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are established via the characteristic function approach, and hence allow for discrete or continuous εt
and the observed price increments do not need to have any finite moments. Constructive identification
(and overidentification) results are established first in the basic Roll (1984) model, and then in various
extended Roll models, including general unbalanced order flow, serially dependent latent trade direction
indicators, adverse selection, random spread and a multivariate Roll model.
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1. Introduction

The (quoted) bid–ask spread of a financial asset is the difference
between the best quoted prices for an immediate purchase and
an immediate sale of that asset. The spread represents a potential
profit for themarketmaker handling the transaction, and is amajor
part of the transaction cost facing investors, especially since the
elimination of commissions and the reduction in exchange fees
that has happened in the last twenty years; see for example Jones
(2002) and Angel et al. (2011). Measuring the bid–ask spread in
practice can be quite time consuming (since it requires reconstruc-
tion of the limit order book) and may be subject to a number of
potential accuracy issues due to the quoting strategies of High
Frequency Traders, for example.

The seminal paper Roll (1984) provides a simple market
microstructure model that allows one to estimate the bid–ask
spread from observed transaction prices alone, without informa-
tion on the underlying bid–ask price quotes and the order flow
(i.e., whether a trade was buyer- or seller-induced). This is partic-
ularly useful for long historical data sets, which are often limited
in their scope. For instance, Hasbrouck (2009) notes that ‘‘inves-
tigations into the role of liquidity and transaction costs in asset
pricing must generally confront the fact that while many asset
pricing tests make use of US equity returns from 1926 onward,
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the high-frequency data used to estimate trading costs are usually
not available prior to 1983. Accordingly, most studies either limit
the sample to the post-1983 period of common coverage or use
the longer historical sample with liquidity proxies estimated from
daily data’’. Another area where the available data is limited is
open-outcrymarkets (like the CME), inwhich bid and ask quotes by
traders expire (if not filled)without recording (see, e.g., Hasbrouck
(2004) for more details).

In the famous Roll (1984) model, an observed (log) asset price
pt evolves according to

pt = p∗

t + It
s0
2
, p∗

t = p∗

t−1 + εt . (1)

∆pt := pt − pt−1 = εt + (It − It−1)
s0
2
, (2)

where p∗
t is the underlying fundamental (log) price with innova-

tions εt , and the trade direction indicators {It} are i.i.d. and take
the values ±1 with probability q0 := Pr(It = 1) = 1/2. It = 1
indicates that the transaction is a purchase, and It = −1 denotes a
sale. The price pt is observed, whereas all other variables in Eq. (1)
are unobserved. The parameter of interest is the effective bid–ask
spread s0.1 Roll (1984) assumes that {εt} is serially uncorrelated
and uncorrelated with the trade direction indicators {It}, and that

1 The bid–ask spread in Eq. (1) is called effective bid–ask spread because it
is based on the effective (average) price pt that is paid to fill an order, and not
necessarily on the quoted bid or ask price, since it might be the case that the order
cannot be filled at the latter price (e.g., due to insufficient depth of the market).
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the one period returns (i.e., the price increments) {∆pt} have finite
second moments. Under these assumptions, s0 is identified in a
closed form as

s0 = 2
√

− Cov (∆pt ,∆pt−1). (3)

Roll (1984) proposes to estimate s0 from (3) by replacing the
theoretical covariance by its empirical counterpart, i.e.,

ŝRoll := 2
√

− Ĉov (∆pt ,∆pt−1). (4)

In practice, this estimator is not satisfactory, since the empirical
first-order autocovariance of price changes is often positive, in
which case (4) is not well-defined. Another problem is that the
nonparametric distribution of the latent true one period returns
(i.e., the latent fundamental price increment), ∆p∗

t = εt , is not
identifiable in the original Roll model.

In a well-known alternative, Hasbrouck (2004) proposes to
strengthen Roll’s modelling assumptions by assuming that {εt} is
i.i.d. with a known parametric distribution, and is independent of
{It}.2 He then uses a Bayesian Gibbs samplingmethodology to esti-
mate the spread parameter subject to a non-negativity constraint.
Specifically, Hasbrouck (2004) assumes that εt ∼ i.i.d.N(0, σ 2

ε ),
where the parameter σε is estimated jointly with the spread s0.
Unfortunately the spread estimator of Hasbrouck (2004) performs
poorly or is not well defined when εt is discrete or continuous
but fat-tailed and/or asymmetric. Basically the spread estimator
of Hasbrouck (2004) is very sensitive to departures from the
assumption that εt ∼ i.i.d.N(0, σ 2

ε ). Moreover, it is difficult to
justify a specific parametric distribution such as Gaussian for the
latent εt .

The more recent empirical finance literature emphasizes sev-
eral additional issues with the Roll model: (a) It assumes balanced
market order flow, i.e., q0 = 1/2, which may be accurate on
average, but may be inaccurate for certain episodes of trading.
(b) It assumes no serial correlation in trade direction indicators,
i.e., It is uncorrelated with It−j for any j ≥ 1. (c) Market orders
are assumed not to bring any news into the fundamental prices
(i.e., no adverse selection), so that It is uncorrelated with ∆p∗

t+j
for j ≥ 0. (d) Spreads are constant within the sample period.
Admitting any one of these effects in the model will lead to the
undesired consequence that the spread estimators of Roll (1984)
and Hasbrouck (2004) become inconsistent (i.e., biased even as
sample size goes to infinity). Furthermore, without additional
model assumptions, or additional observed information (such as
trade volume data in addition to {pt}), it may not be possible to
identify the spread jointly with parameters describing order flow
imbalance or adverse selection, for example. See, e.g., Bleaney and
Li (2015) for a very recent discussion of all the above and additional
problems with the original Roll model.

In this paper we propose new methods for identifying the bid–
ask spread s0 and the unknown distribution of {εt} jointly from the
observed time series transaction prices alone. The observed prices
{pt} could be daily or weekly closing prices, or high-frequency
intra-day prices. Our methods are based on the characteristic
function approach, and hence do not require the existence of any
finite moments of {∆pt}, and allow the latent {εt} to be discrete
or continuous, symmetric or asymmetric. Under the assumption of
strict stationarity of the latent process {εt , It}∞t=1, our identification
results do not require the full independence between {εt} and {It},
and mainly impose some restrictions on the dependence structure
of εt , εt−1, It , It−1 and It−2. Constructive identification results for
s0 and the characteristic function (ϕε) of εt or/and parameters in

2 Hasbrouck (2004) presents an extension that relaxes the independence be-
tween {εt } and {It } assumption but uses additional trade volume data.

various extended Roll models are established based on the joint
characteristic function of consecutive one period returns

ϕ∆p,2(u, u′) := E
[
exp

(
iu∆pt + iu′∆pt−1

)]
for any (u, u′) ∈ R2, (5)

which is nonparametrically identified from the observed price
increment time series {∆pt}.

We first provide a closed-form solution of (s0, ϕε) in the ba-
sic Roll (1984)model under amild sub-independence assumption,
which is only slightly stronger than the uncorrelatedness condition
in Roll (1984) but is much weaker than the full independence
between {εt} and {It} assumption in Hasbrouck (2004). In addition,
we do not impose finite second moment of ∆pt as in Roll (1984)
and Gaussian error of εt as in Hasbrouck (2004). We then propose
solutions to the four problems (a)–(d) with the Roll model listed
above. We show how to identify (s0, ϕε) and other parameters
associated with unbalanced order flow and/or general asymmetric
supported {It}, or those for serially correlated {It}, or those cap-
turing adverse selection effects, or the random spread. We also
extend the basic Roll model to the multivariate case and derive
the identification results. Again, all these are accomplishedwithout
requiring additional data.

In principle, both the basic Roll (1984) model and the various
extended Roll models could fit into the vast measurement error
literature (see, e.g., Li and Vuong, 1998; Carroll et al., 2006; Hu,
2008; Hu and Schennach, 2008; Chen et al., 2011; Evdokimov and
White, 2012; Bonhomme et al., 2016; Hu, forthcoming, and the
references therein). However, to the best of our knowledge, our
identification results are not direct consequences of any existing
published results. This is because the Roll model and its various
extensions contain some special structures, and our identification
results utilize these special features and are constructive under
conditions reasonable for financial applications.

Our constructive identification results for (s0, ϕε) or/and pa-
rameters in extended Roll models are derived under conditions
much weaker than those in the existing literature and more real-
istic for financial applications when {pt} is the only information
available. All our identification results are essentially based on
solving the unknown model parameters by matching the non-
parametrically identified characteristic function ϕ∆p,2(u, u′) to its
model-implied semiparametric counterpart. This approach actu-
ally leads to Hansen (1982) style overidentification.3 Therefore,
one could easily compute consistent estimators of s0, the distribu-
tion of εt or/and other model parameters via minimum distance
procedures based on empirical characteristic functions. And the
overidentification restrictions allow for model specification tests.
As a natural follow-up to this identification paper, Chen et al.
(2017) studies in detail the estimation and testing aspects of these
models and presents an interesting empirical application. In par-
ticular, based on our constructive identification results, Chen et al.
(2017) provides simple sample analog estimation of the spread s0,
the characteristic function of εt or/and other parameters in vari-
ous extended Roll models (such as order flow imbalance, adverse
selections). In the simulation studies, their sample analog spread
estimator does not suffer the pitfalls of the spread estimators
of Roll (1984) and Hasbrouck (2004).

The rest of the paper is organized as follows: Section 2 presents
the basic Roll model and identification of both the spread s0 and
the characteristic function of εt in closed form, allowing for {∆pt}
to have infinite first absolute moments. Section 3 considers exten-
sions to models that allow for unbalanced order flow and more
general asymmetric supported {It}. Section 4 studies identification

3 See Chen and Santos (2015) for a notion of overidentification in semiparametric
and nonparametric models.
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in models with serially dependent {It}. Section 5 addresses the
effects of amarket order on the latent fundamental price. Section 6
considers identification in models with possibly random spread.
Section 7 extends the basic Roll model to a multivariate case.
Section 8 concludes. The Appendix contains proofs that are not
presented in the main text.

2. Identification in basic roll models

This section presents identification (and overidentification) re-
sults in a basic Roll (1984) type model satisfying the following
Assumption.

Assumption 1 (Basic Roll). (i) Data {pt}Tt=1 is generated from Eq. (1)
with s0 > 0, where {εt , It}∞t=1 is a strictly stationary process;
(ii) {It} has marginal distribution that takes the values ±1 with
equal probability.

Throughout the paper we do not impose any restriction on the
distribution of εt . It could be discrete and could have no finite mo-
ments, and its characteristic function (c.f.), ϕε(u) := E [exp (iuεt)],
could have many zeros.

2.1. Diagonal identification

We first introduce the notion of sub-independence, which is
weaker than independence.

Definition 1 (Sub-independence). Real-valued random variables X
and Y are sub-independent if for all t ∈ R

E[exp(it(X + Y ))] = E[exp(itX)]E[exp(itY )], where i =
√

−1.

Sub-independence amounts to a restriction only on the di-
agonal of the joint characteristic function. It is a stronger
restriction than uncorrelatedness, but strictly weaker than
independence.4 See Ebrahimi et al. (2010) and Hamedani (2013)
and the references therein for detailed discussion of the notion of
sub-independence. Schennach (2013) argues that it is similar to a
conditional moment restriction. We make the following assump-
tion.

Assumption 2 (Sub-independence). (i) εt is sub-independent of
(It − It−1)

s0
2 ; It is sub-independent of −It−1; (ii) εt + εt−1 is sub-

independent of (It − It−2)
s0
2 ; It is sub-independent of −It−2; and εt

is sub-independent of εt−1.

