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a b s t r a c t

Dynamic portfolio choice has been a central and essential objective for investors in active asset manage-
ment. In this paper, we study the dynamic portfolio choice with multiple conditioning variables, where
the dimension of the conditioning variables can be either fixed or diverging to infinity at certain polyno-
mial rate of the sample size. We propose a novel data-driven method to estimate the optimal portfolio
choice,motivated by themodel averagingmarginal regression approach suggested by Li et al. (2015).More
specifically, in order to avoid the curse of dimensionality associated with the multivariate nonparamet-
ric regression problem and to make it practically implementable, we first estimate the marginal optimal
portfolio choice by maximizing the conditional utility function for each univariate conditioning variable,
and then construct the joint dynamic optimal portfolio through the weighted average of the marginal
optimal portfolio across all the conditioning variables. Under some regularity conditions, we establish
the large sample properties for the developed portfolio choice procedure. Both the simulation study and
empirical application well demonstrate the finite-sample performance of the proposed methodology.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Portfolio choice is a central issue for investors and asset man-
agers. Financial research has clarified how thismight be carried out
to meet various objectives. Fundamental contributions to this lit-
erature have been made, inter alia, by: Markowitz (1952), Sharpe
(1963), Merton (1969), Samuelson (1969), and Fama (1970). See
Back (2010) and Brandt (2010) for some recent surveys. In prac-
tice, it is not uncommon that dynamic portfolio choice depends
on many conditioning (or forecasting) variables, which reflect the
varying investment opportunities over time. Generally speaking,
there are two ways to characterize the dependence of portfolio
choice on the conditioning variables. One is to assume a parametric
statistical model that relates the returns of risky assets to the con-
ditioning variables and then solve for an investor’s portfolio choice
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by using some traditional econometric approaches to estimate the
conditional distribution of the returns. However, the pre-assumed
parametric model might be misspecified, which would lead to in-
consistent or biased estimation of the optimal portfolio. The other
way, which avoids the possible issue of model misspecification, is
to use some nonparametric methods such as the kernel estima-
tionmethod to characterize the dependence of the portfolio choice
on conditioning variables. This latter method is first introduced by
Brandt (1999), who also establishes the asymptotic properties for
the estimated portfolio choice and provides an empirical applica-
tion.

Although the nonparametric method allows the financial data
to ‘‘speak for themselves’’ and is robust to model misspecification,
its performance is often poorwhen the dimension of the condition-
ing variables is large (say, larger than three), owing to the so-called
‘‘curse of dimensionality’’ (c.f. Fan and Yao, 2003). This indicates
that a direct use of Brandt’s (1999) nonparametric method may
be inappropriate when there are multiple conditioning variables.
Our main objective in this paper is to address this issue in dynamic
portfolio choice problem with multiple conditioning variables and
propose a novel data-driven method to estimate the optimal port-
folio choice,where the dimension of the conditioning variables and
the number of the risky assets can be either fixed or diverging to
infinity at certain polynomial rate of the sample size.
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In order to avoid the curse of dimensionality issue, we first
consider the optimal portfolio choice for a given univariate con-
ditioning variable, and then construct the joint dynamic optimal
portfolio choice through a weighted average of the marginal op-
timal portfolio across all the conditioning variables. This method
is partly motivated by the Model Averaging MArginal Regres-
sion (MAMAR) approach suggested in a recent paper by Li et al.
(2015), which shows that such a method performs well in esti-
mating the conditional multivariate mean regression function and
out-of-sample prediction. Furthermore, we introduce a semipara-
metric data-drivenmethod to choose the optimalweights inmodel
averaging. Under some mild conditions, we establish the large
sample properties for the developed portfolio choice procedure to
show its advantages over the conventional nonparametric kernel
smoothingmethod in terms of convergence. Both simulation stud-
ies and an empirical application are carried out to examine the fi-
nite sample performance of the proposed methodology.

The structure of the paper is as follows. The methodology for
estimating the dynamic portfolio choice is introduced in Section 2,
and the relevant large sample theory is presented in Section 3. The
data-driven choice of the optimal weights in model averaging of
the marginal optimal portfolios across all conditioning variables
is developed in Section 4. Numerical studies including both
simulation and an empirical application are reported in Section 5.
Section 6 concludes the paper. The assumptions and the technical
proofs of the main results are relegated to Appendices A and B,
respectively.

2. Methodology for estimating dynamic portfolio choice

Suppose that there are n risky assets with Rt = (R1t , . . . , Rnt)
ᵀ

as a vector of gross returns at time t , t = 1, . . . , T , where n can
be either fixed or diverging to infinity with the sample size T .
Let Xt = (X1t , . . . , XJt)

ᵀ
, where J is the number of conditioning

or forecasting variables Xjt . The dynamic portfolio choice aims to
choose the portfolio weights at each time period t by maximizing
the conditional utility function defined by

E

u(w

ᵀ
Rt)|Xt−1


= E


u(w

ᵀ
Rt)|(X1,t−1, . . . , XJ,t−1)


, (2.1)

subject to 1ᵀ

nw =
n

i=1wi = 1, where w = (w1, . . . , wn)
ᵀ
,

1n is the n-dimensional column vector of ones, u(·) is a concave
utility function which measures the investor’s utility with wealth
w

ᵀRt at time t . For simplicity, we only focus on the problem of
single-period portfolio choice. Furthermore, we assume that the
investors can borrow assets and sell them (short selling), which
indicates that some of the portfolio weights may take negative
values.

The classic mean–variance paradigm considers the quadratic
utility functionu(v) = v−(γ /2)v2 or theCARA (Constant Absolute
Risk Aversion) utility function u(v) = − exp(−γ v)plus normality,
in which case the solution (with covariates) is explicitly defined
in terms of the conditional mean vector µ(x) = E[Rt |Xt−1 = x],
x = (x1, . . . , xJ)

ᵀ
, and the conditional covariance matrix Σ(x) =

E[(Rt − µ(x))(Rt − µ(x))ᵀ |Xt−1 = x] of returns, i.e.,

w(x) =
1
γ

Σ−1(x) [µ(x)− θ(x)1n] ,

θ(x) =
µ(x)ᵀΣ−1(x)1n − γ

1ᵀ

nΣ
−1(x)1n

.

In this case, it suffices to know µ(·) and Σ(·). One may also work
with the more general CRRA (Constant Relative Risk Aversion)
utility function with risk aversion parameter γ

u(v) =


v1−γ

1 − γ
, γ ≠ 1

log v, γ = 1,
in which case the solution for the optimal weights is not typically
explicit, and generally depends onmore features of the conditional
distribution. More discussion on different classes of utility
functions u(·) can be found in Chapter 1 of the book by Back (2010).

