monte Carlo experiments where one may have to compute
parameter estimates many times, this method yields a substantial computational
saving over the MLE.
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NOTES

1. We have for any x > 0 that

�(x)=
∞∑

i=0

1

(x + i)2
,

and this function is analytic over the positive real line.

2. This is because E
[

logξ2
t
]2r

<∞ holds for uniformly distributed random variables ξ . To see

this, consider the moment generating function (MGF) for log ξ2: E
[

exp
{
t · [ logξ2]}] = E

[
ξ2t ],

which is finite for all t >−1/2. Therefore the MGF of log ξ2 exists and all moments exist.
3. To be precise, it matches the mean of zt , the correlation of zt and ut−k , and the autocovariance

of zt (but not the variance), whereas the original variance targeting just profiles out one parameter and
links it to the unconditional variance. So it is not the same, but the idea is similar, and it simplifies the
calculation of the likelihood.
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APPENDIX

Proof of Proposition 1. Recall that zt = ω+ βzt−1 + g(ξt−1)+ logξ2
t − β logξ2

t−1.

Let gt = g(ξt ) and vt = logξ2
t − E logξ2

t . Then we can write zt = ω∗ +βzt−1 + gt−1 +
vt − βvt−1. Consider the moving average part mt = gt−1 + vt − βvt−1. We can write
gt = δvt +εt , where εt = gt − δvt is iid and uncorrelated with vt , where: δ = γvg/σ

2
v and

var(εt ) = σ 2
g −γ 2

vg/σ
2
v = σ 2

g − δ2σ 2
v . Then mt = εt−1 + vt + (δ−β)vt−1 = εt−1 + vt +

φvt−1, where cov(εt ,vt )= 0. We have var(mt )= σ 2
ε +σ 2

v

(
1+φ2) and

cov(mt ,mt−k)=
{
φσ 2
v if k = 1

0 if k > 1.

Therefore

ρm (1)= corr(mt ,mt−1)= φσ 2
v

σ 2
ε +σ 2

v

(
1+φ2

) .
We compare with an MA(1) process mt = et +πet−1, which has var(mt ) = σ 2

e
(
1+π2)

and cov(mt ,mt−k) = πσ 2
e . Equating parameters σ 2

ε + σ 2
v

(
1 + φ2) = σ 2

e
(
1 + π2) and

πσ 2
e = φσ 2

v , we obtain

π

1+π2
= φσ 2

v

σ 2
ε +σ 2

v

(
1+φ2

) = d ∈ [−1/2,1/2],

from which (4) is shown. �

This representation shows that the second order properties of zt identify three param-
eters: β,π, and σ 2

e , the mean identifies ω∗. Note that the process zt is a (vector) linear
process with
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zt = ω∗∗ +
∞∑

j=0

a
ᵀ
j

[
gt
vt

]

for some sequence of vectors aj .

Proof of Theorem 1. Note that

β̂ = Q
(
ρ̂z(1), . . . , ρ̂z(p +1)

)
,

where Q is differentiable at the point (ρz(1), . . . ,ρz(p + 1)) assuming that
min1≤k≤p+1 |ρz(k)|> 0 (which is implied by β �= 0). We have by the CLT for stationary
mixing process (Doukhan, 1994, p. 46)) that

√
n
(̂
ρz(1)−ρz(1), . . . , ρ̂z(p+1)−ρz(p+1)

)
is jointly asymptotically normal. We can then apply the delta method to obtain the limiting
distribution for

√
n(β̂−β). Since we have to give the same argument for the other param-

eter estimates, and in that case we will use the autocovariance function, which will require
stronger moment conditions, we will conclude here. Note that the moment conditions for
the autocorrelation function based estimators are weaker than for those based on the auto-
covariance. However, the estimator α̂( f ) depends also on the sample variance of zt , and so
the asymptotics for the full vector requires a theory for the sample autocovariance function
to which we now turn.

Define the vector of sample mean and autocovariances Un = n−1∑n
t=1χt and the cor-

responding population quantity U = Eχt . From the stationarity and ergodicity, we can
apply Theorem 13.12 of Davidson (1994) to obtain Un → U in probability. Furthermore,
under Assumption 1i, for the symmetric positive definite matrix �, (using the CLT for
geometrically mixing processes (Doukhan, 1994, p. 46), we have

√
n
[
Un −U

] =⇒ N(0,�). (A.1)

We can write η̂( f ) = F(Un ; f ) for some function F of the vector Un and the error
density f, and η( f )= F(U ; f ). For example,

ω( f )= (μ−C1( f ))

⎛⎝ p∑
k=1

γz(k +1)

γz(k)
wk

⎞⎠ .
The function F is twice continuously differentiable in first argument at the point U . By
the continuous mapping theorem, F(Un ; f ) = η̂( f ) −→ η( f ) = F(U ; f ) in probability.
Furthermore, by (A.1) and the delta method

√
n
(̂
η( f )−η( f )