This assumption is enough for identification for the basic Roll
model. But it might be simpler to replace the conditions that εt is
sub-independent of (It − It−1)

s0
2 and εt + εt−1 is sub-independent

of (It − It−2)
s0
2 by their stronger versions that εt is independent of

(It − It−1) and εt + εt−1 is independent of (It − It−2) respectively.
Letϕ∆p,1(u) := E [exp (iu∆pt)] be themarginal c.f. of one period

returns ∆pt , and ϕ∆2p(u) := E
[
exp

(
iu∆2pt

)]
be the marginal c.f.

of two period returns∆2pt := pt − pt−2. By definition, ϕ∆p,1(u) ≡

ϕ∆p,2(u, 0) and ϕ∆2p(u) ≡ ϕ∆p,2(u, u), and are nonparametrically
identified from data.

Let ϕI (u) := E [exp (iuIt)] be the c.f. of It . Under Assump-
tions 1(i) and 2(i), the c.f. of one period returns, ∆pt = εt + (It −

It−1)
s0
2 , satisfies

ϕ∆p,1(u) = ϕε(u)ϕI
(
u
s0
2

)
ϕI

(
−u

s0
2

)
for all u ∈ R. (6)

4 Recall that real-valued random variables X and Y are independent if
E[exp(i(tX + sY ))] = E[exp(itX)]E[exp(isY )] for all t, s ∈ R.

Under Assumptions 1(i) and 2(ii), the c.f. of two period returns,
∆2pt = εt + εt−1 + (It − It−2)

s0
2 , satisfies

ϕ∆2p(u) = [ϕε(u)]2ϕI
(
u
s0
2

)
ϕI

(
−u

s0
2

)
for all u ∈ R. (7)

Denote

V :=
{
u ∈ R : ϕ∆p,1(u) ̸= 0

}
. (8)

Since ϕ∆p,1(·) is uniformly continuous on R (see, e.g., page 3
of Lukacs (1972)) and ϕ∆p,1(0) = 1, the set V contains an open
interval of 0. This fact will be used repeatedly in the paper.

Eqs. (6) and (7) immediately imply that the c.f.ϕε(·) is identified.

Theorem 1. Let Assumptions 1(i) and 2 hold. Then the c.f. ϕε(·) is
identified as

ϕε(u) =
ϕ∆2p(u)
ϕ∆p,1(u)

, ∀u ∈ V. (9)

This theorem states that ϕε(·) is identified on V under verymild
conditions, regardless whether s0 and ϕI (·) are known or not.

We next consider identification of s0. Eqs. (6) and (7) and the
definition of V imply that: for all u ∈ V we have ϕε(u) ̸= 0,
ϕI
(
u s0

2

)
ϕI
(
−u s0

2

)
̸= 0 and ϕ∆2p(u) ̸= 0. Denote

h(u) :=
ϕ2
∆p,1(u)

ϕ∆2p(u)
for any u ∈ V , (10)

which is continuous on V with h(0) = 1, and nonparametrically
identified from the data {∆pt}. Moreover, Eqs. (6) and (7) imply
that

h(u) = ϕI

(
u
s0
2

)
ϕI

(
−u

s0
2

)
for all u ∈ V. (11)

Since It is a discrete random variable, the c.f. ϕI (·) is analytic in
u ∈ R. Eq. (11) implies that h(u) is analytic in V , and hence d2h(u)

du2
is

well-defined in u ∈ V and satisfies5

d2h(0)
du2 = −

s20
2
Var(It ). (12)

Eq. (12) would lead to the global identification of s0 > 0 as soon as
Var(It ) is known. This is similar to the closed form solution (3) for
s0 originally proposed in Roll (1984).

Under additional Assumption 1(ii) (i.e., balanced order flow),
we have ϕI (u) = cos(u) for all u ∈ R and Var(It ) = 1, and hence
Eq. (11) becomes

h(u) =

[
cos

(
u
s0
2

)]2
for all u ∈ V. (13)

This immediately identifies the unknown true spread s0 > 0, as
stated in the following theorem.

Theorem 2. Let Assumptions 1 and 2 hold. Then: for some
non-zero ũ ∈ V , the true spread s0 is locally identified as{⏐⏐ 2

ũ

[
arccos

(√
h(̃u)

)
± π j

]⏐⏐ , j = 0, 1, 2, . . .
}
.

(1) If it is known that s0 ∈ S := [0, s] for some finite s, then s0 is
globally identified in S as

s0 =
2
ũ
arccos

(√
h(̃u)

)
for some ũ ∈ (0, π/s) ∩ V.

(2) s0 is globally identified in R+ as s0 =

√
−2 d2h(0)

du2
.

5 By definition (10) of h(·) andwithout invoking Eq. (11), one sufficient condition
for a twice-differentiable h(·) is to assume that ϕ∆p,1(·) and ϕ∆2p(·) are twice
differentiable. However, the twice-differentiability of these characteristic functions
requires that E[|∆pt |2] < ∞ (see, e.g., Theorem1.2. of Lukacs (1972)), whichwould
exclude some distributions such as Cauchy.
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Theorem 2 provides two closed form identification results for
s0. One could estimate s0 by sample analog principle based on
either Theorem 2 part (1) or part (2). However, the sample analog
estimation of s0 based on Theorem 2 part (2) will not performwell
in practice since it involves nonparametric estimation of second
derivative of h(·). In financial applicationswe expect s0 to be a small
positive value. Therefore, the restriction s0 ∈ S is very natural and
the sample analog estimation of s0 based on Theorem 2 part (1)
is easy to compute as well. In the rest of the paper we maintain
the assumption s0 ∈ S and present identification results similar to
Theorem 2 part (1).

We next present an alternative identification result for (s0, ϕε)
under slightly different conditions, which are weaker in some
respects but stronger in other respects. Under Assumptions 1(i)(ii)
and 2(i), Eq. (6) becomes

ϕ∆p,1(u) = ϕε(u)
[
cos

(
u
s0
2

)]2
for all u ∈ R. (14)

This relation immediately leads to the following result.

Proposition 1. Let Assumptions 1 and 2(i) hold. Suppose that
|ϕε(u)| > 0 for all u ∈ R. Denote u0 := inf

{
u > 0 : ϕ∆p,1(u) = 0

}
.

Then:
(1) s0 can be identified as the unique element in S satisfying s0 =

π/u0.

(2) ϕε can be identified as ϕε(u) = ϕ∆p,1(u)
[
cos

(
πu
2u0

)]−2
on V .

Proposition 1 does not impose Assumption 2(ii) and hence
allows quite general forms of temporal dependence in {εt}. It does
not restrict the joint distribution of (εt , εt−1) at all. However, it
requires stronger restrictions on the c.f. ϕε(·) of the latent εt .
This condition would be satisfied by Normal or Cauchy errors, but
would not be satisfied by the uniform distribution, for example,
nor would it be satisfied by any discrete distribution. In high
frequency financial applications,∆p∗

t = εt often contains discrete
components. It is possible toweaken the condition that |ϕε(u)| > 0
for allu ∈ R to the requirement that this holds over a large compact
set, but then it would need some side information to resolve the
location of zeros of ϕε(·) from zeros implied by the parametric part
in Eq. (14).

2.2. Off-diagonal information

Theorem 2 part (1) already obtains overidentification of the
spread parameter s0 by considering a set of values of u ∈ (0, π/s]∩
V . We next show how to use additional restrictions from the joint
c.f. of consecutive one period returns ϕ∆p,2 (defined in (5)).

In the rest of the paper we make use of the following definition
repeatedly. Let

H(u, u′) :=
ϕ∆p,2(u, u′)

ϕ∆p,1(u)ϕ∆p,1(u′)
for any (u, u′) ∈ V2

, (15)

which is continuous on V2 with H(0, 0) = 1, and is nonparametri-
cally identified from the data {∆pt}.

Note that ϕ∆2p(u) ≡ ϕ∆p,2(u, u), the marginal c.f. of two period
returns is found on the diagonal of the joint c.f. ϕ∆p,2. We now seek
to exploit restrictions on the off-diagonal elements where u ̸= u′.
Let∆It := It − It−1.

Assumption 3. (i) (εt , εt−1) is independent of (∆It ,∆It−1); (ii) εt is
independent of εt−1; and (iii) It , It−1 and It−2 are independent.

Note that Assumption 3 is stronger than Assumption 2, but is
weaker than the full independence condition.

Under Assumptions 1 and 3, for all (u, u′) ∈ R2 we have:

ϕ∆p,2(u, u′)

= ϕε(u)ϕε(u′) cos
(
u
s0
2

)
cos

(
(u′

− u)
s0
2

)
cos

(
u′
s0
2

)
. (16)

Denote

U :=

{
(u, u′) ∈ V × V : min

s∈S

⏐⏐⏐cos(u s
2

)
cos

(
u′

s
2

)⏐⏐⏐ > 0
}
. (17)

Let

R(u, u′
; s) :=

cos
(
(u − u′) s

2

)
cos

(
u s

2

)
cos

(
u′ s

2

) , (18)

which is well defined on U × S. Eq. (16) implies that

H(u, u′) = R(u, u′
; s0) for all (u, u′) ∈ V2

, (19)

and hence H(u, u′) is analytic and real-valued for all (u, u′) ∈ V2.
Eq. (19) is free of the nuisance function ϕε(·) and only depends
on the parameter of interest s0, which is the key insight of our
alternative overidentification methods.

Due to the continuity of the c.f. ϕ∆p,2(u, u′) in R2 and
ϕ∆p,2(0, 0) = 1, the set V2 (and hence U) contains an open ball of
(0, 0), and hence Eq. (19) contains infinitely many overidentifying
restrictions for s0. Let U ⊆ U and |U| denote the number of points
in U , which can be chosen such that |U| ≥ 1.We introduce a simple
population minimum distance criterion function on S:6

Q (s,U) :=

∑
(u,u′)∈U

|H(u, u′) − R(u, u′
; s)|2 ≥ 0. (20)

Here, |·| denotes themodulus of a complex number i.e., |a + bi|2 =

a2 + b2. Since Eq. (19) holds for all (u, u′) ∈ V2 and U ⊆ U ⊆ V2,
Q (s,U) is minimized at s = s0, i.e., Q (s0,U) = 0.

Assumption 4. (i) s0 ∈ S; (ii) either (a) U = U; or (b) U ⊂ U , and
∃(ũ, ũ) ∈ U such that ũ ∈ (0, π/s).

We present an alternative identification for s0 below.

Theorem 3. Let Assumptions 1, 3 and 4 hold. Then: s0 is identified
as the unique solution tomins∈SQ (s,U), and satisfies the identifiable
uniqueness on S .7

The proof of Theorem 3 is relegated to the Appendix. As shown
in Theorem2part (1), for the identification of s0 it suffices to choose
a grid U satisfying Assumption 4(ii)(b) with |U| = 1. But a grid
U with larger |U| > 1 is better for more accurate estimation of
s0. Theorem 3 suggests a natural minimum distance estimation
procedure for s0.

3. Models with general unbalanced order flow

This section presents identification results for two extended
Roll models that relax Assumption 1(ii) (i.e., balanced order flow)
imposed in the basic Roll model.

We maintain Assumptions 1(i) and 3 in this section, which
implies that for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u′)ϕI
(
u
s0
2

)
ϕI

(
(u′

− u)
s0
2

)
ϕI

(
−u′

s0
2

)
.

(21)

6 If |U| = ∞, there is a slight abuse of notations in definition (20). Summations
should be replaced by integrals with respect to some (positive) sigma-finite mea-
sure on U .
7 That is, for all sequences {ak} ⊂ S with Q (ak,U) going to 0, we have |ak − s0|

goes to zero.
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Thus Theorem 1 remains valid, and the c.f. ϕε(·) is still identified as
(9) on V .