In order to solve the general maximization problem in (2.1),
Brandt (1999) proposes a nonparametric conditional method of
moments approach, which can be seen as an extension of the
method of moments approach in Hansen and Singleton (1982).
Taking the first-order derivative of u(·) in (2.1) with respect to
wi and considering the constraint of 1ᵀ

nw =
n

i=1wi = 1, we
may obtain the dynamic portfolio choice by solving the following
equations forw1, . . . , wn−1:

E

(Rit − Rnt)u̇(w

ᵀ
Rt)|X1,t−1, . . . , XJ,t−1


= 0

a.s., i = 1, . . . , n − 1, (2.2)

where u̇(·) is the derivative of the utility function u(·). The last
element wn in w can be determined by using the constraintn

i=1wi = 1. Brandt (1999) suggests a kernel-based smoothing
method to estimate the solution to (2.2). However, when J is
large, the kernel-based nonparametric conditional method of
moments approach would perform quite poorly due to the curse
of dimensionality discussed in Section 1. Therefore, we propose a
novel dimension-reduction technique to address this problem.

We startwith the portfolio choice for each univariate condition-
ing variable in Xt−1. For j = 1, . . . , J , we define the marginal con-
ditional utility function as

E

u(w

ᵀ
Rt)|Xj,t−1 = xj


(2.3)

with the constraint 1ᵀ

nw =
n

i=1wi = 1. The associated
first-order conditions for the marginal optimal portfolio weights
wj(xj) evaluated at xj for the conditioning variables are:

E

(Rit − Rnt)u̇(w

ᵀ

j (xj)Rt)|Xj,t−1 = xj


= 0,

i = 1, . . . , n − 1, (2.4)

where

wj(xj) = [w1j(xj), . . . , wnj(xj)]
ᵀ

withwnj(xj) = 1 −

n−1
i=1

wij(xj).

For a given j, this is essentially the problem posed and solved by
Brandt (1999). For given x = (x1, . . . , xJ)

ᵀ
, (2.3) and (2.4) may be

understood as the utility function and the corresponding first order
conditions for portfolio choice in a ‘‘fictitious economy’’, where the
realization of each univariate conditioning variable determines the
state of the economy.

We next consider how to combine the marginal portfolios
selected above to form a joint portfolio. We shall consider a
weighted average of the marginal portfolio choices wj(xj) over
j = 1, . . . , J , and obtain the joint portfolio choice as

wa(x) =

J
j=1

ajwj(xj) with
J

j=1

aj = 1, (2.5)

where negative values for aj can be allowed. In Section 4, we
will discuss how to choose the weights a = (a1, . . . , aJ)

ᵀ
in the

combination (2.5) by using a data-driven method.
The joint portfolio choice wa(x) defined in (2.5) can, in some

sense, be seen as an approximation of the true optimal portfolio
choice, as we next discuss. Consider the following class of weights
(that are measurable functions of the covariates):

W =


w(·) :

n
i=1

wi(x) = 1
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W∗
=


wa(·) : wa(x) =

J
j=1

ajw∗

j (xj),
J

i=1

aj = 1



Wadd =


wadd(·) : wadd(x) =

J
j=1

wj(xj),
n

i=1

wji(xj) = 1


,

where w∗

j (·) with
n

i=1w
∗

ji(xj) = 1 are the optimal weights
to (2.3). Note that W∗

⊂ Wadd ⊂ W . The solution to (2.2)
is a member of W , and our proposed method is a member of
W∗. One could solve the intermediate additive portfolio problem,
i.e., max E


u(w

ᵀRt)|Xt−1

with respect to w ∈ Wadd, which also

only requires finding one dimensional functions, but this will
require us to solve a nonlinear integral equation system in the
n × J scalar functions wji(·) : R −→ R. This is likely to be
computationally difficult and theoretically challenging to analyze.
We consider our approach to be a practically feasible alternative
to this, in the same way as the MAMAR approximation introduced
in Li et al. (2015) can be considered a practically feasible alternative
to high dimensional additive regression.1

We next introduce a kernel-based nonparametric estimation
methodology to estimate the approximate joint portfolio choice
defined in (2.5). Let K(·) be a kernel function and h be a bandwidth
that converges to zero as T tends to infinity. Using the sample
information,wemay express the first-order conditions (2.4) for the
marginal optimal portfolio as

1
Th

T
t=1

(Rit − Rnt)u̇(w
ᵀ
Rt)K


Xj,t−1 − xj

h


= 0,

i = 1, . . . , n − 1, (2.6)

for each j = 1, . . . , J . Denote wj(xj) = [w1j(xj), . . . ,wnj(xj)]
ᵀ
the

solution to (2.6), where

wnj(xj) = 1 −

n−1
i=1

wij(xj). (2.7)

Then we estimate the joint optimal portfolio choice by the
weighted average

wa(x) =

J
j=1

ajwj(xj),
J

j=1

aj = 1. (2.8)

The asymptotic properties for wa(x) will be given in Section 3 for
various scenarios.

3. Large sample theory

In this section, we give the asymptotic theorems for the
estimation developed in the previous section for the following four
cases: (i) both J = J0 and n = n0 are fixed positive integers,
(ii) J = JT is a diverging positive integer whereas n = n0 is fixed,
(iii) n = nT is a diverging positive integer whereas J = J0 is fixed,
and (iv) both J = JT and n = nT are diverging with the sample
size T .

We start with case (i): J = J0 and n = n0. Given
(2.7), we only need study the asymptotic theory for w∗

j (xj) =

1 We could also instead seek to approximate the objective function Q (w; x) =

E

u(w

ᵀRt )|Xt−1 = x

by using the MAMAR method directly, i.e., to approximate

this conditional expectation by a weighted sum of one dimensional nonparametric
regressions Q (w; x) =

J
j=1 αjE


u(w

ᵀRt )|Xjt−1 = xj

for some weights αj , and

then optimizingQ (w; x)with respect tow. We conjecture that such a methodmay
give similar results except that it provides less diagnostic information. However, it is
perhaps harder to define a data-driven method for selecting αj as more constraints
might be involved.
[w1j(xj), . . . ,wn0−1,j(xj)]
ᵀ
, the estimate of w∗

j (xj) = [w1j(xj), . . . ,
wn0−1,j(xj)]

ᵀ
. Before stating the asymptotic theorems,we introduce

some notation. For j = 1, . . . , J0 and t = 1, . . . , T , we define

Λj(xj) = fj(xj)E

Rt(Rt)

ᵀ
ü

w

ᵀ
j (xj)Rt


|Xj,t−1 = xj


,

Zjt(xj) = R∗

t u̇

w

ᵀ
j (Xj,t−1)Rt


K

Xj,t−1 − xj

h


,

where R∗
t = (R1t − Rn0t , . . . , Rn0−1,t − Rn0t)

ᵀ
, ü(·) is the second-

order derivative of u(·) and fj(·) is the marginal density function of
Xjt . Define

Wjt(xj) = Λ−1
j (xj)Zjt(xj) and Wt(x|a) =

J0
j=1

ajWjt(xj)

for t = 1, . . . , T . Following the argument in the proof of
Theorem 3.1 in Appendix B and letting

w∗

a (x) =

J
j=1

ajw∗

j (xj) and w∗

a (x) =

J
j=1

ajw∗

j (xj),

we may show that

√
Th
w∗

a (x)− w∗

a (x)


=
1

√
Th

T
t=1

Wt(x|a)+ oP(1) (3.1)

for given a = (a1, . . . , aJ0)
ᵀ
. The asymptotic distribution theory forw∗

j (xj) and w∗
a (x) is given in Theorem 3.1.