)= ∂F

∂Uᵀ (U ; f )
√

n(Un −U)+op (1), (A.2)

where the error term in (A.2) can be denoted Rn( f ). We give some more detail on this
expansion. We have

ω̂( f )−ω( f )= (1−β) 1

n

n∑
t=1

(a1t − Ea1t )− (μ−C1( f ))
(
β̂−β

)
+op

(
n−1/2

)

β̂−β = π
ᵀ
0 (w)

1

n

n∑
t=1

(bt − Ebt )+op

(
n−1/2

)
,
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θ̂ ( f )−θ( f )= 1

C4( f )

1

n

n∑
t=1

π1

(
w′,β

)ᵀ
(ct − Ect )

+ 1

C4( f )
i
ᵀ
π2

(
w′,β

)(
β̂−β

)
+op

(
n−1/2

)
,

α̂( f )−α( f )= 1

C5( f )

1

n

n∑
t=1

π1

(
w′′,β

)ᵀ
(bt − Ebt )−

π2

(
w′′,β

)ᵀ
γz

C5( f )

(
β̂−β

)
(A.3)

−γz(0)−C2( f )

C5( f )

(
β̂−β

)
− β

C5( f )

1

n

n∑
t=1

(a2t − Ea2t )+op

(
n−1/2

)
.

We can collect this as

√
n
(̂
η( f )−η( f )

)
= A( f )

1

n

n∑
t=1

(χt − Eχt )+op (1), (A.4)

and the limiting distribution follows as above. �

Proof of Theorem 2. We first establish the properties of ν̂m . We can write Mn(ν) =
H(Un ; ν) with H a twice continuously differentiable function in both its arguments. It
follows that

sup
ν∈V

|Mn(ν)− M(ν)| = op(1). (A.5)

By the identifiable uniqueness assumption, if
∣∣̂νm −νo

∣∣> δ, then
∣∣M (̂νm

)∣∣≥ ε(δ). Conse-
quently

Pr
(∣∣̂νm −νo

∣∣> δ)≤ Pr
(∣∣M (̂νm

)∣∣≥ ε(δ)
)
,

and it is sufficient to prove that for any ε(δ) > 0, the latter probability goes to zero. But

∣∣M (̂νm
)∣∣≤ ∣∣M (̂νm

)− Mn
(̂
νm
)∣∣+ ∣∣Mn

(̂
νm
)∣∣, (triangle inequality)

≤ sup
ν∈V

|M(ν)− Mn (ν)|+
∣∣Mn

(̂
νm
)∣∣, (set inclusion)

≤ op(1)+
∣∣Mn

(̂
νm
)∣∣, (from the ULLN)

≤ op(1)+
∣∣Mn

(
νo
)|, (from the definition of the estimator and set inclusion)

≤ op(1), (from the ULLN).

It follows that ν̂m is (weakly) consistent.
By the triangle inequality,∣∣̂η(̂νm
)−η(νo)

∣∣≤ ∣∣̂η(̂νm
)−η(̂νm

)∣∣+ ∣∣η(̂νm
)−η(νo)

∣∣,
where

Pr
[∣∣̂η(̂νm

)−η(̂νm
)∣∣> ε]≤ Pr

[
sup
ν∈V

∣∣̂η(ν)−η(ν)∣∣ > ε]→ 0,
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where convergence to zero follows because of the uniformity in ν of the expansion
(A.4), which itself follows by the smoothness of the mapping ν 
→ F(U ; fν). Further-
more, η

(̂
νm
)− η(νo) = op(1) by the smoothness of the mapping ν 
→ η(ν). Therefore,

φ̂m = (̂νm , η̂
(̂
νm
))

is consistent. Then, by the Mean Value Theorem we have

0 = Mn(νo)+ ∂

∂ν
Mn
(
ν∗m
)(̂
νm −νo

)
,

where ν∗m lies between ν̂m and νo. It follows that

√
n
(̂
νm −νo

)= [M ′(ν∗m )
]−1 √

nMn(νo)=
[
M ′(νo)

]−1 √
nMn(νo)+op (1),

where
√

nMn (νo) is asymptotically normal applying the same CLT used in Theorem 1.
Specifically,

Mn (νo)=
(
1−β2

o
)(
γ̂ z(0)−γz (0)

)−2βo

(
β̂−βo

)
(γz(0)−C2(νo))

−2θ(νo)
(̂
θ(νo)−θ(νo)

)
−2α(νo)

(̂
α(νo)−α(νo)

)
C3(νo)+op

(
n−1/2

)
=
(

1−β2
o

) 1

n

n∑
t=1

a2t −2βo(γz(0)−C2(νo)),π0(w)
ᵀ 1

n

n∑
t=1

bt

−2θ(νo)
i
ᵀ
π2
(
w′,βo

)
C4(ν)

π0(w)
ᵀ 1

n

n∑
t=1

bt

−2θ(νo)
1

C4(ν)
π1
(
w′,β

)ᵀ 1

n

n∑
t=1

ct +2α(νo)C3(νo)
β

C5(ν)