Eq. (21) also implies the following identification relation for
(s0, ϕI (·)):

H(u, u′) =
ϕI
(
(u′

− u) s02
)

ϕI
(
−u s0

2

)
ϕI
(
u′ s0

2

) for all (u, u′) ∈ V2
. (22)

Since It is a discrete random variable, ϕI (·) is analytic, and hence
H(u, u′) is analytic in (u, u′) ∈ V2.

Note that Eq. (12) remains valid without imposing Assump-
tion 1(ii), and would lead to global identification of s0 as soon as
Var(It ) is identified. However, we need the off-diagonal informa-
tion contained in Eq. (22) for the identification of the parameters of
the probability distribution of It in general unbalanced order flow
situations.

3.1. Unbalanced order flow

Assumption 5. {It} takes values ±1 with unknown probability
q0 := Pr(It = 1) ∈ (0, 1).

This relaxation of Assumption 1(ii) allows for unbalanced order
flow (i.e., q0 ̸= 1/2). Assumption 5 implies that the c.f. ϕI (·) of It
takes the form

ϕI (u) = cos (u)+ (2q0 − 1) × i sin (u) for all u ∈ R , (23)

and Var(It ) = 1 − (2q0 − 1)2.
Eqs. (21) (or (22)) and (23) imply the following identification

relation for (s0, q0):

H(u, u′) = R(u, u′
; s0, q0) for all (u, u′) ∈ V2

, (24)

where R(u, u′
; s, q) (given in (53) in the Appendix) is a parametric

function defined on U × S × (0, 1). When q0 = 1/2 we have
R(u, u′

; s, 1/2) = R(u, u′
; s) defined in (18), and Eq. (24) becomes

the identification relation (19) for s0 in Section 2.

Assumption 6. (i) s0 ∈ S; (ii) either (a) U = U; or (b) U ⊂ U , and
∃(ũ, ũ), (ũ,−ũ) ∈ U such that ũ ∈ (0, π/s).

Theorem 4. Let Assumptions 1(i), 3 and 5 hold. Then:
(1) q0 is identified by Eqs. (55) and (56) (in the Appendix) with

a small positive ũ ∈ V and s0 > 0 is identified via Eq. (12). If
s0 ∈ S then s0 is also identified by Eq. (54) (in the Appendix) with
a ũ ∈ (0, π/s) ∩ V .

(2) Further, suppose that Assumption 6 holds. Then: (s0, q0) is
identified as the unique solution to the minimum distance criterion
function based on Eq. (24) evaluated on U .

See the Appendix for details of the proof of Theorem 4. In
Theorem 4 part (2), the minimum distance criterion function can
be constructed similar to Eq. (20).

3.2. Model when {It} has general discrete support

We now relax Assumption 5 to allow for more general support
of the latent {It}.

Assumption 7. {It} may take values in {−k1, . . . , 0, . . . ,+k2}, and
Pr(It = −k1) > 0, Pr(It = +k2) > 0.

Here, k1 and k2 are positive integers, measuring the strength
of the order flow. Assumption 7 allows for Pr(It = 0) = 0 or
Pr(It = 0) > 0. It also allows for asymmetric support in the sense
that k1 ̸= k2.

Let π0 = [π⃗0l] denote the unknown true marginal probability
distribution of {It}, where π0l := Pr(It = l) ≥ 0, for l =

−k1, . . . , 0, . . . ,+k2 and
∑

lπ0l = 1. Let ϕπ0 (u) := Eπ0 [exp (iuIt)]
denote the true c.f. of It corresponding to probability π0, that is
ϕπ0 (·) ≡ ϕI (·), which is analytic and is uniquely determined by the
unknown π0. Denote

R(u, u′
; s, π ) :=

ϕπ
(
(u′

− u) s
2

)
ϕπ
(
−u s

2

)
ϕπ
(
u′ s

2

) for any s ∈ S and π ∈ Π,

where Π := {π = [π⃗l], a probability mass function of It
satisfying Assumption 7}, and ϕπ (u) := Eπ [exp (iuIt)] is the c.f. of
π ∈ Π .

Eq. (21) (or (22)) and Assumption 7 imply the following rela-
tion:

H(u, u′) = R(u, u′
; s0, π0) for all (u, u′) ∈ V2

. (25)

We prove in the Appendix that Eq. (25) identifies both s0 and π0.

Theorem 5. Let Assumptions 1(i), 3 and 7 hold. Then: s0 ∈ S and
π0 ∈ Π are identified.

Recently Zhang andHodges (2012) consider amodel where our
Assumption 7 is replaced by {It} having support in {−λ,−1, 1, λ}.
They do not study the identification issue but directly apply
Bayesian Gibbs method to estimation under the additional as-
sumption of εt ∼ i.i.d.N(0, σ 2

ε ).

Remark 1. Theorem 5 is more general than Theorem 4, which in
turn includes Theorem 3 as a special case. Theorem 5 suggests a
natural minimum distance estimation procedure for s0 and π0. Let
Ĥ(u, u′) denote a nonparametric consistent estimator of H(u, u′)
defined in (15), which could be based on the empirical joint char-
acteristic function ϕ̂∆p,2(u, u′) of ϕ∆p,2(u, u′) defined in (5). Then
one could estimate (s0, π0) by (̂s, π̂ ), where

(̂s, π̂ ) = arg inf
s∈S,π∈Π

∑
(u,u′)∈V2

|Ĥ(u, u′) − R(u, u′
; s, π )|

2
.

One could then use the Wald statistic based on π̂ to test whether
Assumption 1(ii) (balanced order flow) holds or not. See Chen et
al. (2017) for details.

4. Models with serially dependent {It }

This section presents identification results for extended Roll
models that relax both Assumptions 1(ii) and 3(iii) imposed in
Section 2. Precisely we assume

Assumption 8. {It}∞t=1 is an irreducible and aperiodic first-order
Markov chain with an unknown true transition probability matrix
Q0 := [q0j,m] where

q0j,m := Pr(It = m|It−1 = j) for j,m = −k, . . ., 0, . . .,+k, and∑
m

q0j,m = 1. (26)

Therefore It is no longer sub-independent of−It−1 and Assump-
tion 2 is no longer satisfied, and hence Theorem 1 is no longer
applicable. Nevertheless, we shall establish the joint identification
of ϕε(·) and s0 under Assumptions 1(i) and 3(i)(ii) and 8.

Let π0 = [π⃗0l] denote the unknown true marginal proba-
bility distribution of {It}, where π0l := Pr(It = l) for l =

−k, . . . , 0, . . . ,+k and
∑

lπ0l = 1. Let P0 denote the unknown
true joint probability distribution of (It , It−1). Under Assumption 8,
{It}∞t=1 is an ergodic finite-stateMarkov chain, thereforeπ0l > 0 for
l = −k, . . . , 0, . . . ,+k andQ0 uniquely determinesπ0 and P0 (see,
e.g., Definition 4.2.7 and Theorem 4.3.1 of Gallager (2014)).
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Under Assumptions 1(i) and 3(i)(ii), we have: for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u′)E
(
exp

[
iu

s0
2
(It − It−1)

]
× exp

[
iu′

s0
2
(It−1 − It−2)

])
. (27)

This and Assumption 8 together yield the following identification
relation

H(u, u′) = R(u, u′
; s0, P0) for all (u, u′) ∈ V2

, (28)

where

R(u, u′
; s0, P0)

:=
E
(
exp

[
iu s0

2 (It − It−1)
]
exp

[
iu′ s0

2 (It−1 − It−2)
])

E
(
exp

[
iu s0

2 (It − It−1)
])

E
(
exp

[
iu′ s0

2 (It−1 − It−2)
]) .

Under Assumption 8, the support of (It − It−1) is {−2k, . . . ,
0, . . . ,+2k}, and the joint support of (It−1 − It−2, It − It−1) is given
in expression in Box II in the Appendix. Let Q0

∆I denote the joint
probability mass matrix of (It−1 − It−2, It − It−1), which is a (4k +

1)× (4k+1) matrix. Let BQ0 be a (2k+1)× (4k+1) matrix whose
entries are either zero or simple functions of Q 0

j,◦ = [q0j,−k, . . . , q
0
j,k]

(the jth row vector of Q0) for j = −k, . . . , 0, . . . ,+k. Let AQ0,π0
denote a (4k + 1) × (2k + 1) matrix whose entries are either
zeros or simple products π0lq0i,j for l, i, j = −k, . . . , 0, . . . ,+k. See
the Appendix for the precise expressions of AQ0,π0 and BQ0 . The
following equation shows the relation between Q0

∆I and Q0, π0 :

Q0
∆I = AQ0,π0 × BQ0 . (29)

Therefore the rank of Q0
∆I is at most 2k + 1.

Let Pall be the set of possible joint probability measures P of
(It , It−1) satisfying Assumption 8. Let AQ,π (defined in the Ap-
pendix) be a (4k + 1) × (2k + 1) matrix associated with a P ∈ Pall.
Define

P :=

{
P ∈ Pall : AQ,π has full column rank 2k + 1;

q−k,−k >
1
2
, qk,k >

1
2

}
. (30)

Assumption 9. (i) s0 ∈ S; (ii) P0 ∈ P .

Given the expression for AQ0,π0 in the Appendix, it being of
full column rank is easily satisfied. For example, if q0k,j > 0, for
j = −k, . . . , k, or q0

−k,j > 0, for j = −k, . . . , k, then AQ0,π0 is of full
column rank. Also, when k = 1, the assumption that q0

−k,−k >
1
2

and q0k,k >
1
2 could be interpreted as a model of (time-varying)

autocorrelation in the trade indicators: after a buy, the most likely
thing is another buy, and analogously for a sell.

Let ϕ∆I (·, ·) denote the true unknown joint c.f. of (It−1 − It−2,
It − It−1). We note that the identification ofQ0

∆I is equivalent to the
identification of ϕ∆I (·, ·). We establish the following identification
results in the Appendix.

Theorem 6. Let Assumptions 1(i), 3(i)(ii), 8 and 9 hold. Then:
(1) (s0, ϕ∆I (·, ·)) are identified; and ϕε is identified as ϕε(u) =

ϕ∆p,1(u)[ϕ∆I
( s0

2 u, 0
)
]
−1 on V .

(2) If, in addition, q0k,−j > 0 for j = 1, . . . , k and q0
−k,j > 0 for

j = 0, 1, . . . , k, then the joint distribution P0 of (It−1, It ) is identified.

Theorem 6 Part (1) establishes the identification of Q0
∆I . Then

BQ0 or equivalently the joint distribution P0 of (It−1, It ) can be
recovered from the relation Q0

∆I = AQ0,π0 × BQ0 under some con-
ditions on AQ0,π0 . Theorem 6 part (2) provides one such sufficient
condition. Note that under Assumption 8, q0k,−j > 0 for j = 1, . . . , k
and q0

−k,j > 0 for j = 0, 1, . . . , k imply that AQ0,π0 has full column

rank. Also, when k = 1, the assumption that q01,−1 > 0, q0
−1,0 > 0

and q0
−1,1 > 0 is natural.

This problem is related to but cannot be directly implied by the
existing identification results for a hiddenMarkovmodelwith time
series data alone. Recently Gassiat and Rousseau (2016) considers
identification in a hidden Markov time series model under the
assumption that the transition probability matrix is of full rank
(see their Theorem 1). From Eq. (29) we note thatQ0

∆I in ourmodel
fails to satisfy their full rank condition. Since we only have a single
time series observation {pt}, our identification results cannot be
derived from the existing results (e.g., Hu and Shum (2012) and
Hu (forthcoming) and the references therein) on hidden Markov
panel data models with a large independent cross-section but a
fixed finite time period, either.