Theorem 3.1. Suppose that Assumptions 1–5 in Appendix A are
satisfied, both J = J0 and n = n0 are fixed positive integers.
(i) For j = 1, . . . , J0, we have

√
Th
w∗

j (xj)− w∗

j (xj)
 d
−→N


0,Ωj(xj)


, (3.2)

where Ωj(xj) = E

Wjt(xj)W

ᵀ

jt(xj)


= Λ−1
j (xj)E


Zjt(xj)Z

ᵀ

jt(xj)


Λ−1
j (xj).
(ii) For a set of given weights (a1, . . . , aJ0) with

J0
j=1 aj = 1, we

have
√
Th
w∗

a (x)− w∗

a (x)
 d
−→N (0, Ω(x|a)) , (3.3)

where Ω(x|a) = E

Wt(x|a)W

ᵀ

t (x|a)

.

Although there are multiple conditioning variables in the
nonparametric dynamic portfolio choice, we can still achieve the
root-(Th) convergence rates as shown in the above theorem.
This means that we can successfully overcome the curse of
dimensionality problem. Themain reason is that, in the estimation
of the joint optimal portfolio, we apply the univariate kernel
smoothing to estimate the marginal optimal portfolio choice for
each univariate conditioning variable and then obtain the joint
portfolio choice through a weighted average defined in (2.8). In
contrast, if we directly use the multivariate kernel smoothing as
is done in Brandt (1999), the convergence rate for the resulting
estimation of the joint portfolio choicewould be root-(ThJ0), slower
than the rates in (3.2) and (3.3) when J0 > 1.

We next consider case (ii) that n = n0 is fixed but J = JT is
diverging, and give the relevant asymptotic distribution theory in
the following theorem.

Theorem 3.2. Suppose that Assumptions 1–4 and 5′ in Appendix A
are satisfied, the number of the risky assets is fixed, and the number
of conditioning variables is a positive integer JT which is diverging
with the sample size T . Then, the asymptotic distributions in (3.2) and
(3.3) of Theorem 3.1 still hold.



312 J. Chen et al. / Journal of Econometrics 194 (2016) 309–318
Theorem 3.2 indicates that the root-(Th) convergence rate
remains even when the number of the potential conditioning
variables is diverging at a rate that satisfies the restriction in
Assumption 5′, i.e.,

T 1−1/(2+δ)h

J1/(2+δ)T log T
→ ∞, δ > 0,

see also the second condition in (3.6). Such a restriction means
that JT can be larger than T , if we are only interested in w∗

j (·) orw∗
a (·) for a given a. However, some additional restrictions on JT

would be needed when we also consider the optimal choice of
a = (a1, . . . , aJT )

ᵀ
, see Section 4 for details.

For cases (i) and (ii), we can further establish the uniform
consistency results for wj(xj) over xj ∈ Xj with Xj being the
support of Xjt .

Theorem 3.3. Suppose that Assumptions 1–4 in Appendix A are
satisfied.
(i) If both J = J0 and n = n0 are fixed positive integers, and

h → 0,
T 1−2/(2+δ)h

log T
→ ∞, (3.4)

where δ > 0 is specified in Assumption 3 in Appendix A, then

max
1≤j≤J0

sup
xj∈Xj

∥wj(xj)− wj(xj)∥ = OP


h2

+

log T/(Th)


, (3.5)

where ∥ · ∥ denotes the Euclidean norm of a vector or the Frobenius
norm of a matrix.
(ii) If n = n0 is fixed and J = JT is diverging with the sample size

T , and

h → 0,
T 1−2/(2+δ)h

J2/(2+δ)T log T
→ ∞, (3.6)

then (3.5) still holds with J0 replaced by JT .

In fact, Theorem 3.3(i) can be considered as a special case of
Theorem 3.3(ii), and the above uniform consistency results can be
seen as an extension of the uniform consistency results for the
nonparametric kernel-based estimation for stationary time series
(Hansen, 2008; Kristensen, 2009; Li et al., 2012) to the case of
nonparametric portfolio choice. Note that the order h2 contributed
by the bias term would be asymptotically dominated by the order√
log T/(Th) if Th4

= o(1) in Assumption 5 (or 5′) is satisfied.
In the latter case, the uniform convergence rate would become
OP
√

log T/(Th)

. By modifying the proof in Appendix B, we may

further generalize (3.5) to the case where Xj is an expanding set.
We finally give a brief discussion on how to generalize

Theorems 3.1–3.3 to cases (iii) and (iv) in which the number
of the risky assets is diverging with the sample size T . Note
that the dimension of wj(xj) is nT , which may slow down the
convergence rate when nT → ∞. However, to derive some
sensible asymptotic results, nT cannot diverge to infinity too fast.
Following the arguments in the proof of Theorem3.3 in Appendix B
and those in the high-dimensional variable selection literature
(c.f., Fan and Peng, 2004), we may show that when

n4
T = o (Th) , h → 0,

T 1−2/(2+δ)h
(nT J)2/(2+δ) log T

→ ∞, (3.7)

the uniform consistency result in (3.5) can be generalized to

max
1≤j≤J

sup
xj∈Xj

∥wj(xj)− wj(xj)∥ = OP


√
nT


h2

+

log T/(Th)


,

(3.8)
where the uniform convergence rate is slower than that in (3.5).
The above result holds no matter when J is fixed or diverging
to infinity. We may also generalize the asymptotic distribution
theory in Theorems 3.1 and 3.2 to the case of diverging nT . In the
latter case, as the dimension of the estimated portfolio weights
is diverging, we need to apply a transformation matrix with full
row rank to reduce the dimension from nT to n∗ (a fixed positive
integer) when deriving the asymptotic normal distribution. As the
relevant argument is similar to that in proving Theorem 4.2, we
omit the details here to save space.

4. Data-driven weight choice in model averaging

The performance of the dynamic portfolio choice defined in
(2.8) relies on the choice of themodel averagingweights a1, . . . , aJ .
Let wat ≡ wa(Xt) =

J
j=1 ajwj(Xjt) and define the objective

function:

U(a) = E

u(w

ᵀ

a,t−1Rt)


= E


u
 J

j=1

ajw
ᵀ

j (Xj,t−1)Rt


, (4.1)

which is the expected utility associated with a particular choice of
a. We choose the optimal weights a0 by maximizing U(a), i.e.,

a0 = argmax
a

U(a) = argmax
a

E


u
 J

j=1

ajw
ᵀ

j (Xj,t−1)Rt


(4.2)

subject to the constraint
J

j=1 aj = 1. This leads to the following
first-order conditions

E


(Rwjt − RwJt )u̇


J

j=1

aj0Rwjt


= 0 for j = 1, . . . , J − 1, (4.3)

and aJ0 = 1 −
J−1

j=1 aj0, where Rwjt = w
ᵀ

j (Xj,t−1)Rt , RwJt =

w
ᵀ

J (XJ,t−1)Rt and aj0 is the jth element of the J-dimensional vector
a0.