1

n

n∑
t=1

a2t

−2α(νo)C3(νo)
1

C5(ν)
π1(w,βo)

ᵀ 1

n

n∑
t=1

bt

−
(
π2
(
w′′,βo

)ᵀ
γz

C5(ν)
+ γz(0)−C2(ν)

C5(ν)

)
π0(w)

ᵀ 1

n

n∑
t=1

bt +op

(
n−1/2

)

= B(νo)
ᵀ 1

n

n∑
t=1

χt +op

(
n−1/2

)
. (A.6)

Note that

M ′(ν)= −2θ(ν)θ ′(ν)−2α(ν)α′(ν)C3(ν)−α(ν)2C ′
3(ν)−

(
1−β2

o

)
C ′

2(ν)

= 2
C ′

4(ν)

C4(ν)
θ(ν)2 −2βα(ν)

C ′
2(ν)C3(ν)

C5(ν)
+α(ν)2

[
2C ′

5(ν)C3(ν)−C5(ν)C
′
3(ν)

C5(ν)

]
−
(

1−β2
o

)
C ′

2(ν)

= 2
C ′

4(νo)

C4(νo)
θ2

o −2βoαo
C ′

2(νo)C3(νo)

C5(νo)
+α2

o

[
2C ′

5(νo)C3(νo)−C5(νo)C ′
3(νo)

C5(νo)

]
−
(

1−β2
o

)
C ′

2(νo) [at ν = νo],
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where:

θ ′(ν)= −C ′
4(ν)

C2
4 (ν)

p∑
k=1

γzu(k)

βk−1
w′

k = −C ′
4(ν)

C4(ν)
θ(ν)

α′(ν)= −C ′
5(ν)

C2
5 (ν)

⎧⎨⎩
p∑

k=1

γz(k)

βk−1
w′′

k −β (γz(0)−C2(ν))

⎫⎬⎭+ βC ′
2(ν)

C5(ν)

= βC ′
2(ν)−C ′

5(ν)α(ν)

C5(ν)
.

Then we have

√
n
(̂
η
(̂
νm
)−η(νo)

)= √
n
(̂
η(νo)−η(νo)

)+ ∂η̂

∂ν

(
ν∗m
)√

n
(̂
νm −νo

)
= √

n
(̂
η(νo)−η(νo)

)+ ∂η

∂ν
(νo)

√
n
(̂
νm −νo

)+op (1)

= √
n
(̂
η(νo)−η(νo)

)+ ∂η

∂ν
(νo)

[
∂

∂ν
M(νo)

]−1 √
nMn(νo)+op (1)

=
[
A(ν)+ ∂η

∂ν
(νo)

[
∂

∂ν
M(νo)

]−1
B(νo)

ᵀ
]

1

n

n∑
t=1

χt +op(1),

and so the result follows from the joint asymptotic normality of
[√

n
(̂
η(νo) −

η(νo)
)
,
√

nMn(νo)
]
, which itself follows from the expansions (A.2) and (A.6). Note

that η′(ν) = (ω′(ν),0,θ ′(ν),α′(ν))�, where θ ′(ν),α′(ν) are given above and ω′(ν) =
−C ′

1(ν)(1−β). �

Proof of (16). We want to calculate

T = E logξ2,

where ξ is a unit variance symmetric GED with density function

fν(ξ)= ν exp
{−(1/2)|ξ/λ|ν}

λ21+1/ν�(1/ν)
,

where λ=
{

2−2/ν�(1/ν)/�(3/ν)
}1/2

. We have

T = 4ν

λ21+1/ν�(1/ν)

∫ ∞
0

log(x)exp
(−axν

)
dx

with a = (1/2)λ−ν .We change variable from x 
→ y = xν , which yields dy = νxν−1dx =
νy(ν−1)/νdx and log(x)= log

(
y1/ν)= (1/ν) log y. Therefore,

T = 4

λ(ν)ν21+1/ν�(1/ν)

∫ ∞
0

y−(ν−1)/ν log(y)exp (−ay)dy.

Equation 4.352:1 of Gradshteyn and Ryzhik (2007) says that for α >−1,β > 0,∫ ∞
0

xα log(x)exp (−βx)dx = 1

βα+1
�(α+1)

[
ψ(α+1)− lnβ

]
,

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000256
Downloaded from https://www.cambridge.org/core. Pendlebury Library of Music, on 21 Jan 2019 at 16:04:47, subject to the Cambridge Core

https://www.cambridge.org/core/terms
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where ψ(t)= d ln�(t)/dt . Therefore,

T = 2

ν

[
ψ(1/ν)+ ln2+ν ln(λ)

]= 2

ν
ψ(1/ν)+ ln�(1/ν)− ln�(3/ν)

lnλ= 1

2

[−2

ν
ln2+ ln�(1/ν)− ln�(3/ν)

]
.

�

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466616000256
Downloaded from https://www.cambridge.org/core. Pendlebury Library of Music, on 21 Jan 2019 at 16:04:47, subject to the Cambridge Core
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