5. Adverse selection

We have assumed that the price dynamics follow Eq. (1) (As-
sumption 1(i)) in all the extensions in Sections 3 and 4. We now
relax this condition to allow for adverse selection problems.

We relax Eq. (1) and suppose that

pt = p∗

t + It
s0
2
, p∗

t = p∗

t−1 + δIt + εt . (31)

This equation arises from considering the presence of an adverse
selection component in the spread, see Eq. (5.4) in Foucault et
al. (2013). Here, δ measures the contribution of adverse selection,
i.e., the effect of a market order on the latent true efficient price.
This implies that

∆pt = εt + α0It − β0It−1, with α0 ≡
s0
2

+ δ, β0 ≡
s0
2
. (32)

Rewriting (32) in the form of our previous price dynamics in (2),
i.e., ∆pt = ∆p∗

t + (It − It−1)s0/2, we have ∆p∗
t = εt + δIt , and

thus Cov
(
∆p∗

t , It
)

= δVar(It ) ̸= 0 whenever δ ̸= 0. Hence
the Roll and Hasbrouck spread estimators would be inconsistent
(i.e., biased even as sample size goes to infinity). If {pt} is the only
observable, even assuming εt ∼ i.i.d. N(0, σ 2

ε ) as in Hasbrouck
(2004), (α0, β0, σ

2
ε ) is still not jointly identified.We now showhow

to regain identification by slightly strengthening Assumption 3 to
Assumption 10(ii) below. 8

Assumption 10. (i) Data {pt}Tt=1 is generated from Eq. (32) with
α0 ̸= 0 andβ0 > 0,where {εt , It}∞t=1 is a strictly stationary process;
and (ii) εt , εt−1, It , It−1 and It−2 are independent.

Assumption 10 implies that for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u′)ϕI (uα0)ϕI (u′α0 − uβ0)ϕI (−u′β0), (33)
ϕ∆p,1(u) = ϕ∆p,2(u, 0) = ϕε(u)ϕI (uα0)ϕI (−uβ0). (34)

Eq. (34) immediately implies that the c.f. ϕε(·) is identified once
after (α0, β0) and ϕI (·) are identified. Also Eq. (32) implies that the
identification of (s0, δ) is equivalent to the identification of (α0, β0)
via the relation s0 = 2β0 and δ = α0 − β0.

Eq. (33) also implies

H(u, u′) =
ϕI
(
u′α0 − uβ0

)
ϕI (−uβ0) ϕI (u′α0)

for all (u, u′) ∈ V2
. (35)

Since It is a discrete random variable, ϕI (·) is analytic, and hence
H(u, u′) is analytic in (u, u′) ∈ V2. Relation (35) immediately
implies that

∂2H(0, 0)
∂u∂u′

= α0β0Var(It ), (36)

8 Instead of imposing Assumption 10(ii), we could also obtain the identification
and consistent estimation of (α0, β0) when additional data such as trade volume is
available.
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hence the sign of α0 is identified as the sign of ∂
2H(0,0)
∂u∂u′ . Therefore in

the rest of this section we could assume that 0 < β0 ∈ B := [0, b]
and 0 ̸= α0 ∈ B1 := [−b, b] for some finite b ≥ s/2.

In the next several subsections we present the identification of
(α0, β0) when the functional form of ϕI (·) is completely known,
known up to a unknown parameter, or unknown.

5.1. Adverse selection with balanced order flow

Under Assumption 1(ii) (balanced order flow), ϕI (u) = cos (u)
for all u ∈ R and Var(It ) = 1. Denote

Uas :=

{
(u, u′) ∈ V2

: min
α∈B1,β∈B

|cos (uβ) cos
(
u′α
)
| > 0

}
, (37)

and a function on Uas × B1 × B as

R(u, u′
;α, β) :=

cos
(
u′α − uβ

)
cos (uβ) cos (u′α)

= 1 +
sin (uβ) sin

(
u′α
)

cos (uβ) cos (u′α)
.

Eq. (35) and Assumption 1(ii) now imply that

H(u, u′) = R(u, u′
;α0, β0) for all (u, u′) ∈ V2

. (38)

Since V2 contains an open ball of (0, 0), for a small positive ũ ∈ V ,
we have (ũ, ũ), (ũ, 2ũ), (2ũ, ũ) ∈ V2, and Eq. (38) yields

sin2(ũα0) =
2H(ũ, ũ) − H(ũ, 2ũ) − 1
2H(ũ, ũ) − 2H(ũ, 2ũ)

,

sin2(ũβ0) =
2H(ũ, ũ) − H(2ũ, ũ) − 1
2H(ũ, ũ) − 2H(2ũ, ũ)

.

(39)

Assumption 11. (i) (α0, β0) ∈ B1 × B; (ii) either (a) U = Uas; or
(b) U ⊂ Uas and ∃(ũ, ũ), (ũ, 2ũ), (2ũ, ũ) ∈ U such that ũ ∈ (0, π

2b
).

For any ũ ∈ (0, π
2b
), a ↦→ sin2 (ũa) is strictly increasing in

a ∈ B = [0, b]. Hence Eq. (39) can be used to solve |α0| ∈ B and
β0 ∈ B uniquely as

|α0| = ũ−1 arcsin

⎛⎝√2H(ũ, ũ) − H(ũ, 2ũ) − 1
2H(ũ, ũ) − 2H(ũ, 2ũ)

⎞⎠ ,
β0 = ũ−1 arcsin

⎛⎝√2H(ũ, ũ) − H(2ũ, ũ) − 1
2H(ũ, ũ) − 2H(2ũ, ũ)

⎞⎠ .
(40)

We are ready to state the following results.

Theorem 7. Let Assumption 1(ii), 10 and 11(i) hold. Then:
(1) (α0, β0) is identified by Eqs. (36) and (40) with some ũ ∈

(0, π
2b
) ∩ V , and ϕε is identified on V as ϕε(u) = ϕ∆p,1(u)[cos (uα0)

cos (uβ0)]
−1.

(2) Further, let Assumption 11 hold. Then: (α0, β0) is identified as
the unique solution to the minimum distance criterion function based
on Eq. (38) evaluated on U .

In Theorem 7 part (2), the minimum distance criterion function
can be constructed similar to Eq. (20).

5.2. Adverse selection with unbalanced order flow

Under Assumption 5, ϕI (u) = cos (u)+ i(2q0 − 1) sin (u) for all
u ∈ R, for a unknown q0 ∈ (0, 1).

Denote a function on Uas × B1 × B × (0, 1) as

R(u, u′
;α, β, q)

:=

(
1 + tan(u′α) tan(uβ)

)
+ i(2q − 1)

(
tan(u′α) − tan(uβ)

)
[1 − i(2q − 1) tan(uβ)] [1 + i(2q − 1) tan(u′α)]

.

Eq. (33) (or (35)) and Assumption 5 now imply that

H(u, u′) = R(u, u′
;α0, β0, q0) for all (u, u′) ∈ V2

. (41)

We establish the following result in the Appendix.

Theorem 8. Let Assumptions 5, 10 and 11(i) hold. Then: (α0, β0, q0)
is identified by Eqs. (78), (74) and (77) in the Appendix with
some ũ ∈ (0, π

2b
) ∩ V; and ϕε is identified on V as : ϕε(u) =

ϕ∆p,1(u)([cos(uα0) + i(2q0 − 1) sin(uα0)][ cos(uβ0) − i(2q0 − 1)
sin(uβ0)])−1.

Theorem 8 becomes Theorem 7 part (1) when q0 = 1/2.

5.3. Adverse selection when {It} has general discrete support

We now relax Assumption 5 to Assumption 7, and the c.f.
ϕI (·) becomes a unknown analytic function. Many notations and
definitions in this subsection are the same as those in Section 3.2.
Recall that π0 denotes the unknown true marginal probability
distribution of {It}, and ϕπ0 (·) = ϕI (·) denotes the true c.f. of It
corresponding to probability π0. Denote

R(u, u′
;α, β, π ) :=

ϕπ
(
u′α − uβ

)
ϕπ (−uβ) ϕπ (u′α)

,

for any (α, β) ∈ B1 × B and π ∈ Π . And ϕπ (u) := Eπ [exp (iuIt)] is
the c.f. of π ∈ Π .

Eq. (33) (or (35)) and Assumption 7 now imply the following
relation:

H(u, u′) = R(u, u′
;α0, β0, π0) for all (u, u′) ∈ V2

. (42)

We prove in the Appendix that Eq. (42) identifies both (α0, β0) and
π0.

Theorem 9. Let Assumptions 7, 10 and 11(i) hold. Then: (α0, β0)
and π0 ∈ Π are identified; and ϕε is identified on V as : ϕε(u) =

ϕ∆p,1(u)[ϕI (uα0)ϕI (−uβ0)]−1.

Remark 2. Theorem 9 is more general than Theorem 8, except that
(α0, β0, q0) could be solved in closed form in Theorem8. Theorem9
suggests a natural minimum distance estimation procedure for
(α0, β0) and π0. Let Ĥ(u, u′) denote a nonparametric consistent
estimator of H(u, u′) as in Remark 1. Then one could estimate
(α0, β0, π0) by (̂α, β̂, π̂ ), where

(̂α, β̂, π̂ ) = arg inf
α∈B1,β∈B,π∈Π

∑
(u,u′)∈V2

|Ĥ(u, u′) − R(u, u′
;α, β, π )|

2
.

One could then use a Wald statistic to test α0 = β0 (no ad-
verse selection), regardless whether Assumption 1(ii) holds or not.
See Chen et al. (2017) for details.

6. Random spread

Consider the model with a random spread:

pt = p∗

t +
st
2
It , p∗

t = p∗

t−1 + εt ,

∆pt = εt +
1
2
(st It − st−1It−1) . (43)

Assumption 12. (i) Data {pt}Tt=1 is generated from Eq. (43), where
{εt , st It}∞t=1 is a strictly stationary process; (ii) It is independent
of st , and Assumptions 1(ii) holds; (iii) εt is sub-independent of
(st It−st−1It−1)/2; st It is sub-independent of−st−1It−1; (iv) εt+εt−1
is sub-independent of (st It − st−2It−2)/2; st It is sub-independent of
−st−2It−2; and εt is sub-independent of εt−1.



X. Chen et al. / Journal of Econometrics 200 (2017) 312–325 319

Assumption 12(i)(ii) is a natural extension of Assumption 1.
Assumption 12(iii)(iv) is a natural extension of Assumption 2.

Under Assumption 12, we have for all u ∈ R,

ϕ∆p,1 (u) = ϕε(u)
(
E
[
cos

(
u
st
2

)])2
,

ϕ∆2p(u) = ϕ2
ε (u)

(
E
[
cos

(
u
st
2

)])2
.

(44)

This immediately implies that the c.f. ϕε(·) is identified as (9) on V .
Next, for h(·) defined in (10), Eq. (44) implies the following relation:

h(u) =

(
E
[
cos

(
u
st
2

)])2
for all u ∈ V. (45)

Under Assumption 12(i)(ii), {st} has the same marginal distri-
butions. The next assumption is similar to the condition s0 ∈ (0, s]
for the non-random spread s0 in all the previous sections.

Assumption 13. The unknown true probability distribution Fs(·) of
st has support S = [0, s] with Fs(0) = 0.

Note that the random spread st could be a discrete, or partly
discrete and partly continuous random variable since its distribu-
tion Fs() is not assumed to be differentiable or strictly increasing.
This assumption is extremely mild and reasonable for financial
applications.