We next propose a data-driven procedure for the choice of the
model averagingweights a. By replacing the unobservable quantity
wj(Xj,t−1) by its estimated valuewj(Xj,t−1)which is constructed in
(2.6), we may estimate a0 = (a10, . . . , aJ0)

ᵀ
bya = (a1, . . . ,aJ)ᵀ ,

which is the solution to the following equations

1
T

T
t=1

(Rwjt −RwJt )u̇


J
j=1

ajRwjt


= 0 for j = 1, . . . , J − 1, (4.4)

andaJ = 1 −
J−1

j=1aj, whereRwjt = wᵀ

j (Xj,t−1)Rt .
We next study the asymptotic property for the estimatora. As aJ = 1 −

J−1
j=1aj, it suffices to consider a∗

≡

(a1, . . . ,aJ−1)
ᵀ
, the estimate of a∗

0 ≡ (a10, . . . , aJ−1,0)
ᵀ
. Define

ηt = u̇
J

j=1 aj0w
ᵀ

j (Xj,t−1)Rt

, η∗

t = ü[
J

j=1 aj0w
ᵀ

j (Xj,t−1)Rt ],
R∗
t (w) = (Rw1t , . . . , R

w
J−1,t)

ᵀ
, V∗

t = R∗
t (w) − RwJt 1J−1 and ∆1 =

E[η∗
t V

∗
t (V

∗
t )

ᵀ
]. For j = 1, . . . , J , define εjt = u̇(w

ᵀ

j (Xj,t−1)Rt) =

u̇(Rwjt ), εt = (ε1ta10, . . . , εJtaJ0)
ᵀ
and Qt = (Q1t , . . . ,QJt)

ᵀ
with

Qjt = {E[η∗
s V

∗
sR

ᵀ

sWΛ−1
j (Xj,s−1)|Xj,s−1 = Xj,t−1]}fj(Xj,t−1)R∗

t and

W =


1 · · · 0
...

...
...

0 · · · 1
−1 · · · −1


being an n × (n − 1)matrix. Define

∆2 =

∞
t=−∞

Cov(V∗

0η0 + Q
ᵀ

0ε0,V∗

t ηt + Q
ᵀ

t εt).



J. Chen et al. / Journal of Econometrics 194 (2016) 309–318 313
Throughout the paper, we assume that the mean of V∗
t ηt + Qᵀ

t εt is
zero. In the following theorem,we give the asymptotic distribution
theory fora∗ when both J = J0 and n = n0 are fixed positive
integers, which is the case (i) discussed in Section 3.

Theorem 4.1. Suppose that the assumptions in Theorem 3.3(i) are
satisfied and the matrix ∆1 is non-singular. Then we have
√
T
a∗

− a∗

0

 d
−→N


0,∆−1

1 ∆2∆
−1
1


. (4.5)

We next deal with the case (ii) where J = JT is diverging
with the sample size T whereas n = n0 is fixed. Let ∆T =

∆−1
1 ∆2∆

−1
1 , where we have used the subscript T to denote the

dependence of the size of the matrix on T . As the number of the
potential conditioning variables JT tends to infinity, we cannot
state the asymptotic normal distribution theory in the same way
as in Theorem 4.1. As in Fan and Peng (2004), we let Ψ T be a
J∗ × (JT − 1) matrix with full row rank such that as T → ∞,
Ψ TΨ

ᵀ

T → Ψ , where Ψ is a J∗ × J∗ non-negative definite matrix
with J∗ being a fixed positive integer. The role of the matrix Ψ T is
to reduce the dimension from (JT − 1) to J∗ in the derivation of
the asymptotic normality, so it is only involved in the asymptotic
analysis. If we are only interested in the asymptotic behavior for
the first J∗ components ofa, wemay chooseΨ T =


IJ∗ , OJ∗×(JT−J∗)


,

where Ip is a p×p identitymatrix andOk×j is a k× j null matrix.We
next state the asymptotic distribution theory fora∗ when J = JT is
diverging.

Theorem 4.2. Suppose that the assumptions in Theorem 3.3(ii) are
satisfied, the matrix ∆1 is non-singular and

J2T


h2

+


log T
Th


→ 0. (4.6)

Then we have
√
TΨ T∆

−1/2
T

a∗
− a∗

0

 d
−→N (0,Ψ) . (4.7)

The above theorem is similar to some results in the existing
literature such as Theorem 2(ii) in Fan and Peng (2004) and
Theorem 4.3 in Li et al. (2015). The condition (4.6) implies that
the dimension JT should not diverge too fast to infinity, and (4.7)
indicates that the convergence rate is

√
T/JT due to the diverging

number of the conditioning variables.
Although n = n0 is assumed to be fixed in Theorems 4.1

and 4.2, the developed asymptotic results can be generalized to
the more general case of n = nT which is diverging with the
sample size T (see the cases (iii) and (iv) in Section 3). By imposing
some additional restrictions on nT such as (3.7), the corresponding
proofs in Appendix B need to be slightly modified with the role of
Theorem 3.3 replaced by the uniform consistency result in (3.8). As
the technical arguments are quite similar, we omit details here to
save space.

5. Numerical studies

In the simulated examples, we set the number of assets under
consideration for investment to be n = 5. This value of n is
chosen primarily for convenience of computation. Computation
procedures for larger values of n are exactly the same.

Example 5.1. The time series of gross returns vectors Rt on the n
assets are generated via the conditioning variables by the following
regression:

log(Rt) = 0.06 ∗ 1n + A ∗ log(Xt−1)+ et , (5.1)
where 1n is the n×1 vector of ones, A is an n× J full-rankmatrix so
generated such that the elements of 1000 ∗ A are random integers
ranging between 1 and 30; et are i.i.d. random vectors distributed
as et ∼ N(0, 0.001 ∗ In) in which In is the n × n identity matrix;
{log(Xt)} is a J-dimensional AR(1) process generated as

log(Xt) = −0.01 ∗ 1J + ψ log(Xt−1)+ ut , (5.2)

in which ψ = 0.9 or ψ = 0.4, and ut are i.i.d. random vectors
generated from N(0, 0.002 ∗ Σu), where Σu is a J × J matrix
with diagonal elements being 1 and off-diagonal elements being
0.4. Since the thus generated components in ut are correlated, so
are the components in Xt , which will be used as the conditioning
variables. Such a design is aimed to mimic the real world
situation where economic, finance and social indicators, which are
often correlated with each other, are chosen as the conditioning
variables. The dimension of Xt is set to satisfy J = [0.5 ∗

√
T ],

where [·] denotes the operator that rounds a number to the nearest
integer less than or equal to that number.

We use a CRRA utility function with γ = 1, 5, and 10
(Campbell (1996) found γ in range 2.7 to 21). For each j =

1, . . . , J, t = 1, . . . , T , and the observed value, Xj,t−1, of the
conditioning variable in the previous timeperiod t−1,we calculate
the jth set of conditional optimal portfolio weights, wj(Xj,t−1), by
solving the nonparametric version of the conditioning equations,
i.e., (2.6). Then by solving the equations in (4.4) with respect to
aj, we can obtain the joint optimal portfolio weights, wa(Xt−1) =J

j=1ajwj(Xj,t−1), conditional on the values of all the conditioning
variables in time period t − 1, where Xt−1 = (X1,t−1, . . . , XJ,t−1)

ᵀ
.

Note that in calculating the wj(Xj,t−1) andaj, we have imposedJ
j=1 wj(Xj,t−1) = 1 and

J
j=1aj = 1 so that the budget constraint

is satisfied.
We compare the single-period returns of portfolios constructed

with weights calculated from the proposed semiparametric model
averaging method (SMAM) and the unconditional parametric
method (UPM) which solves for the weights that maximize the
unconditional utility, i.e., 1

T

T
t=1 u(w

ᵀRt), subject to w
ᵀ1n = 1.

Table 5.1 reports the averages of the mean difference in returns
(MDR) and averages of the mean difference in utilities (MDU)
between the SMAM- and UPM-constructed portfolios:

MDR =
1
T

T
t=1


Rs
t − Ru

t


, MDU =

1
T

T
t=1


u(Rs

t)− u(Ru
t )

,

where Rs
t = wᵀ

a(Xt−1)Rt and Ru
t = wᵀ

uRt with wa(·) and wu chosen
by SMAMandUPM, respectively, and u(·) is a given utility function.
Also reported in Table 5.1 are the averages of positive frequency
(PF) of the SMAM, i.e., the frequency at which the return on the
SMAM-constructed portfolio exceeds that of the UPM-constructed
portfolio. These results are based on 100 independent samples of
T = 100, 300, or 500 observations. The numbers in parentheses
are the respective standard errors.

It can be seen from Table 5.1 that in most time periods, the
return on the portfolio chosen by the SMAM is larger than the
return on the portfolio chosen by the UPM. This is especially so
when the sample size is relatively small. For example, when ψ =

0.9 and γ = 5, the average gain in choosing portfolios by the
SMAM than by the UPM is an additional 2.86% return when T =

100, and this reduces to 1.25% when T = 500. As γ measures
the level of risk aversion of an investor with a higher value
representing less willingness for risk taking, the portfolio returns
generally decrease as γ increases. Hence, we see a decreasing
trend in the MDR values as γ increases in Table 5.1. Furthermore,
when the persistence of the data generating process for the
conditioning variables increases (as represented by the increase
in the autoregressive coefficient ψ), the average MDR values
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Table 5.1
Averages of MDR, MDU, and PF for Example 5.1.

ψ γ T
T = 100 T = 300 T = 500

ψ = 0.4

γ = 1
MDR 0.0505(0.1682) 0.0474(0.1092) 0.0585(0.1120)
MDU 0.0500(0.3751) 0.0031(0.1627) 0.0441(0.1450)
PF 0.5239(0.0606) 0.5232(0.0340) 0.5255(0.0347)

γ = 5
MDR 0.0143(0.0101) 0.0078(0.0040) 0.0066(0.0034)
MDU 0.0028(0.0206) 0.0066(0.0310) 0.0011(0.0129)
PF 0.5934(0.0451) 0.5734(0.0276) 0.5704(0.0192)

γ = 10
MDR 0.0060(0.0038) 0.0038(0.0020) 0.0032(0.0013)
MDU 0.0021(0.0010) 0.0014(0.0005) 0.0011(0.0004)
PF 0.5821(0.0486) 0.5747(0.0284) 0.5676(0.0213)

ψ = 0.9

γ = 1
MDR 0.1045(0.3192) 0.0763(0.3311) 0.0937(0.3418)
MDU 0.0958(0.2397) 0.0954(0.2086) 0.1842(0.3147)
PF 0.5229(0.0557) 0.5199(0.0354) 0.5169(0.0382)

γ = 5
MDR 0.0286(0.0153) 0.0160(0.0064) 0.0125(0.0047)
MDU 0.0113(0.0111) 0.0059(0.0220) 0.0058(0.0086)
PF 0.6388(0.0443) 0.6211(0.0267) 0.6059(0.0225)

γ = 10
MDR 0.0160(0.0098) 0.0087(0.0034) 0.0065(0.0023)
MDU 0.0052(0.0024) 0.0033(0.0010) 0.0028(0.0008)
PF 0.6469(0.0445) 0.6247(0.0305) 0.6162(0.0229)
Table 5.2
Averages of MDR, MDU, and PF for Example 5.2.

γ T
T = 100 T = 300 T = 500

γ = 1
MDR 0.2187(0.3298) 0.2599(0.1431) 0.2448(0.1282)
MDU 0.1518(0.2794) 0.0314(0.1257) 0.0232(0.0561)
PF 0.5500(0.0590) 0.5373(0.0489) 0.5903(0.0403)

γ = 5
MDR 0.0444(0.0270) 0.0189(0.0079) 0.0165(0.0077)
MDU 0.0140(0.0458) 0.0099(0.0033) 0.0075(0.0132)
PF 0.6633(0.0430) 0.6274(0.0305) 0.6196(0.0215)

γ = 10
MDR 0.0233(0.0131) 0.0112(0.0049) 0.0097(0.0042)
MDU 0.0088(0.0041) 0.0049(0.0017) 0.0044(0.0016)
PF 0.6659(0.0475) 0.6287(0.0306) 0.6220(0.0253)

generally increase. This occurs because when the conditioning
process ismore persistent, its current values havemore predicative
ability for the its next-period value and thus the next-period asset
returns.

Example 5.2. In this example, the gross returns vectors Rt are
generated from a stationary VAR:

log(Rt) = 0.01 ∗ 1n + B ∗ log(Rt−1)+ et , (5.3)

where et are generated in the same way as in Example 5.1, the AR
coefficient matrix B is set as the transpose of 0.01 ∗ magic(n), in
which magic(n) denotes the n × nmagic matrix constructed from
the integers 1 through n2 with equal row and column sums.

The conditioning variables are taken as the lag-one and lag-
two returns, i.e. Xt−1 = (Rᵀ

t−1,R
ᵀ

t−2)
ᵀ
. Hence, the number of

conditioning variables is J = 2n. The results based on 100
independent samples of this example are given in Table 5.2. Similar
findings can be obtained as those in Example 5.1.

Example 5.3. We have a sample of daily returns data on Dow
Jones stocks over the period 2010–2014. We use a total of 1000
observations on the stock returns of the 30 companies comprising
the Dow Jones index. The lag-1 returns on the 30 stocks are used as
the conditioning variables.Weapply a CRRAutilitywithγ = 5. The
proposed data-driven semiparametric model averaging method is
used to construct an optimal portfolio from the 30 stocks that gives
the investor the maximum next-period utility. The portfolio is
rebalanced in each time period to reflect latest market conditions.
The returns on the selected portfolio are calculated and compared
Fig. 5.1. SMAM returns vs UPM returns: the returns on the portfolio constructed
from the semiparametric model average method are on the vertical axis and those
on the portfolio constructed from the unconditional parametric method are on the
horizontal axis; the straight line is y = x.

to those on the portfolio constructed from the unconditional
parametric method. Fig. 5.1 plots the returns on the portfolios
constructed from the above two methods. It shows that in most of
the time periods under consideration, the semiparametric model
averaging gives a portfolio that provides higher returns. In some
periods, the additional return is as high as 40%–60%. The mean
difference between these returns over the sampling period is
calculated as 3.2%.