We prove in the Appendix that Eq. (44) and Assumption 13
together identify the distribution function Fs(·) of the random
spread st .

Theorem 10. Let Assumption 12 hold. Then:
(1) The c.f. ϕε(·) is identified as (9) on V .
(2) If further, Assumption 13 holds, then Fs(·) is identified

by Eq. (85) in the Appendix.

7. Multivariate Roll models

Let pt =
(
p1,t , . . . , pn,t

)⊺
∈ Rn, It =

(
I1,t , . . . , In,t

)⊺
∈ {−1, 1}n,

εt =
(
ε1,t , . . . , εn,t

)⊺
∈ Rn and

∆pt = εt +
1
2
S0∆It , where S0 = Diag{s1,0, . . . , sn,0}. (46)

By applying the identification results of previous sections, each
sj,0 can be identified using individual price series {pj,t} for j =

1, . . . , n. We focus on the identification of the contemporaneous
dependence of It . For simplicity we consider a simple multivariate
extension of the basic Roll model.

Assumption 14. (i) Data {pt}Tt=1 is generated from Eq. (46) with
sj,0 ∈ (0, s] for j = 1, . . . , n and some finite s, and {εt , It}∞t=1
is a strictly stationary process; (ii) (εt , εt−1) is independent of
(∆It ,∆It−1); (iii) εt is independent of εt−1; and (iv) It , It−1 and It−2
are independent.

This assumption implies that for any (u1, u2) ∈ R2n,

ϕ∆p,2(u1, u2) := E
(
exp

(
iu⊺

1∆pt + iu⊺
2∆pt−1

))
= ϕε(u1)ϕε(u2)E

(
exp

(
i
2
u⊺
1S0It

))
× E

(
exp

(
i
2
(u2 − u1)⊺S0It−1

))
× E

(
exp

(
−

i
2
u⊺
2S0It−2

))
. (47)

Eq. (47) evaluated at any (u, 0) ∈ R2n yields the relation for the c.f.
of∆pt :

ϕ∆p,1(u) := ϕ∆p,2(u, 0) = ϕε(u)E
(
exp

(
i
2
u⊺S0It

))
×E

(
exp

(
−

i
2
u⊺S0It−1

))
. (48)

Let W := {u ∈ Rn
: ϕ∆p,1(u) ̸= 0}, which contains an open ball of

0 ∈ Rn. Eqs. (47) and (48) immediately imply the identification of
the c.f. ϕε(u) on W , and for all (u1, u2) ∈ W2,

H(u1, u2) :=
ϕ∆p,2(u1, u2)

ϕ∆p,1(u1)ϕ∆p,1(u2)

=
E
(
exp

( i
2 (u2 − u1)⊺S0It−1

))
E
(
exp

(
−

i
2u

⊺
1S0It−1

))
E
(
exp

( i
2u

⊺
2S0It−1

)) . (49)

The next assumption imposes a structure on the contempora-
neous dependence of It .

Assumption 15. LetΩ be a symmetric, positive semi-definite n×n
matrix. The diagonal elements of Ω equal to one and the off-
diagonal elements ofΩ are {ωjk}.

Y ∗

t =
(
Y ∗

1,t , . . . , Y
∗

n,t

)⊺
∼ N (0,Ω)

Ij,t = 1
(
Y ∗

j,t > 0
)
− 1

(
Y ∗

j,t < 0
)
, for j = 1, . . . , n.

The covariancematrixΩ is allowed to be singular. For example,
when n = 2, ω12 is allowed to be 1, meaning I1,t = I2,t . There are
n(n − 1)/2 free parameters {ωjk} to be identified. For j ̸= k we
define:

qjk := Pr
(
Ij,t = −1, Ik,t = −1

)
= Pr

(
Y ∗

j,t < 0, Y ∗

k,t < 0
)

:= g
(
ωjk
)
, (50)

where, under Assumption 15, g(·) is strictly increasing. We prove
the following result in the Appendix.

Theorem 11. (1) Let Assumption 14 hold, then ϕε(u) = ϕ∆p,2(u, u)
[ϕ∆p,1(u)]−1 on W .

(2) Let Assumptions 14 and 15 hold. Then: sj,0, j = 1, . . . , n, is
identified as in Theorem 2 part (1); qjk is identified as Eq. (86) in the
Appendix, and ωjk is identified as g−1

(
qjk
)
, for j, k = 1, . . . , n and

j ̸= k.

8. Conclusions

In this paper we provide identification of the spread s0 and the
distribution of the latent fundamental price increments εt using
transaction price time series observations alone. Our identification
results do not require the existence of any finite moments of the
observed price increments, do not require the full independence
between {εt} and the latent trade direction indicators {It}, and
allow the latent εt to be discrete or continuous, symmetric or
asymmetric. We first provide closed-form identification results
under a mild sub-independence condition in the basic Roll (1984)
model. We then establish identification in various extended Roll
models, such as models with general unbalanced order flow, or
serially dependent latent trade indicators, or adverse selection or a
possibly random spread. Identification in amultivariate Roll model
is also provided. Our results on the identification of (s0, ϕε) and the
additional parameters in extended models are established under
conditions much weaker than those in the existing literature and
are very reasonable for financial applications.

This paper focuses on constructive identification results in
basic Roll (1984) and extended Roll models. However, our iden-
tification strategy, the minimum distance between the nonpara-
metrically identified (from data) joint characteristic function of
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R(u, u′
; s, q) :=

[
cos

(
u
s
2

)
+ (2q − 1)i sin

(
u
s
2

)] [
cos

(
u′

s
2

)
− (2q − 1)i sin

(
u′

s
2

)]
×

[
cos

(
(u′

− u)
s
2

)
+ (2q − 1)i sin

(
(u′

− u)
s
2

)]
[
cos2

(
u s

2

)
+ (2q − 1)2sin2 (u s

2

)] [
cos2

(
u′ s

2

)
+ (2q − 1)2sin2 (u′ s

2

)] , (53)

Box I.

consecutive one period returns and its model-implied semipara-
metric counterpart, allows for even more general models that
include several features of the extended Roll models all at once.
In fact these minimum distance via characteristic functions imply
overidentification restrictions in all these models. In the compan-
ion paper, Chen et al. (2017), estimation and testing of the Roll type
models based on this paper’s identification results are presented.
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Appendix A

This Appendix contains additional proofs that are not presented
in the main text.
A.1. Additional proofs for Sections 2 and 3

Proof of Theorem 3. The criterion function (20) is nonnegative,
with Q (s0,U) = 0, under Assumption 4(ii). For either case of
Assumption 4(ii), ∃(ũ, ũ) ∈ U with ũ > 0. For this grid point, the
moment condition (19) yields the relation

cos2
(
ũ
s0
2

)
=

ϕ2
∆p,1(ũ)

ϕ∆p,2(ũ, ũ)
. (51)

By Assumption 4(ii), ũ is smaller than the first positive zero of u ↦→

mins∈S cos
(
u s

2

)
, and hence s ↦→ cos2

(
ũ s

2

)
is strictly decreasing

in s ∈ S. This implies that (51) holds only at s = s0 ∈ S , which
further implies that the criterion function is uniquelyminimized at
s = s0. SinceQ (s,U) is continuous in s ∈ S = [0, s], the identifiable
uniqueness is trivially satisfied. □

Proof of Theorem4.Under Assumption 1(i), 3 and 5, we obtain the
following special case of Eq. (21): for all (u, u′) ∈ R2,

ϕ∆p,2(u, u′) = ϕε(u)ϕε(u′)
[
cos

(
u
s0
2

)
+ (2q0 − 1)i sin

(
u
s0
2

)]
×

[
cos

(
u′
s0
2

)
− (2q0 − 1)i sin

(
u′
s0
2

)]
×

[
cos

(
(u′

− u)
s0
2

)
+ (2q0 − 1)i sin

(
(u′

− u)
s0
2

)]
.

(52)

Hence

ϕ∆p,1(u) ≡ ϕ∆p,2(u, 0)

= ϕε(u)
[
cos2

(
u
s0
2

)
+ (2q0 − 1)2sin2

(
u
s0
2

)]
,

ϕ∆2p(u) ≡ ϕ∆p,2(u, u)

= (ϕε(u))2
[
cos2

(
u
s0
2

)
+ (2q0 − 1)2sin2

(
u
s0
2

)]
.

These immediately imply that the c.f. ϕε(·) is identified as (9) on V .
In addition to the definitions of V , U andH(u, u′) given in Section 2,
we introduce a function on U × S × (0, 1) as (See equation given
in Box I.)
which is complex-valued unless q(q− 1)(2q− 1) sin

(
u s

2

)
sin
(
u′ s

2

)
sin
(
(u′

− u) s
2

)
= 0. Eq. (24) implies that H(u, u′) is complex-

valuedunless q0(q0−1)(2q0−1) sin
(
u s0

2

)
sin
(
u′ s0

2

)
sin
(
(u′

− u) s02
)

= 0 .
For all (ũ, ũ) ∈ V2 with ũ ̸= 0, the identification Eq. (24) yields

the relations

H(ũ, ũ) =
1

cos2
(
ũ s0

2

)
+ (2q0 − 1)2sin2 (ũ s0

2

) ,
⇐⇒ cos2

(
ũ
s0
2

)
=

1/H(ũ, ũ) − (2q0 − 1)2

1 − (2q0 − 1)2
, (54)

where H(ũ, ũ) is real-valued with H(ũ, ũ) > 1. Once (2q0 − 1)2 is
identified, Eq. (54) can be used to identify s0 in S if ũ ∈ (0, π/s)∩V
(as in Section 2). For all (ũ,−ũ) ∈ V2 with ũ ̸= 0, Eq. (24) implies

H(ũ,−ũ)[
H(ũ, ũ)

]2 =

[
cos

(
ũ
s0
2

)
+ (2q0 − 1)i sin

(
ũ
s0
2

)]2
×
[
cos

(
ũs0
)
− (2q0 − 1)i sin

(
ũs0
)]
.

Re

(
H(ũ,−ũ)[
H(ũ, ũ)

]2
)

= (2q0 − 1)2 +
[
(2q0 − 1)2 − 1

]
× cos2

(
ũ
s0
2

) [
1 − 2cos2

(
ũ
s0
2

)]
= 2(2q0 − 1)2 − H(ũ, ũ)−1

+ 2

[
H(ũ, ũ)−1

− (2q0 − 1)2
]2

1 − (2q0 − 1)2
,

where the last equality uses the relation implied by Eq. (54). The
first derivative of the right-hand side of the above equation with

respect to (2q0 − 1)2 is equal to 2

[
H(ũ,ũ)−1

−1
]2

[1−(2q0−1)2]2
, which is strictly

positive, since H(ũ, ũ) > 1 and q0 ∈ (0, 1). Therefore, (2q0 − 1)2
can be uniquely identified as

(2q0 − 1)2 =

Re
(

H(ũ,−ũ)

[H(ũ,ũ)]2

)
+ H(ũ, ũ)−1

− 2H(ũ, ũ)−2

2 + Re
(

H(ũ,−ũ)

[H(ũ,ũ)]2

)
− 3H(ũ, ũ)−1

. (55)

Finally,

Im

(
H(ũ,−ũ)[
H(ũ, ũ)

]2
)

=
[
(2q0 − 1)2 − 1

]
(2q0 − 1)sin2

(
ũ
s0
2

)
sin
(
ũs0
)

= 2(1 − 2q0)(1 − H(ũ, ũ)−1)

×

√
1/H(ũ, ũ) − (2q0 − 1)2

1 − (2q0 − 1)2

√
1 − 1/H(ũ, ũ)
1 − (2q0 − 1)2

,

(56)
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(−2k, 0) · · · · · · · · · (−2k, 2k)
(−2k + 1,−1) (−2k + 1, 0) · · · · · · · · · (−2k + 1, 2k)

(−2k + 2,−2) (−2k + 2,−1) (−2k + 2, 0) · · · · · · · · · (−2k + 2, 2k)
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

(−1,−2k + 1) · · · · · · (−1, 0) · · · · · · (−1, 2k − 1) (−1, 2k)
(0,−2k) (0,−2k + 1) · · · · · · (0, 0) · · · · · · (0, 2k − 1) (0, 2k)
(1,−2k) (1,−2k + 1) · · · · · · (1, 0) · · · · · · (1, 2k − 1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

(2k − 2,−2k) · · · · · · · · · (2k − 2, 0) (2k − 2, 1) (2k − 2, 2)
(2k − 1,−2k) · · · · · · · · · (2k − 1, 0) (2k − 1, 1)
(2k,−2k) · · · · · · · · · (2k, 0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (61)

Box II.

which can be used to identify the sign of 2q0 − 1 for a small ũ > 0.
These arguments establish the statements in the theorem. □

Proof of Theorem 5. Under Assumption 1(i) and 3, we obtain
Eq. (21) (and Eqs. (6) and (7) with ϕπ0 ≡ ϕI in Section 2). Hence
Theorem 1 remains valid and the c.f. ϕε(·) is identified as (9) on V .