6. Conclusions and extensions

In this paper, we have introduced a new data-driven method to
estimate the dynamic portfolio choice with multiple conditioning
variables, where the number of the conditioning variables can be
either fixed or divergent with the sample size. Motivated by the
MAMAR method proposed in Li et al. (2015), we first solve a port-
folio choice problem for each univariate conditioning variable, and
then combine the portfolio weights from each of those ‘‘experts’’
through the model averaging approach. The optimal weights in
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the model averaging are determined by the semiparametric data-
driven method introduced in Section 4. The asymptotic theorems
demonstrate that the proposed dynamic portfolio choice approach
can circumvent the curse of dimensionality issue, and the numeri-
cal studies show that the proposed approach performs reasonably
well in the finite sample case. In fact, this approach is quite com-
mon in the machine learning literature, see, for example, Györfi
et al. (2011). It is also possible to introduce constraints such as ab-
sence of short selling or position limits at each stage of ourmethod
at the cost of computational complexity.

Appendix A. Assumptions

We next list the regularity conditions which are used to prove
the asymptotic results. Some of these conditions might not be the
weakest possible and can be relaxed at the cost of more lengthy
proofs.

Assumption 1. (i) The utility function u(·) is concave and has
continuous derivatives up to the second order.

(ii) The optimal weight functions (for the scalar conditioning
variable) w∗

j (·), j = 1, . . . , J , have continuous derivatives up to
the second order.

Assumption 2. The joint process of the conditioning variables
Xt = (X1t , . . . , XJt)

ᵀ
and asset returns


Rt = (R1t , . . . , Rnt)

ᵀ
is strictly stationary and α-mixing with the mixing coefficient
decaying at a geometric rate, αk ∼ γ k

0 , 0 < γ0 < 1.

Assumption 3. For 1 ≤ j ≤ J , each component variable Xjt has
a continuous marginal density function fj(·) on a compact support
denoted by Xj. For all t > 1, the joint density function of (X1,Xt)
exists and is uniformly bounded. There exists a δ > 0 such that

max
1≤j≤J

max
1≤i,k≤n

E[|RitRkt ü(w
ᵀ

j (Xj,t−1)Rt)|
2+δ

+ |Rit u̇(w
ᵀ

j (Xj,t−1)Rt)|
2+δ

] < ∞.

The matrix

E[R∗

t (R
∗

t )
ᵀ
ü(w

ᵀ

j (xj)Rt)|Xj,t−1 = xj]

is non-singular uniformly for xj ∈ Xj, j = 1, . . . , J , where R∗
t is

defined in Section 3.

Assumption 4. The kernel function K(·) is positive, Lipschitz
continuous and symmetric about zerowith a compact support, and
K(z)dz = 1.

Assumption 5. The bandwidth h satisfies h → 0,

Th4
= o(1) and

T 1−1/(2+δ)h
log T

→ ∞.

Assumption 5′. The bandwidth h satisfies h → 0,

Th4
= o(1) and

T 1−1/(2+δ)h

J1/(2+δ)T log T
→ ∞.

The above assumptions are mild and justifiable. Some of
the assumptions are similar to those in Brandt (1999). Under
some conditions, Assumption 1(ii) follows from Assumption 1(i).
For example when u(x) = x − (γ /2)x2, it suffices that the
conditional mean and conditional covariance matrix of returns
are twice continuously differentiable. We impose in Assumption 2
the stationarity and mixing dependence condition on the joint
processes of the returns of the risky assets and the conditioning
variables. The methodology and theory developed in the present
paper are also applicable to the more general dependence
structure, say the near epoch dependent process (Li et al., 2012).
To facilitate our proofs, we assume that the mixing coefficients
decay at a geometric rate, which can be relaxed to a polynomial
rate at the cost of more lengthy proofs. The bandwidth conditions
in Assumptions 5 and 5′ indicate that there is a trade-off between
the moment conditions and the bandwidth restriction. And the
condition Th4

= o(1) shows that certain under-smoothing is
needed in the asymptotic analysis, which is not uncommon in
semiparametric estimation.

Appendix B. Proofs of the theoretical results

We next give the proofs of the theoretical results stated in
Sections 3 and 4. In this appendix, we let C be a positive constant
whose value may change from line to line.
Proof of Theorem 3.1. By the definition ofw∗

j (xj) = [w1j(xj), . . . ,wn0−1,j(xj)]
ᵀ
or wj(xj) = [w1j(xj), . . . ,wn0j(xj)]

ᵀ
, we have

1
Th

T
t=1

(Rit − Rnt)u̇(wᵀ

j (xj)Rt)K

Xj,t−1 − xj

h


= 0 (B.1)

for i = 1, . . . , n0 −1 and j = 1, . . . , J0. By Assumption 1 and using
the Taylor’s expansion for u̇(·),

u̇(wᵀ

j (xj)Rt) = u̇(w
ᵀ

j (xj)Rt)+ ü(w
ᵀ

�
(xj)Rt)

× {(R∗

t )
ᵀ
[w∗

j (xj)− w∗

j (xj)]},

where w�(xj) lies between wj(xj) and wj(xj), and w∗

j (xj) =

[w1j(xj), . . . , wn0−1,j(xj)]
ᵀ
. Then we may prove that

w∗

j (xj)− w∗

j (xj) = A−1
nj (xj)Bnj(xj), (B.2)

for j = 1, . . . , J0, where

Anj(xj) =
1
Th

T
t=1

R∗

t (R
∗

t )
ᵀ
ü

w

ᵀ

�
(xj)Rt


K

Xj,t−1 − xj

h


,

Bnj(xj) =
1
Th

T
t=1

R∗

t u̇

w

ᵀ

j (xj)Rt

K

Xj,t−1 − xj

h


.

By Assumptions 2–5 in Appendix A and following the standard
argument in nonparametric kernel-based smoothing in time series
(c.f. Robinson, 1983), we can show that

Anj(xj) = Λj(xj)+ oP(1) (B.3)

when n = n0 is fixed and wj(xj) is sufficiently close to wj(xj),
where Λj(xj) is defined in Section 3. The convergence in (B.3)
holds uniformly for xj ∈ Xj and j = 1, . . . , J0 (c.f., the proof
of Theorem 3.3). On the other hand, we recall that Zjt(xj) =

R∗
t u̇

w

ᵀ

j (Xj,t−1)Rt

K


Xj,t−1−xj
h


. By Assumption 1(i)(ii) and the

Taylor’s expansion for u̇

w

ᵀ

j (·)Rt

, we may show that

Bnj(xj) =
1
Th

T
t=1

Zjt(xj)+ OP(h2). (B.4)

Noting that Th4
= o(1) in Assumption 5 and by (B.2)–(B.4),

√
Th
w∗

j (xj)− w∗

j (xj)


= Λ−1
j (xj) ·

1
√
Th

T
t=1

Zjt(xj)+ oP(1). (B.5)
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Then, using the central limit theorem for the stationary α-mixing
sequence (e.g., Section 2.6.4 in Fan and Yao, 2003), we can
complete the proof of (3.2) in Theorem 3.1(i).

As in Section 3, let

Wjt(xj) = Λ−1
j (xj)Zjt(xj), Wt(x|a) =

J0
j=1

ajWjt(xj).

By (B.5) and the definitions of w∗
a (x) andw

∗
a (x), we have

√
Th
w∗

a (x)− w∗

a (x)


=
1

√
Th

T
t=1

Wt(x|a)+ oP(1). (B.6)

Using (B.6), we can readily prove (3.3) in Theorem 3.1(ii). �

Proof of Theorem 3.2. The proof of this theorem is similar to
the proof of Theorem 3.1. The only difference that the stronger
bandwidth condition in Assumption 5′ is needed when we prove
(B.3) uniformly for xj ∈ Xj and j = 1, . . . , JT . �

Proof of Theorem 3.3. We only consider the proof of (3.5) for the
case when J = JT is diverging, as the proof for the case of J = J0 is
similar and simpler. Noting that wn0j(xj) = 1 −

n0−1
i=1 wij(xj) and

using (B.2) and (B.3) in the proof of Theorem 3.1, we only need to
show that

max
1≤j≤JT

sup
xj∈Xj

 1
Th

T
t=1

R∗

t u̇

w

ᵀ

j (xj)Rt

K

Xj,t−1 − xj

h


= OP


h2

+

log T/(Th)


, (B.7)

as Λj(xj) is nonsingular uniformly for xj ∈ Xj, 1 ≤ j ≤ JT
(see Assumption 3). Note that the convergence result in (B.4) can
be strengthened from the point-wise convergence to the uniform
convergence over xj ∈ Xj, 1 ≤ j ≤ JT . Hence, in order to prove
(B.7), we only need to show that

max
1≤j≤JT

sup
xj∈Xj

 1
Th

T
t=1

Zjt(xj)

 = OP


log T/(Th)


, (B.8)

where Zjt(xj) is defined in the proof of Theorem 3.1.
For notational simplicity, denote ξT = (

log T
Th )

1/2. The main idea
of proving (B.8) is to consider covering the compact support Xj by
a finite number of disjoint subsets Xj(k) which are centered at xjk
with radius rT = ξTh2, k = 1, . . . ,Nj. It is easy to show that

max
1≤j≤JT

Nj = O(r−1
T ) = O(ξ−1

T h−2)

and

max
1≤j≤JT

sup
xj∈Xj

 1
Th

T
t=1

Zjt(xj)


≤ max

1≤j≤JT
max

1≤k≤Nj

 1
Th

T
t=1

Zjt

xjk


+ max
1≤j≤JT

max
1≤k≤Nj

sup
xj∈Xj(k)

 1
Th

T
t=1

Zjt(xj)−
1
Th

T
t=1

Zjt

xjk


≡ ΠT1 +ΠT2. (B.9)

By the continuity condition on K(·) in Assumption 4 and using the
definition of rT , we readily have

ΠT2 = OP

 rT
h2


= OP(ξT ). (B.10)
ForΠT1, we apply the truncation technique and the Bernstein-
type inequality for the α-mixing dependent random variables
which can be found in Bosq (1998) and Fan and Yao (2003) to
obtain the convergence rate. LetMT = M1(TJT )1/(2+δ),

Zjt

xjk


= Zjt

xjk

· I
R∗

t u̇

Rwjt
  ≤ MT


andZjt

xjk


= Zjt

xjk

· I
R∗

t u̇

Rwjt
  > MT


,

where I{·} is an indicator function and Rwjt = w
ᵀ

j (Xj,t−1)Rt . Thenwe
have

ΠT1 ≤ max
1≤j≤JT

max
1≤k≤Nj

 1
Th

T
t=1


Zjt(xjk)− E


Zij(xjk)


+ max

1≤j≤JT
max

1≤k≤Nj

 1
Th

T
i=1

Zjt(xjk)− E
Zjt(xjk)


≡ ΠT3 +ΠT4. (B.11)

For M2 > 0 and any ϵ > 0, by the moment condition in Assump-
tion 3 and the Markov inequality,

P

ΠT4 > M2ξT


≤ P(max

1≤j≤JT
max

1≤k≤Nj
max
1≤t≤T

∥Zjt(xjk)∥ > M2ξT )

≤

JT
j=1

T
t=1

P(∥R∗

t u̇

Rwjt

∥ > MT )

≤ M−(2+δ)
1 · max

1≤j≤JT
E[∥R∗

t u̇(R
w
jt )∥

2+δ
] < ϵ,

if we choose

M1 > { max
1≤j≤JT

E[∥R∗

t u̇(R
w
jt )∥

2+δ
]}

1/(2+δ)ϵ−1/(2+δ).

Then, by letting ϵ be arbitrarily small, we can show that

ΠT4 = OP(ξT ). (B.12)

On the other hand, note that

∥Zjt(xjk)− E[Zjt(xjk)]∥ ≤ C0MT (B.13)

and

Var[Zjt(xjk)] ≤ C0h, (B.14)

where C0 is a positive constant. By (B.13), (B.14) and Theorem
1.3(2) in Bosq (1998) with p =


(M2MT ξT/4)−1


which tends to

infinity by (3.6), we have

P(ΠT3 > M2ξT )

= P


max
1≤j≤JT

max
1≤k≤Nj

 1
Th

T
t=1

{Zjt(xjk)− E[Zij(xjk)]}

 > M2ξT



=

JT
j=1

Nj


4 exp


−qM2

2ξ
2
T

4C0M2MT ξT/h + 16C0/(ph)


+ 22 [1 + 4C0MT/(M2hξT )] qγ

p
0


≤ C

JT
j=1

Nj


exp


−M1/2

2 log T


+ TM2
T γ

p
0


= o(1),

where M2 is chosen sufficiently large and q = T/(2p). Hence we
have

ΠT3 = OP(ξT ). (B.15)

In view of (B.10)–(B.12) and (B.15), we have shown (B.8), complet-
ing the proof of Theorem 3.3. �
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Proof of Theorem 4.1. Recall that

a∗
= (a1, . . . ,aJ−1)

ᵀ
, a∗

0 = (a10, . . . , aJ−1,0)
ᵀ
,

Rt(w) = (Rw1t , . . . , R
w
Jt )

ᵀ
, R∗

t (w) = (Rw1t , . . . , R
w
J−1,t)

ᵀ
,Rt(w) = (Rw1t , . . . ,RwJt )ᵀ , R∗

t (w) = (Rw1t , . . . ,RwJ−1,t)
ᵀ
.

As aJ0 = 1 −
J0−1

j=1 aj and aJ00 = 1 −
J0−1

j=1 aj0, by
Theorem3.3(i), Assumption 1(i) and the Taylor’s expansion for u̇(·),
we may show that

u̇
 J0

j=1

ajwᵀ

j (Xj,t−1)Rt


− u̇

 J0
j=1

aj0wᵀ

j (Xj,t−1)Rt



= ü
 J0

j=1

aj0w
ᵀ

j (Xj,t−1)Rt

 J0
j=1

aj − aj0
 wᵀ

j (Xj,t−1)Rt

+OP(∥a − a0∥2)

= ü
 J0

j=1

aj0w
ᵀ

j (Xj,t−1)Rt


(a − a0)

ᵀRt(w)+ OP(∥a − a0∥2)

= ü
 J0

j=1

aj0w
ᵀ

j (Xj,t−1)Rt


(a∗

− a∗

0)
ᵀ R∗

t (w)−RwJ0t1J0−1


+OP(∥a∗
− a∗

0∥
2)

and

u̇


J0
j=1

aj0wᵀ

j (Xj,t−1)Rt


− u̇


J0
j=1

aj0w
ᵀ

j (Xj,t−1)Rt



= ü


J0
j=1

aj0w
ᵀ

j (Xj,t−1)Rt


J0
j=1

aj0[wj(Xj,t−1)− wj(Xj,t−1)]
ᵀ
Rt

+OP


h4

+
log T
Th


= ü


J0
j=1

aj0w
ᵀ

j (Xj,t−1)Rt


a

ᵀ

0[
Rt(w)− Rt(w)]

+OP


h4

+
log T
Th


.