Eq. (21) also implies that, on V2, Eq. (25) is satisfied by the true
parameter value (s0 ∈ S, ϕπ0 ). Suppose another pair (s̃ ∈ S, ψ(·))
also satisfies Eq. (25), where ψ denotes the c.f. associated with
another probability mass function π satisfying Assumption 7. That
is, on V2 we have:

H(u, u′) =
ϕπ0

( s0
2

(
u′

− u
))

ϕπ0
( s0

2 u
′
)
ϕπ0

(
−

s0
2 u
) =

ψ
( s̃
2

(
u′

− u
))

ψ
( s̃
2u

′
)
ψ
(
−

s̃
2u
) . (57)

Below we shall prove that, without any restriction on the support
of {It} (such as Assumption 7), ϕπ0 (

s0
2 u) = exp(ifu)ψ

( s̃
2u
)
, where

f ∈ R is a constant, This result is intuitive. Since we only have
observations for s0

2 (It − It−1), we could not differentiate between
It and It + f , for a constant f , or between (It , s0) and (It ·

s0
s̃ , s̃),

for a positive constant s̃, without additional information about the
support. Assumption 7 excludes the possibility of a change of the
location or the scale, then θ0 = (s0, π

⊺

0 )
⊺ can be uniquely identified

from Eq. (25). Denote h(u) = ψ

(
s̃
s0
u
)
, and u1 = −

s0
2 u, u2 =

s0
2 u

′.
Note that ϕπ0 (·), ψ(·), h(·) are all analytic on R and equal to 1 at
0. There exists a small neighbourhood M of (0, 0) ⊂ V2, such that
ϕπ0 (u1), ϕπ0 (u2), ϕπ0 (u1 + u2), h (u1), h (u2) and h (u1 + u2) are
all bounded away from zero on (u1, u2) ∈ M. Eq. (57) gives

ϕπ0 (u1 + u2)

h (u1 + u2)
=
ϕπ0 (u1)

h (u1)

ϕπ0 (u2)

h (u2)
. (58)

Define γ (u) =
ϕπ0 (u)
h(u) , which is analytic on an open interval of 0. Eq.

(58) can be rewritten as

γ (u1 + u2) = γ (u1)γ (u2). (59)

In Theorem 1 on page 38 of Aczel (1966), it has been shown
that the only nonzero analytic solutions of (59) are the expo-
nential functions, exp(au), where a ∈ C is a constant. Namely,
ϕπ0 (

s0
2 u) = exp(ãu)ψ

( s̃
2u
)
, for some fixed ã ∈ C. Since, for all

u ∈ R, ϕπ0 (−
s0
2 u) = ϕπ0 (

s0
2 u) and ψ

(
−

s̃
2u
)

= ψ
( s̃
2u
)
, it is

straightforward to show ã = if , for some f ∈ R. Equivalently,

s0
2
It =

s̃
2
Ĩt + f , (60)

where the c.f. of It isϕπ0 (u), and the c.f. of Ĩt isψ (u). Eq. (60) implies
the number of points in the support of It is also identified. Let
the ordered sets {m1,m2, . . . ,ml} ⊂ {−k1, . . . , 0, . . . ,+k2} and

{m̃1, m̃2, . . . , m̃l} ⊂ {−k1, . . . , 0, . . . ,+k2} denote the supports of
It and Ĩt , respectively. Eq. (60) implies, for all i = 1, . . . , l,

m̃i =
s0
s̃
mi − f

2
s̃
.

Since m1 = m̃1 = −k1, and ml = m̃l = +k2, s0 = s̃ and
f = 0. Therefore, s0 and the distribution of It can be uniquely
identified. □

A.2. Additional proofs for Section 4

Proof of Theorem 6 Part (1). Since {It} takes values in {−k, . . .
, 0, . . . ,+k}, the support of (It − It−1) is {−2k, . . . , 0, . . . ,
+2k} and the joint support of (It−1 − It−2, It − It−1) is given in
Box II.

Let P ∈ P denote any candidate joint probability distribution of
(It , It−1). Let π = [π⃗l] denote the corresponding marginal proba-
bility distribution of {It}, andQ the corresponding transition prob-
ability matrix with j-th row vector being Qj,◦ = [qj,−k, . . . , qj,k], for
j = −k, . . . , 0, . . . ,+k, where the summation of each component
of Qj,◦ equals to 1 by definition. Let Q∆I denote the corresponding
joint probability mass matrix of (It−1 − It−2, It − It−1), which is a
(4k + 1) × (4k + 1) matrix. The following equation shows the
connection between Q∆I and Q, π :

Q∆I = AQ,π × BQ, (62)

where AQ,π is the (4k + 1) × (2k + 1) matrix given in Box III and
BQ is the (2k+1)× (4k+1) matrix given in Box IV. Thus the rank
of Q∆I is at most 2k + 1. Assumption P0 ∈ P and Eq. (29) or (62)
can be used to recover Q0 and π0 once after Q0

∆I is identified.
We now show that Eq. (28) identifies the c.f. ϕ∆I (and hence

Q0
∆I ). Recall that Eq. (28) implies that

H(u1, u2) =
ϕ∆I

( s0
2 u1,

s0
2 u2

)
ϕ∆I

( s0
2 u1, 0

)
ϕ∆I

(
0, s0

2 u2
) for all (u1, u2) ∈ V2

.

Let ψ∆I denote a c.f. associated with a candidate P ∈ P . If the pair
(̃s, ψ∆I (·, ·)) also satisfies Eq. (28), i.e., for all (u1, u2) ∈ V2,

H(u1, u2) =
ϕ∆I

( s0
2 u1,

s0
2 u2

)
ϕ∆I

( s0
2 u1, 0

)
ϕ∆I

(
0, s0

2 u2
)

=
ψ∆I

( s̃
2u1,

s̃
2u2
)

ψ∆I
( s̃
2u1, 0

)
ψ∆I

(
0, s̃

2u2
) . (63)

Then on V2, which contains a small neighbourhood of (0, 0)

ϕ∆I

( s0
2
u1,

s0
2
u2

)
ψ∆I

(
s̃
2
u1, 0

)
ψ∆I

(
0,

s̃
2
u2

)
= ψ∆I

(
s̃
2
u1,

s̃
2
u2

)
ϕ∆I

( s0
2
u1, 0

)
ϕ∆I

(
0,

s0
2
u2

)
. (64)
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πkqk,−k 0 0 0 · · · · · · 0
πk−1qk−1,−k πkqk,−k+1 0 0 · · · · · · 0
πk−2qk−2,−k πk−1qk−1,−k+1 πkqk,−k+2 0 · · · · · · 0

...
...

...
...

...
...

...

π−k+2q−k+2,−k π−k+3q−k+3,−k+1 π−k+4q−k+4,−k+2 · · · πkqk,k−2 0 0
π−k+1q−k+1,−k π−k+2q−k+2,−k+1 π−k+3q−k+3,−k+2 · · · πk−1qk−1,k−2 πkqk,k−1 0
π−kq−k,−k π−k+1q−k+1,−k+1 π−k+2q−k+2,−k+2 · · · πk−2qk−2,k−2 πk−1qk−1,k−1 πkqk,k

0 π−kq−k,−k+1 π−k+1q−k+1,−k+2 · · · πk−3qk−3,k−2 πk−2qk−2,k−1 πk−1qk−1,k
0 0 π−kq−k,−k+2 · · · πk−4qk−4,k−2 πk−3qk−3,k−1 πk−2qk−2,k
...

...
...

...
...

...
...

0 · · · 0 0 π−kq−k,k−2 π−k+1q−k+1,k−1 π−k+2q−k+2,k
0 · · · 0 0 0 π−kq−k,k−1 π−k+1q−k+1,k
0 · · · 0 0 0 0 π−kq−k,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Box III.
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0 · · · · · · · · · 0 0 0 0 0 Q−k,◦
0 · · · · · · · · · 0 0 0 0 Q−k+1,◦ 0
0 · · · · · · · · · 0 0 0 Q−k+2,◦ 0 0
...

...
...

...
...

...
...

...
...

...

0 · · · · · · · · · 0 0 Q−1,◦ · · · 0 0
0 · · · · · · · · · 0 Q0,◦ 0 · · · 0 0
0 · · · · · · 0 Q1,◦ 0 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...

0 0 Qk−2,◦ 0 0 0 · · · · · · 0 0
0 Qk−1,◦ 0 0 0 0 · · · · · · 0 0

Qk,◦ 0 0 0 0 0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Box IV.

Since {It} is discrete with support {−k, . . . , 0, . . . ,+k}, ϕ∆I (·, ·)

and ψ∆I (·, ·) are entire c.f. Therefore ϕ∆I (·, ·) and ψ∆I (·, ·) have
analytic continuations for all complex numbers (z1, z2) ∈ C2. Fur-
thermore, the analytic continuations, ϕ∆I (z1, z2) and ψ∆I (z1, z2)
are entire functions, and Eq. (64) is satisfied for all (z1, z2) ∈ C2.

Let Z :=
{
z ∈ C : ϕ∆I

( s0
2 z, 0

)
= 0

}
, and Z̃ :=

{
z ∈ C : ψ∆I( s̃

2 z, 0
)

= 0
}
. In the following we shall show that Z = Z̃. Fix

z1 = d + fi ∈ Z, where d, f ∈ R. Then, for any z ∈ C,

ϕ∆I

( s0
2
z1,

s0
2
z
)
ψ∆I

(
s̃
2
z1, 0

)
ψ∆I

(
0,

s̃
2
z
)

= 0. (65)

Define a(z) = (exp
[
iz s0

2 (−2k)
]
, . . ., exp

[
iz s0

2 (−1)
]
, 1,

exp
[
iz s0

2 (1)
]
, . . ., exp

[
iz s0

2 (2k)
]
)⊺, then

ϕ∆I

( s0
2
z1,

s0
2
z
)

= a(z)⊺Q0
∆Ia(z1) = a(z)⊺AQ0,π0BQ0a(z1).