Hence, we have

u̇
 J0

j=1

ajwᵀ

j (Xj,t−1)Rt


= u̇

 J0
j=1

aj0w
ᵀ

j (Xj,t−1)Rt



+ u̇
 J0

j=1

ajwᵀ

j (Xj,t−1)Rt


− u̇

 J0
j=1

aj0w
ᵀ

j (Xj,t−1)Rt



= u̇
 J0

j=1

aj0w
ᵀ

j (Xj,t−1)Rt


+ u̇

 J0
j=1

ajwᵀ

j (Xj,t−1)Rt



− u̇
 J0

j=1

aj0wᵀ
j (Xj,t−1)Rt


+ u̇

 J0
j=1

aj0wᵀ

j (Xj,t−1)Rt



− u̇
 J0

j=1

aj0w
ᵀ

j (Xj,t−1)Rt


= ηt + η∗

t [
R∗

t (w)−RwJ0t1J0−1]
ᵀ(a∗

− a∗

0)+ η∗

t [
Rt(w)

−Rt(w)]
ᵀ
a0 + OP


h4

+
log T
Th


+ OP(∥a∗

− a∗

0∥
2), (B.16)
where ηt = u̇[
J0

j=1 aj0w
ᵀ

j (Xj,t−1)Rt ] and η∗
t = ü[

J0
j=1 aj0w

ᵀ

j
(Xj,t−1)Rt ].

By (4.4) and (B.16), we have

0 =
1
T

T
t=1

[R∗

t (w)−RwJ0t1J0−1]u̇
 J

j=1

ajwᵀ

j (Xj,t−1)Rt



=
1
T

T
t=1

[R∗

t (w)−RwJ0t1J0−1]

×


ηt + η∗

t [
R∗

t (w)−RwJ0t1J0−1]
ᵀ
(a∗

− a∗

0)

+ η∗

t [
Rt(w)− Rt(w)]

ᵀ
a0


+OP


h4

+
log T
Th


+ OP(∥a∗

− a∗

0∥
2). (B.17)

By (B.17), we readily have

√
T (a∗

− a∗

0)
P
∼


1
T

T
t=1

η∗

t
V∗

t (
V∗

t )
ᵀ

−1

×


1

√
T

T
t=1

V∗

t ηt +
1

√
T

T
t=1

V∗

t η
∗

t [
Rt(w)− Rt(w)]

ᵀ
a0


, (B.18)

whereV∗
t = R∗

t (w) −RwJ0t1J0−1 and αn
P
∼βn denotes that αn/βn =

1 + oP(1).
By Theorem 3.3 and the law of larger numbers, we readily have

1
T

T
t=1

η∗

t
V∗

t (
V∗

t )
ᵀ

=
1
T

T
t=1

η∗

t V
∗

t (V
∗

t )
ᵀ
+ oP(1)

= ∆1 + oP(1), (B.19)

where ∆1 is defined in Section 4. Note that

1
√
T

T
t=1

V∗

t ηt =
1

√
T

T
t=1

V∗

t ηt +
1

√
T

T
t=1

(V∗

t − V∗

t )ηt .

By Assumptions 2 and 3 and following the argument in the proof
of Lemma B.3 in Li et al. (2015), wemay show that the second term
on the right hand side of (B.19) is asymptotically negligible. Hence,
we have

1
√
T

T
t=1

V∗

t ηt
P
∼

1
√
T

T
t=1

V∗

t ηt . (B.20)

We next consider 1
√
T

T
t=1
V∗

t η
∗
t [
Rt(w) − Rt(w)]

ᵀa0. It is easy to
see that

1
√
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t [
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1
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Rt(w)− Rt(w)]
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a0 (B.21)

by using Theorem 3.3. Let W be an n0 × (n0 − 1) matrix which is
defined by

W =


1 · · · 0
...

...
...

0 · · · 1
−1 · · · −1

 .
It is easy to show that for any j = 1, . . . , J0 and xi ∈ Xj,wj(xj)− wj(xj) = W[w∗

j (xj)− w∗

j (xj)]. (B.22)
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Hence, by (B.22) and using the argument in the proofs of Theo-
rems 3.1 and 3.3, we may show thatRwjt − Rwjt = [wj(Xj,t−1)− wj(Xj,t−1)]

ᵀ
Rt

= [w∗

j (Xj,t−1)− w∗

j (Xj,t−1)]
ᵀ
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Xj,s−1 − Xj,t−1
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, (B.23)

where εjs = u̇(w
ᵀ

j (Xj,s−1)Rs) = u̇(Rwjs ) and Zjs(·) is defined in the
proof of Theorem 3.1. By (B.23), we readily have

[Rt(w)− Rt(w)]
ᵀ
a0

= R
ᵀ

tW ·


1
Th
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s=1

J0
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,

which indicates that

1
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where

Qjs =


E[η∗

t V
∗

t R
ᵀ

tWΛ−1
j (Xj,t−1)|Xj,t−1 = Xj,s−1]


fj(Xj,s−1)R∗

s .

Recall that εt = [ε1ta10, . . . , εJ0taJ00]
ᵀ
and Qt = (Q1t , . . . ,QJ0t)

ᵀ
.

Then we have
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t [
Rt(w)− Rt(w)]

ᵀ
a0

P
∼

1
√
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t=1
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t εt . (B.25)

By (B.20), (B.21) and (B.25), we have

1
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By the central limit theorem for the α-mixing sequence, we can
prove that

1
√
T

T
t=1

(V∗

t ηt + Q
ᵀ

t εt)
d

→N(0,∆2). (B.27)
Then, we can complete the proof of Theorem 4.1 by (B.18)–(B.21),
(B.26) and (B.27). �

Proof of Theorem 4.2. Themain idea in this proof is similar to the
proof of Theorem4.1with somemodifications. Hence,wenext only
sketch the proof.

Following the proof of (B.18) and using the condition (4.6), we
may show that
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. (B.28)

Note that (B.19) still holds by using Theorem 3.3(ii) and (4.6).
Hence, by (B.28), we have
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. (B.29)

Furthermore, using the argument in proving (B.26), we obtain
√
TΨ T∆

−1/2
T (a − a0)

P
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−1/2
T ∆−1

1

×


1

√
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. (B.30)

By the central limit theorem and using the condition thatΨ TΨ
ᵀ

T →

Ψ , we can complete the proof of Theorem 4.2. �
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