Thus z → ϕ∆I
( s0

2 z1,
s0
2 z
)

is the null function if and only
if AQ0,π0BQ0a(z1) = 0. Since AQ0,π0 is of full column rank,
AQ0,π0BQ0a(z1) = 0 if and only if BQ0a(z1) = 0. Note the equation
given in Box V.
The real part of the first component of BQ0a(z1) equals

q0
−k,−k + q0

−k,−k+1 exp
(
−f

s0
2

)
cos

ds0
2

+ q0
−k,−k+2 exp

(
−2f

s0
2

)
cos

2ds0
2

+ · · ·

+ q0
−k,k exp

(
−2kf

s0
2

)
cos

2kds0
2

, (66)

while the real part of the last component of BQ0a(z1) equals

q0k,−k exp
(
2kf

s0
2

)
cos

2kds0
2

+ q0k,−k+1 exp
(
(2k − 1)f

s0
2

)
cos

(2k − 1)ds0
2

+ · · ·

+ q0k,k−1 exp
(
f
s0
2

)
cos

ds0
2

+ q0k,k. (67)

Since q0k,k > 1/2 and q0
−k,−k > 1/2, either Eq. (66) or (67) is

strictly larger than zero, no matter what value z1 takes. There-
fore, AQ0,π0BQ0a(z1) ̸= 0 and z → ϕ∆I

( s0
2 z1,

s0
2 z
)
is not the

null function. Thus, it is possible to choose z2 ∈ C such that
ϕ∆I

( s0
2 z1,

s0
2 z2

)
̸= 0, and ψ∆I

(
0, s̃

2 z2
)

̸= 0. Then Eq. (65) leads
to ψ∆I

( s̃
2 z1, 0

)
= 0, therefore Z ⊂ Z̃. A similar argument under

the full column rank of AQ,π shows that Z̃ ⊂ Z. Therefore Z̃ = Z.
Since ϕ∆I

( s0
2 z, 0

)
and ψ∆I

( s̃
2 z, 0

)
have growth order 1, using

Hadamard’s factorization theorem (see, e.g., Stein and Shakarchi
(2003), page 147, Theorem 5.1), we can get that there exists a
polynomial R of degree ≤ 1 such that for all z ∈ C,

ϕ∆I

( s0
2
z, 0

)
= exp(R(z))ψ∆I

(
s̃
2
z, 0

)
.

Since ϕ∆I (0, 0) = ψ∆I (0, 0) = 1, there exists a complex number
c such that ϕ∆I

( s0
2 z, 0

)
= exp(cz)ψ∆I

( s̃
2 z, 0

)
. Furthermore, for

all z ∈ R, ϕ∆I
(
−

s0
2 z, 0

)
= ϕ∆I

( s0
2 z, 0

)
and ψ∆I

(
−

s̃
2 z, 0

)
=

ψ∆I
( s̃
2 z, 0

)
. It is straightforward to show c = if , for some f ∈ R.

According to the support information, the only possible value of
f is zero. Therefore, ϕ∆I

( s0
2 z, 0

)
= ψ∆I

( s̃
2 z, 0

)
, for all z ∈ C.
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BQ0a(z1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0
−k,−k + q0

−k,−k+1 exp
(
iz1

s0
2

)
+ q0

−k,−k+2 exp
(
2iz1

s0
2

)
+ · · · + q0

−k,k exp
(
2kiz1

s0
2

)
q0

−k+1,−k exp
(
−iz1

s0
2

)
+ q0

−k+1,−k+1 + q0
−k+1,−k+2 exp

(
iz1

s0
2

)
+ · · · + q0

−k+1,k exp
(
(2k − 1)iz1

s0
2

)
q0

−k+2,−k exp
(
−2iz1

s0
2

)
+ q0

−k+2,−k+1 exp
(
−iz1

s0
2

)
+ q0

−k+2,−k+2 + · · · + q0
−k+2,k exp

(
(2k − 2)iz1

s0
2

)
...

...
...

...

q0k−2,−k exp
(
(−2k + 2)iz1

s0
2

)
+ · · · + q0k−2,k−2 + q0k−2,k−1 exp

(
iz1

s0
2

)
+ q0k−2,k exp

(
2iz1

s0
2

)
q0k−1,−k exp

(
(−2k + 1)iz1

s0
2

)
+ q0k−1,−k+1 exp

(
(−2k + 2)iz1

s0
2

)
+ · · · + q0k−1,k−1 + q0k−1,k exp

(
iz1

s0
2

)
q0k,−k exp

(
−2kiz1

s0
2

)
+ q0k,−k+1 exp

(
(−2k + 1)iz1

s0
2

)
+ q0k,−k+2 exp

(
(−2k + 2)iz1

s0
2

)
+ · · · + q0k,k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Box V.

Since ϕ∆I
( s0

2 z, 0
)

= ϕ∆I
(
0, s0

2 z
)
and ψ∆I

( s̃
2 z, 0

)
= ψ∆I

(
0, s̃

2 z
)

(by strict stationarity), Eq. (64) leads to

ϕ∆I

( s0
2
z1,

s0
2
z2
)

= ψ∆I

(
s̃
2
z1,

s̃
2
z2

)
for all (z1, z2) ∈ C2.

Namely, the joint distribution of
[ s0

2 (It−1 − It−2),
s0
2 (It − It−1)

]
is

identified by Eq. (28). According to the joint support information
of (It−1 − It−2, It − It−1), s0 ∈ S can be identified. Therefore,
(s0, ϕ∆I (·, ·)) is identified.

Eq. (27) implies that for all u ∈ R,

ϕ∆p,1(u) = ϕε(u)E
(
exp

[
iu

s0
2
(It − It−1)

])
.

Then ϕε(u) = ϕ∆p,1(u)[ϕ∆I
( s0

2 u, 0
)
]
−1 for all u ∈ V . □

In general, (s0, ϕ∆I (·, ·)) cannot be identified without informa-
tion about the support, as illustrated by the following example.

Example A.1. {It} could possibly take values in {−2,−1, 0, 1, 2}.
The true marginal distribution satisfies Pr(It = −1) = Pr(It =

1) = 1/2, and the transition matrix is [1/3 2/3; 2/3 1/3]. Define
Wt = 1/2 [It − It−1 + et ], with {et} being independent of {It}, and
Pr(et = −2) = b, Pr(et = 2) = 1 − b.

It is easy to show the joint support of (Wt−1,Wt ) is a subset
of equation given in Box II for k = 2. Therefore, Eq. (28)
cannot distinguish (s, ϕ∆I (·, ·)) from (2s, ϕW (·, ·)), where ϕW (·, ·)
is the joint c.f.of (Wt−1,Wt ). Simple calculations show Pr(Wt−1 =

−2,Wt = −1) = Pr(Wt−1 = −1,Wt = −2) =
1
9b

2 > 0,
Pr(Wt−1 = 1,Wt = 2) = Pr(Wt−1 = 2,Wt = 1) =

1
9 (1 −

b)2 > 0. If one has additional information that Pr(It = −2) =

Pr(It = 2) = 0, then it is known that (−2,−1), (−1,−2), (1, 2),
(2, 1), are not in equation given in Box II for k = 1. Thus one is
able to distinguish (s, ϕ∆I (·, ·)) from (2s, ϕW (·, ·)).More generally,
let Wt = c [It − It−1 + et ], where c is any constant and {et} is
independent of {It}. The joint support of (Wt−1,Wt ) is not a subset
of equation given in Box II or k = 1.

Proof of Theorem 6 Part (2). According to Theorem 6 Part (1),
s0 and the joint distribution of (It−1 − It−2, It − It−1) can be iden-
tified by Eq. (28). For any fixed integer k, {It} takes values in
{−k, . . . , 0, . . . ,+k). The probabilities of the first row and the last
row of Expression given in Box II satisfy

π0,kq0k,−kQ
0
−k,◦ = [Pr(−2k, 0), Pr(−2k, 1), . . .,

Pr(−2k, 2k − 1), Pr(−2k, 2k)] , (68)

π0,−kq0−k,kQ
0
k,◦ = [Pr(2k,−2k), Pr(2k,−2k + 1), . . .,

Pr(2k,−1), Pr(−2k, 0)] , (69)

where Pr(−2k, j) and Pr(2k,−j) denote Pr(It−1 − It−2 = −2k, It −

It−1 = j) and Pr(It−1 − It−2 = 2k, It − It−1 = −j), respectively. The
right-hand side of Eqs. (68) and (69) are identified from Theorem 6
Part (1). In order to identify Q 0

k,◦ and Q 0
−k,◦, π0,k, q0k,−k, π0,−k, q0−k,k

need to be positive, that is satisfied under our assumption. By
summing up each elements of Eq. (68) and (69), we get π0,kq0k,−k =∑2k

j=0 Pr(−2k, j) and π0,−kq0−k,k =
∑2k

j=0 Pr(2k,−j). Therefore, Q 0
k,◦

and Q 0
−k,◦ can be identified as

Q 0
−k,◦ =

[Pr(−2k, 0), Pr(−2k, 1), . . ., Pr(−2k, 2k − 1), Pr(−2k, 2k)]∑2k
j=0 Pr(−2k, j)

,

Q 0
k,◦ =

[Pr(2k,−2k), Pr(2k,−2k + 1), . . ., Pr(2k,−1), Pr(−2k, 0)]∑2k
j=0 Pr(2k,−j)

.

Consequently π0,k and π0,−k can be identified as π0,k =∑2k
j=0 Pr(−2k, j)/q0k,−k, π0,−k =

∑2k
j=0 Pr(2k,−j)/q0

−k,k. The proba-
bilities of the second row and the second last row of Expression
given in Box II satisfy

Pr(−2k + 1,−1) = π0,kq0k,−k+1q
0
−k+1,−k,

Pr(−2k + 1, 2k) = π0,k−1q0k−1,−kq
0
−k,k, (70)

Pr(−2k + 1, j) = π0,kq0k,−k+1q
0
−k+1,−k+j+1 + π0,k−1q0k−1,−kq

0
−k,−k+j,

for j = 0, 1, . . ., 2k − 1 (71)

Pr(2k − 1, 1) = π0,−kq0−k,k−1q
0
k−1,k,

Pr(2k − 1,−2k) = π0,−k+1q0−k+1,kq
0
k,−k, (72)

Pr(2k − 1,−j) = π0,−kq0−k,k−1q
0
k−1,k−1−j + π0,−k+1q0−k+1,kq

0
k,k−j,

for j = 0, 1, . . ., 2k − 1. (73)

Eqs. (70) and (72) can be used to identify π0,k−1q0k−1,−k,
π0,−k+1q0−k+1,k, q

0
k−1,k and q0

−k+1,−k. Then Eqs. (71) and (73) can be
used to identify q0

−k+1,j for j = −k + 1, . . . , k ( q0k,−k+1 > 0 by
assumption) and q0k−1,j for j = −k, . . . , k − 1 (q0

−k,k−1 > 0 by
assumption), respectively. Consequently, π0,k−1 and π0,−k+1 can
be identified. Following the same strategy, the probabilities of the
third row and the third last row of Expression given in Box II can
be used to identify π0,k−2, π0,−k+2, Q 0

k−2,◦ and Q 0
−k+2,◦. Essentially,

the same strategy can be applied sequentially to identify π0 and
Q0. □

A.3. Additional proofs for Section 5

Proof of Theorem 8. Recall that Assumptions 5 and 10 together
imply that (41) holds. H(u, u′) is complex-valued unless (2q0 −

1) sin
(
u′α0

)
sin (uβ0) sin

(
u′α0 − uβ0

)
= 0. Note that α0 ̸= 0,
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Re(V2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩(u, u′) ∈ V2
:

E
[
sin
(
(u′α0 − uβ0)It

)]
E [sin (uβ0It)] E

[
sin
(
u′α0It

)]
+E

[
cos

(
(u′α0 − uβ0)It

)]
E [sin (uβ0It)] E

[
cos

(
u′α0It

)]
+E

[
sin
(
(u′α0 − uβ0)It

)]
E [cos (uβ0It)] E

[
cos

(
u′α0It

)]
−E

[
cos

(
(u′α0 − uβ0)It

)]
E [cos (uβ0It)] E

[
sin
(
u′α0It

)]
= 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Box VI.

β0 > 0 and q0 ∈ (0, 1) by assumption,

∂2H(0, 0)
∂u∂u′

=
[
1 − (2q0 − 1)2

]
α0β0,

⇒ β0
[
1 − (2q0 − 1)2

]
=

∂2H(0,0)
∂u∂u′

α0
. (74)

The left-hand side of Eq. (74) is identified from data. Furthermore,
we have ∀u′

∈ V :
∂H(0, u′)
∂u

= β0
[
1 − (2q0 − 1)2

]
×

tan(u′α0) − i(2q0 − 1)
(
tan(u′α0)

)2
1 + (2q0 − 1)2(tan(u′α0))2

. (75)

By plugging Eq. (74) into Eq. (75), we obtain

∂H(0, u′)
∂u

/
∂2H(0, 0)
∂u∂u′

=
tan(u′α0) − i(2q0 − 1)

(
tan(u′α0)

)2
α0
(
1 + (2q0 − 1)2(tan(u′α0))2

) . (76)

For any ũ ∈ (0, π
2b
) ∩ V , from Eq. (76) we have

2q0 − 1 = −

Im
(
∂H(0,ũ)
∂u /

∂2H(0,0)
∂u∂u′

)
tan(ũα0) Re

(
∂H(0,ũ)
∂u /

∂2H(0,0)
∂u∂u′

) , (77)

and

tan(ũα0)
α0

=

[
Re
(
∂H(0,ũ)
∂u /

∂2H(0,0)
∂u∂u′

)]2
+

[
Im
(
∂H(0,ũ)
∂u /

∂2H(0,0)
∂u∂u′

)]2
Re
(
∂H(0,ũ)
∂u /

∂2H(0,0)
∂u∂u′

) .

(78)

The sign of α0 can be identified by Eq. (36). The first deriva-
tive of the left-hand side of Eq. (78) with respective to α0 is
(1+tan2(ũα0))ũα0−tan(ũα0)

α20
, which is positive (negative), if ũα0 ∈ (0, π2 )

(if ũα0 ∈ (− π
2 , 0)). Therefore, 0 ̸= α0 ∈ B1 can be identified

from Eqs. (36) and (78). Consequently q0 ∈ (0, 1) can be identified
from Eq. (77) and 0 < β0 ∈ B can be identified from Eq. (74).
Finally the c.f. ϕε(u) is identified from (α0, β0) and Eq. (34). These
arguments complete the proof. □

Proof of Theorem 9.Under Assumptions 7 and 10, Eq. (42) is satis-
fied by the true parameter value (α0, β0, ϕπ0 ). Suppose another pair
(α̃, β̃, ϕπ̃ ) also satisfies Eq. (42) and ϕπ̃ denotes the c.f. associated
with another probability mass function π̃ satisfying Assumption 7.
That is, on V2 we have:

H(u, u′) =
ϕπ0

(
u′α0 − uβ0

)
ϕπ0 (−uβ0) ϕπ0 (u′α0)

=
ϕπ̃
(
u′α̃ − uβ̃

)
ϕπ̃
(
−uβ̃

)
ϕπ̃ (u′α̃)

,

for all (u, u′) ∈ V2
, (79)

and H(u, u′) is analytic for all (u, u′) ∈ V2. Let Re(V2) ={
(u, u′) ∈ V2

: Im
(
H(u, u′)

)
= 0

}
, which can be identified from

data.

Case 1: H(u, u′) is real for all (u, u′) ∈ V2, i.e. Re(V2) = V2.
In this case, It has a symmetric distribution and ϕπ0 (u) is real

valued for all u ∈ R. Denote φ1(u) = ϕπ0 (uα0) and φ2(u) =

ϕπ̃ (uα̃). Note that ∀w ∈ V :

∂H(0, w)
∂u1

= −
β0

α0

[
φ′

1(w)
φ1(w)

− φ′

1(0)
]

= −
β̃

α̃

[
φ′

2(w)
φ2(w)

− φ′

2(0)
]

H⇒
φ′

1(w)
φ1(w)

=
α0

β0

β̃

α̃

φ′

2(w)
φ2(w)

,

(80)

where φ′

1(0) = φ′

2(0) = 0, since It is symmetrically distributed.
Since φ1(·) and φ2(·) are entire characteristic functions of

growth order 1, we have ∀z ∈ C (see, e.g., Stein and Shakarchi
(2003), page 147, Theorem 5.1):

φ1(z) = exp (P1(z))
∞∏
n=1

(
1 −

z
an

)
exp

(
z
an

)
,

φ2(z) = exp (P2(z))
∞∏
n=1

(
1 −

z
bn

)
exp

(
z
bn

)
,

where P1(z) and P2(z) are polynomials of degree ≤ 1, {a1, a2, . . .}
and {b1, b2, . . .} denote (non-zero) zeros of φ1(·) and φ2(·), respec-
tively. According to Proposition 3.2. of Stein and Shakarchi (2003)
(page 141), we have

φ′

1(z)
φ1(z)

= a0 +

∞∑
n=1

(
1
an

+
1

z − an

)
, ∀z ∈ C/{a1, a2, . . .}

φ′

2(z)
φ2(z)

= b0 +

∞∑
n=1

(
1
bn

+
1

z − bn

)
, ∀z ∈ C/{b1, b2, . . .} (81)

where a0 = P ′

1(z) and b0 = P ′

2(z). Eqs. (80) and (81) imply
{a1, a2, . . .} = {b1, b2, . . .}. Therefore, we can get that there exists
a polynomial R of degree ≤ 1 such that for all z ∈ C, φ1(z) =

exp(R(z))φ2(z). Using the similar argument as in the proof of The-
orem 6 Part (1), we can show that for all z ∈ C,

φ1(z) = exp(ifz)φ2(z), (82)

for some f ∈ R. Since Pr(It = −k1) > 0 and Pr(It = k2) > 0,
Eq. (82) implies f = −k1 (α0 − α̃) = k2 (α0 − α̃). Therefore,
α0 = α̃, f = 0 and φ1(z) = φ2(z), ϕπ0 (z) = ϕπ̃ (z). Along with
Eq. (80), we have β0 = β̃ .

Case 2: Re(V2) ⊊ V2.
In this case, It is not symmetrically distributed and ϕπ0 (u)

is complex valued except for some isolated points Re(V2) (see
equation given in BoxVI.) includes some isolated vertical lines, hor-
izontal lines, and straight lines with the same slope β0

α0
. Therefore,

we can identify β0
α0

from Re(V2).

Denote h(u) = ϕπ̃

(
u α̃
α0

)
, and u1 = −uβ0, u2 = u′α0. Thus

u′α̃ = u2
α̃
α0

, and −uβ̃ = u1
β̃

β0

α0
α̃

α̃
α0

= u1
α̃
α0

, because β0
α0

=
β̃

α̃
.

Note that ϕπ0 (·), ϕπ̃ (·), h(·) are all analytic on R and equal to 1 at
0. There exists a small neighbourhood M of (0, 0) ⊂ V2, such that
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ϕπ0 (u1), ϕπ0 (u2), ϕπ0 (u1 + u2), h (u1), h (u2) and h (u1 + u2) are
all bounded away from zero on (u1, u2) ∈ M. Eq. (79) gives

ϕπ0 (u1 + u2)

h (u1 + u2)
=
ϕπ0 (u1)

h (u1)

ϕπ0 (u2)

h (u2)
.

Then following the similar strategy as in the proof of Theorem5,we
can identify (α0, ϕπ0 ). Then together with Re(V2), we can identify
β0. Finally the c.f. ϕε(u) is identified from (α0, β0, ϕπ0 ) and Eq. (34).
These arguments complete the proof. □

A.4. Additional proofs for Sections 6 and 7

Proof of Theorem 10. Recall that, under Assumption 12, we have
the following Eq. (45):

h(u) =

(
E
[
cos

(
u
st
2

)])2
for all u ∈ V.

Since cos
(
u a

2

)
≥ 0 for all u ∈

(
−
π
s ,

π
s

)
∩ V and all a ∈ [0, s],

we have:

0 ≤ E
[
cos

(
u
st
2

)]
=

∫ s

0
cos

(
u
a
2

)
dFs(a)

=

√
h(u) for all u ∈

(
−
π

s
,
π

s

)
∩ V. (83)

Let ϕs(·) denote the true unknown c.f. of st . Since st ∈ [0, s]
with probability 1 (Assumption 13), ϕs(·) is an entire c.f. (see,
e.g., Theorem 3.2. of Lukacs (1972)). Eq. (83) can be rewritten as

Re
(
ϕs

(u
2

))
=

1
2
ϕs

(u
2

)
+

1
2
ϕs

(
−u
2

)
=

√
h(u), for all u ∈

(
−
π

s
,
π

s

)
∩ V. (84)

Eq. (84) gives the identification of Re (ϕs (·)) in
(
−
π
s ,

π
s

)
∩V which

contains a small neighbourhood of zero. Because Re (ϕs (·)) has
an analytic continuation for any complex number in the complex
plane, we can identify Re (ϕs (·)) on the real line.

Define the random variable Wt = st It and let G(·) be its
distribution function. Simple calculation shows Re (ϕs (·)) is the c.f.
ofWt . Therefore, we can identify G(·). Furthermore, it satisfies :

G(w) = Pr (Wt ≤ w) =
1
2
Pr (st ≤ w)+

1
2
Pr (−st ≤ w)

=

⎧⎪⎨⎪⎩
1
2
Fs(w) +

1
2

w ≥ 0

1
2

−
1
2
Fs(−w) w < 0.

(85)

Under Assumption 13, Fs(w) = 0 for w ≤ 0, therefore Eq. (85)
identifies Fs(·). This completes the proof of the theorem. □

Proof of Theorem 11. Assumption 15 implies that for j = 1, . . . , n,
Pr
(
Ij,t = 1

)
= Pr

(
Ij,t = −1

)
=

1
2 , since Y ∗

j,t follows a zero mean
normal distribution. Under Assumption 15, qjk ∈ [0, 1

2 ] is strictly
increasing in ωjk ∈ [−1, 1], i.e. g is a strictly increasing function.
Furthermore, we have

Pr
(
Ij,t = 1, Ik,t = 1

)
= qjk, Pr

(
Ij,t = 1, Ik,t = −1

)
=

1
2

− qjk,

Pr
(
Ij,t = −1, Ik,t = 1

)
=

1
2

− qjk.

Let ũjk
=

(
0, . . . , 0, ũ, 0, . . . , 0, ũ, 0, . . . , 0

)⊺
∈ Rn, where the

jth and kth elements of ũjk are equal to ũ > 0 and all the other
elements are zero. Eqs. (49) and (50) lead to: for j, k = 1, . . . , n

and j ̸= k.

H (̃ujk, ũjk)

=

[
(1 − 2qjk) cos

ũ(sj,0 − sk,0)
2

+ 2qjk cos
ũ(sj,0 + sk,0)

2

]−2

.

Choose a small positive ũ, such that cos ũ(sj,0−sk,0)
2 > 0,

cos ũ(sj,0+sk,0)
2 > 0, and cos ũ(sj,0+sk,0)

2 ̸= cos ũ(sj,0−sk,0)
2 . Thus, qjk is

uniquely solved as

qjk =
[H (̃ujk, ũjk)]−1/2

− cos ũ(sj,0−sk,0)
2

2
(
cos ũ(sj,0+sk,0)

2 − cos ũ(sj,0−sk,0)
2

) . (86)

Thus we obtain the theorem. □
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